
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 612142, 12 pages
doi:10.1155/2012/612142

Research Article
Traffic Network Equilibrium
Problems with Capacity Constraints of Arcs and
Linear Scalarization Methods

X. Q. Tian1 and Y. D. Xu2

1 Chongqing University of Science and Technology, Chongqing 401331, China
2 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Correspondence should be addressed to X. Q. Tian, tianxueq@126.com

Received 13 September 2012; Accepted 15 November 2012

Academic Editor: Nan-Jing Huang

Copyright q 2012 X. Q. Tian and Y. D. Xu. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Traffic network equilibrium problems with capacity constraints of arcs are studied. A (weak)
vector equilibrium principle with vector-valued cost functions, which are different from the ones
in the work of Lin (2010), and three kinds of parametric equilibrium flows are introduced. Some
necessary and sufficient conditions for a (weak) vector equilibrium flow to be a parametric
equilibrium flow are derived. Relationships between a parametric equilibrium flow and a solution
of a scalar variational inequality problem are also discussed. Some examples are given to illustrate
our results.

1. Introduction

The earliest traffic network equilibriummodel was proposed byWardrop [1] for a transporta-
tion network. After getting Wardrop’s equilibrium principle, many scholars have studied
variant kinds of network equilibriummodels, see, for example, [2–5]. However, most of these
equilibrium models are based on a single criterion. The assumption that the network users
choose their paths based on a single criterion may not be reasonable. It is more reasonable
to assume that no user will choose a path that incurs both a higher cost and a longer delay
than some other paths. In other words, a vector equilibrium should be sought based on the
principle that the flow of traffic along a path joining an O-D pair is positive only if the vector
cost of this path is the minimum possible among all the paths joining the same O-D pair.
Recently, equilibrium models based on multiple criteria or on a vector cost function have
been proposed. In [6], Chen and Yen first introduced a vector equilibrium principle for
vector traffic network without capacity constraints. In [7, 8], Khanh and Luu extended vector
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equilibrium principle to the case of capacity constraints of paths. For other results of vector
equilibrium principle with capacity constraints of paths, we refer to [9–17].

Very recently, in [18, 19], Lin extended traffic network equilibrium principle to the
case of capacity constraints of arcs and obtained a sufficient condition and stability results of
vector traffic network equilibrium flows with capacity constraints of arcs. In [20], Xu et al.
also considered that vector network equilibrium problems with capacity constraints of arcs.
By virtue of a Δ function, which was introduced by Zaffaroni [21], the authors introduced a
Δ-equilibrium flow and a weak Δ-equilibrium flow, respectively, and obtained sufficient and
necessary conditions for a weak vector equilibrium flow to be a (weak) Δ-equilibrium flow.

In this paper, our aim is to further investigate traffic network equilibrium problems
with capacity constraints for arcs. We introduce a (weak) vector equilibrium principle with
vector-valued cost functions, which are more reasonable from practical point of view than
the ones in [18, 19]. In order to obtain necessary and sufficient conditions for a (weak) vector
equilibrium, we introduce three kinds of parametric equilibrium flows. Simultaneously, we
also discuss relationships between a parametric equilibrium flow and a solution of a scalar
variational inequality problem.

The outline of the paper is as follows. In Section 2, a (weak) equilibrium principle
with capacity constraints of arcs is introduced. In Section 3, three kinds of parametric equi-
librium flows are introduced. Some sufficient and necessary conditions for a (weak) vector
equilibrium flow are obtained. Relationships between a parametric equilibrium flow and a
solution of a scalar variational inequality problem are also discussed.

2. Preliminaries

For a traffic network, letN and E denote the set of nodes and directed arcs, respectively, and
let C = (ce)e∈E denote the capacity vector, where ce (>0) denotes the capacity of arc e ∈ E. Let
W denote the set of origin-destination (O-D) pairs and let D = (dw)w∈W denote the demand
vector, where dw (>0) denotes the demand of traffic flow on O-D pair w. A traffic network
with capacity constraints of arcs is usually denoted byG = (N,E,C,W,D). For each arc e ∈ E,
the arc flow needs to satisfy the capacity constraints: ce ≥ ve ≥ 0, for each e ∈ E. For each
w ∈ W , let Pw denote the set of available paths joining O-D pair w. Letm =

∑
w∈W |Pw|. For a

given path k ∈ Pw, let hk denote the traffic flow on this path and h = (h1, h2, . . . , hm) ∈ Rm is
called a path flow. The path flow vector h induces an arc flow ve on each arc e ∈ E given by

ve =
∑

w∈W

∑

k∈Pw

δekhk, (2.1)

where δek = 1 if the arc e is contained in path k and 0, otherwise. Suppose that the demand
of network flow is fixed for each O-D pair w. We say that a path flow h satisfies demand
constraints

∑

k∈Pw

hk = dw, ∀w ∈ W. (2.2)

A path flow h satisfying the demand constraints and capacity constraints is called a feasible
path flow. Let H = {h ∈ Rm

+ : for all w ∈ W ,
∑

k∈Pw
hw = dw and for all e ∈ E, ce ≥ ve ≥ 0} =

{h ∈ Rm
+ : for all w ∈ W ,

∑
k∈Pw

hw = dw and for all e ∈ E, ce ≥ ∑w∈W
∑

k∈Pw
δekhk ≥ 0} and

let H /= ∅. Clearly, H is convex and compact. Let te(hk) : R+ → Rr be a vector-valued cost
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function for the path k on the arc e. Let Tk(h) : Rm
+ → Rr be a vector-valued cost function

along the path k. Then the vector-valued cost on the path k is equal to the sum of the all costs
of the flow hk through arcs, which belong to the path k, that is,

Tk(h) =
∑

e∈E
δekte(hk). (2.3)

Let T(h) = (T1(h), T2(h), . . . , Tm(h)) ∈ Rr×m.

Remark 2.1. In [18, 19], Lin defined the vector cost function along the path k as follows:

Tk(h) =
∑

e∈E
δekte(h), (2.4)

where te(h) : Rm → Rr be a vector-valued cost function for arc e. If the paths have common
arcs, then the definition is unreasonable. The following example can illustrate the case.

Example 2.2. Consider the network problem depicted in Figure 1. V = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5}, C = (3, 2, 2, 4, 3), W = {(1, 4), (3, 4)}, D = (3, 4). The cost functions of arcs from R to
R are, respectively, as follows:

te1(h) = te1(ve1) = 50ve1 + 100, te2(h) = te2(ve2) = 20ve2 + 500,

te3(h) = te3(ve3) = 60ve3 + 100, te4(h) = te4(ve4) = 30ve4 + 200,

te5(h) = te5(ve5) = 70ve5 + 300.

(2.5)

For O-D pair (1, 4): P(1,4) includes path 1 = (1, 2, 4) and path 2 = (1, 4), for O-D pair
(3, 4) : P(3,4) includes path 3 = (3, 2, 4) and path 4 = (3, 4). And by (2.4), we have

T1(h) = te1(h) + te5(h) = 50ve1 + 70ve5 + 400, T2(h) = te2(h) = 20ve2 + 500,

T3(h) = te3(h) + te5(h) = 60ve3 + 70ve5 + 400, T4(h) = te4(h) = 30ve4 + 200.
(2.6)

Then, for flow h = (h1, h2, h3, h4) = (2, 1, 1, 3), we have that arc flows

v = (ve1 , ve2 , ve3 , ve4 , ve5) = (2, 1, 1, 3, 3). (2.7)

It follows from (2.4) that

T1(h) = te1(ve1) + te5(ve5) = 50 × 2 + 100 + 70 × 3 + 300 = 710,

T3(h) = te3(ve3) + te5(ve5) = 60 × 1 + 100 + 70 × 3 + 300 = 670.
(2.8)

However, from the practical point of view, the cost values of the path 1 and path 3with respect
to h are, respectively, as follows:

T1(h) = te1(h1) + te5(h1) = 50 × 2 + 100 + 70 × 2 + 300 = 640,

T3(h) = te3(h3) + te5(h3) = 60 × 1 + 100 + 70 × 1 + 300 = 530.
(2.9)

So, in this paper, we define the vector-valued cost function on a path as (2.3).
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Figure 1: Network topology for an example.

In this paper, the cost space is an r-dimensional Euclidean space Rr , with the ordering
cone S = Rr

+, a pointed, closed, and convex cone with nonempty interior intS. We define the
ordering relation as follows:

x≤Sy, iff y − x ∈ S;

x<Sy, iff y − x ∈ intS.
(2.10)

The orderings ≥S and >S are defined similarly. In the sequel, we let the set S+ := {ϕ ∈ Rr :
ϕ(s) ≥ 0, for all s ∈ S} be the dual cone of S. Denote the interior of S+ by

intS+ :=
{
ϕ ∈ Rr : ϕ(s) > 0, ∀s ∈ S \ {0}}. (2.11)

Lemma 2.3 (see [22]). Consider

S \ {0} :=
{
x ∈ Rr : ϕ(x) > 0, ∀ϕ ∈ int S+},

intS :=
{
x ∈ Rr : ϕ(x) > 0, ∀ϕ ∈ S+ \ {0}}.

(2.12)

Definition 2.4 (see [18, 19]). Assume that a flow h ∈ H,

(i) for e ∈ E, if ve = ce, then arc e is said to be a saturated arc of flow h, otherwise a
nonsaturated arc of flow h.

(ii) for k ∈ ⋃w∈W Pw, if there exists a saturated arc e of flow h such that e belongs to
path k, then path k is said to be a saturated path of flow h, otherwise a nonsaturated
path of flow h.

We introduced the following vector equilibrium principle and weak vector equilib-
rium principle.
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Definition 2.5 (vector equilibrium principle). A flow h ∈ H is said to be a vector equilibrium
flow if for all w ∈ W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ S \ {0} =⇒ hk = 0 or path j is a saturated path of flow h. (2.13)

Definition 2.6 (weak vector equilibrium principle). A flow h ∈ H is said to be a weak vector
equilibrium flow if for all w ∈ W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ intS =⇒ hk = 0 or path j is a saturated path of flow h. (2.14)

If for all e ∈ E, ce = c ≥ ∑w∈W dw, then the capacity constraints of arcs are invalid, in this
case, the traffic equilibrium problem with capacity constraints of arcs reduces to the traffic
equilibrium problem without capacity constraints of arcs.

3. Sufficient and Necessary Conditions for
a (Weak) Vector Equilibrium Flow

In this section, we introduce an intS+-parametric equilibrium flow, a S+ \ {0}-parametric
equilibrium flow and a ϕ-parametric equilibrium flow, respectively. By using the three new
concepts, we can obtain some sufficient and necessary conditions of a vector equilibrium flow
and a weak vector equilibrium flow, respectively.

Definition 3.1. A flow h ∈ H is said to be in intS+-parametric equilibrium if for allw ∈ W , for
all k, j ∈ Pw and for all ϕ ∈ int S+, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.1)

Definition 3.2. A flow h ∈ H is said to be in S+ \ {0}-parametric equilibrium if for all w ∈ W ,
for all k, j ∈ Pw and for all ϕ ∈ S+ \ {0}, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.2)

Definition 3.3. Let a ϕ ∈ S+ \ {0} be given. A flow h ∈ H is said to be in ϕ-parametric equilib-
rium flow if for all w ∈ W and for all k, j ∈ Pw, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hk = 0 or path j is a saturated path of flow h. (3.3)

The intS+-equilibrium flow and ϕ-parametric equilibrium flow for some ϕ ∈ intS+

are defined in Definitions 3.1 and 3.2, respectively. They can be used to characterize vector
equilibrium flow in the following theorems.

Theorem 3.4. A flow h ∈ H is in vector equilibrium if and only if the flow h is in int S+-parametric
equilibrium.

Proof. It can get immediately the above conclusion by Lemma 2.3. Thus the proof is omitted
here.
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Theorem 3.5. If there exists ϕ ∈ intS+ such that a flow h ∈ H is in ϕ-parametric equilibrium, then
the flow h is in vector equilibrium.

Proof. Suppose that for any O-D pair w ∈ W , for all k, j ∈ Pw, we have

Tk(h) − Tj(h) ∈ S \ {0}. (3.4)

By ϕ ∈ intS+ and Lemma 2.3, we get immediately

ϕ
[
Tk(h) − Tj(h)

]
> 0. (3.5)

Since h is in ϕ-parametric equilibrium, we have

hk = 0 or path j is a saturated path of flow h. (3.6)

Thus, the flow h ∈ H is in vector equilibrium.

Now, we give the following example to illustrate Theorem 3.5.

Example 3.6. Consider the network problem depicted in Figure 2. N = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5, e6}, C = (3, 3, 3, 2, 3, 4)T , W = {(1, 4), (3, 4)}, D = (6, 4). The cost functions of arcs
from R to R2 are defined as follows:

te1(h1) =

(
h2
1 + 1
2h1

)

, te2(h2) =

(
5h2

3h2
2

)

, te3(h3) =

(
h2
3 + 7
5h3

)

,

te4(h4) =

(
2h4 + 1
3h4

)

, te5(h5) =
(
3h2

5
6h5

)

, te6(h1) =

(
h2
1

2h1

)

, te6(h4) =

(
h2
4

2h4

)

.

(3.7)

Then, we have

T1(h) = te1(h1) + te6(h1) =

(
2h2

1 + 1
4h1

)

, T4(h) = te4(h4) + te6(h4) =

(
h2
4 + 2h4 + 1

5h4

)

,

T2(h) = te2(h2) =

(
5h2

3h2
2

)

, T3(h) = te3(h3) =

(
h2
3 + 7
5h3

)

, T5(h) = te5(h5) =

(
3h2

5

6h5

)

.

(3.8)

Taking h∗ = (2, 2, 2, 2, 2)′ ∈ H, then there exists ϕ = (1, 1) ∈ intR2
+ such that the flow

h∗ is in ϕ-parametric equilibrium. Thus, by Theorem 3.5, we have that the flow h∗ is in vector
equilibrium.

For weak vector equilibrium flows, we have following similar results.

Theorem 3.7. A path flow h ∈ H is in weak vector equilibrium if and only if the flow h is in S+ \{0}-
parametric equilibrium.
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Figure 2: Network topology for an example.

Theorem 3.8. If there exists ϕ ∈ S+\{0} such that a path flow h ∈ H is in ϕ-parametric equilibrium,
then the flow h is in weak vector equilibrium.

From Theorems 3.4–3.8, we can get immediately the following corollaries.

Corollary 3.9. If there exists ϕ ∈ intS+ such that a flow h ∈ H is in ϕ-parametric equilibrium, then
the flow h is in intS+-parametric equilibrium.

Corollary 3.10. If there exists ϕ ∈ S+ \ {0} such that a flow h ∈ H is in ϕ-parametric equilibrium,
then the flow h is in S+ \ {0}-parametric equilibrium.

Remark 3.11. When a flow h ∈ H is in intS+-parametric equilibrium, then, the flow h may
not be in ϕ-parametric equilibrium for some ϕ ∈ intS+. Of course, when a flow h ∈ H is in
S+ \ {0}-parametric equilibrium, then, the flow hmay not be in ϕ-parametric equilibrium for
some ϕ ∈ S+ \ {0}. The following example can explain these cases.

Example 3.12. Consider the network problem depicted in Figure 1. N = {1, 2, 3, 4}, E =
{e1, e2, e3, e4, e5, }, C = (3, 3, 2, 4, 3, ), W = {{1, 4}, {3, 4}}, D = {3, 4}. Let the cost functions
of arcs are defined as follows:

te1(h1) =

⎛

⎝
h2
1 + 2

h2
1 + 3

⎞

⎠, te2(h2) =
(
h2
2 + h2 + 2
h2 + 2

)

, te3(h3) =
(
3h2

3 + 2
2h3 + 2

)

,

te4(h4) =
(
2h4 + 4
h4 + 1

)

, te5(h1) =
(
h2
1 + 2
2h1

)

, te5(h3) =
(
h2
3 + 2
2h3

)

.

(3.9)

Then, we have

T1(h) = te1(h1) + te6(h1) =

(
2h2

1 + 4

h2
1 + 2h1 + 3

)

, T2(h) = te2(h2) =

(
h2
2 + h2 + 2
h2 + 2

)

,

T3(h) = te3(h3) = te3(h3) + te5(h3) =
(
4h2

3 + 4
4h3 + 2

)

, T4(h) = te4(h4) =
(
2h4 + 4
h4 + 1

)

.

(3.10)
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Taking

h∗ = (1, 2, 1, 3)′, (3.11)

we have

T1(h∗) =
(
6
6

)

, T2(h∗) =
(
8
4

)

, T3(h∗) =
(
8
6

)

, T4(h∗) =
(
10
4

)

. (3.12)

Thus, by Definitions 3.1 and 3.2, we know that the flow h∗ is a intS+-parametric equilibrium
flow and is a S+ \ {0}-parametric equilibrium flow as well. On the other hand, for ϕ =
(1, 1/2)′ ∈ intS+ ⊂ S+ \ {0}, there exists w = {1, 4} and path 1, 2 ∈ Pw, we have

ϕ[T2(h∗) − T1(h∗)] = 1 > 0. (3.13)

But, h2 = 2 > 0 and path 1 is nonsaturated path of h∗. Thus, it follows from Definition 3.3 that
the flow h∗ is not in ϕ-parametric equilibrium.

Theorem 3.13. Let ϕ ∈ S+ \ {0} be given. A flow h ∈ H is in ϕ-parametric equilibrium if the flow h
solves the following scalar variational inequality:

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ H. (3.14)

Proof. Assume that h ∈ H solves above scalar variational inequality problem. For all w ∈ W ,
for all k, j ∈ Pw, if ϕ[Tk(h) − Tj(h)] = ϕ[Tk(h)] − ϕ[Tj(h)] > 0 and path j is nonsaturated path
of flow h, we need to prove that hk = 0. Denote that pj = {e ∈ E | arc e belongs to path j}. If
the conclusion is false, then

ε = min
{

min
e∈pj

(ce − ve), hk

}

> 0. (3.15)

Construct a flow f as follows:

f =
(
fl
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hl, if l /= k or j,

(hk − ε), if l = k,
(
hj + ε

)
, if l = j.

(3.16)

It is easy to verify that

f ∈ H. (3.17)
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It follows readily that

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

)
= ϕ(Tk(h))

(
fk − hk

)
+ ϕ
(
Tj(h)

)(
fj − hj

)

= ε
(
ϕ
[
Tj(h)

] − ϕ[Tk(h)]
)

< 0,

(3.18)

which contradicts (3.14). Thus, h is in ϕ-parametric equilibrium and the proof is complete.

From Theorems 3.4–3.13, we can get the following corollary.

Corollary 3.14. If there exists ϕ ∈ intS+ (ϕ ∈ S+ \ {0}) such that a flow h ∈ H is a solution of the
following scalar variational inequality:

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ H, (3.19)

then the flow h is in (weak) vector equilibrium.

Remark 3.15. We can prove that the the converse of Theorem 3.13 is valid when the traffic
network equilibrium problem without capacity constraints of arcs, such as traffic network
equilibrium problems without capacity constraints or with capacity constraints of paths. The
result will be showed on Theorem 3.18. But, if the traffic network equilibrium problem with
capacity constraints of arcs, then the converse of Theorem 3.13 may not hold. The following
example is given to illustrate the case.

Example 3.16. Consider the network problem depicted in Figure 1.N = {1, 2, 3, 4}, E = {e1, e2,
e3, e4, e5}, C = (3, 2, 2, 4, 3), W = {{1, 4}, {3, 4}}, D = {3, 4}. Let the cost functions of arcs are
defined as follows:

te1(h1) =

⎛

⎝
h1

h2
1

⎞

⎠, te2(h2) =

⎛

⎝
h2
2 + 3h2 + 5

h3
2 + 4h2 + 3

⎞

⎠, te3(h3) =

⎛

⎝
h3
3 + 3

h2
3 + 4

⎞

⎠,

te4(h4) =
(
h4 + 4
h4 + 4

)

, te5(h1) =
(
h2
1 + 1
h1

)

, te5(h3) =
(
h2
3 + 1
h3

)

.

(3.20)

Then, we have

T1(h) = te1(h1) + te5(h1) =

⎛

⎝
h2
1 + h1 + 1

h2
1 + h1

⎞

⎠, T2(h) = te2(h2) =

⎛

⎝
h2
2 + 3h2 + 5

h3
2 + 4h2 + 3

⎞

⎠,

T3(h) = te3(h3) + te5(h3) =

⎛

⎝
h3
3 + h2

3 + 4

h2
3 + h3 + 4

⎞

⎠, T4(h) = te4(h4) =
(
h4 + 4
h4 + 4

)

.

(3.21)
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Taking

h∗ = (2, 1, 1, 3)′, (3.22)

we have

T1(h∗) =
(
7
6

)

, T2(h∗) =
(
9
8

)

, T3(h∗) =
(
6
6

)

, T4(h∗) =
(
7
7

)

. (3.23)

Then for any ϕ ∈ intS+(ϕ ∈ S+ \ {0}), we have

ϕ[T2(h∗) − T1(h∗)] > 0,

ϕ[T4(h∗) − T3(h∗)] > 0,
(3.24)

and path 1 is a saturated arc path of h∗, and path 3 is a saturated arc path of h∗ as well.
Thus, the flow h∗ is a ϕ-parametric equilibrium flow by Definition 3.3. However, taking f =
(3, 0, 0, 4)′ ∈ H, we have

∑

w∈W

∑

p∈Pw

Tp(h∗)
(
fp − h∗

p

)
= (−1,−1)′. (3.25)

Thus, for any ϕ ∈ intS+(ϕ ∈ S+ \ {0}), we can always get

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h∗)

)(
fp − h∗

p

)
< 0. (3.26)

Therefore, the converse of Theorem 3.13 is not valid.
The following theorem shows that the converse of Theorem 3.13 is valid when the

traffic equilibrium problem with capacity constraints of paths. The proof is similar when the
traffic network equilibrium problem without capacity constraints. Let

K :=

⎧
⎨

⎩
h | λ ≤ h ≤ μ,

∑

p∈Pw

hp = dw, ∀w ∈ W

⎫
⎬

⎭
, (3.27)

be the feasible set of traffic network equilibrium problem with capacity constraints of paths,
where λ = (λ1, λ2, . . . , λm) and μ = (μ1, μ2, . . . , μm) are lower and upper capacity constraints
of paths, respectively. The ϕ-parametric equilibrium principle of traffic equilibrium problem
with capacity constraints of paths is as follows.

Definition 3.17. Let a ϕ ∈ S+ \ {0} be given. A flow h ∈ H is said to be in ϕ-parametric equilib-
rium flow if for all w ∈ W and for all k, j ∈ Pw, we have

ϕ
(
Tk(h) − Tj(h)

)
> 0 =⇒ hj = μj or hk = λk. (3.28)
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Theorem 3.18. Let ϕ ∈ S+ \ {0} be given. A path h ∈ K is in ϕ-parametric equilibrium if and only
if the flow h solves the following scalar variational inequality:

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥ 0, ∀f ∈ K. (3.29)

Proof. From Theorem 3.13, we only prove necessity. So, we set

Aw := {v ∈ Pw | hv > λv}, Bw :=
{
u ∈ Pw | hu < μu

}
. (3.30)

It follows from the definition of the ϕ-parametric equilibrium flow that

ϕ[Tu(h)] ≥ ϕ[Tv(h)], ∀u ∈ Bw, v ∈ Aw. (3.31)

Thus, there exists a γw ∈ R such that

min
u∈Bw

ϕ[Tu(h)] ≥ γw ≥ max
v∈Aw

ϕ[Tv(h)]. (3.32)

Let f ∈ K be arbitrary. Then, for every r ∈ Pw, we consider three cases.

Case 1. If ϕ[Tr(h)] < γw, then r /∈ Bw. Hence, hr = μr , fr − hr ≤ 0 and

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.33)

Case 2. If ϕ[Tr(h)] > γw, then r /∈ Aw. Hence, hr = λr , fr − hr ≥ 0 and

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.34)

Case 3. If ϕ[Tr(h)] = γw, then we have

[
ϕ(Tk(h)) − γw

](
fr − hr

) ≥ 0. (3.35)

From (3.33), (3.34), and (3.35), we have

∑

w∈W

∑

p∈Pw

ϕ
(
Tp(h)

)(
fp − hp

) ≥
∑

w∈W

∑

p∈Pw

γw(dw − dw) = 0. (3.36)

Thus, the proof is complete.

4. Conclusions

In this paper, we have studied traffic network equilibrium problems with capacity constraints
of arcs. We have introduced some new parametric equilibrium flows, such as: S+ \ {0}-para-
metric equilibrium flows, int S+-parametric equilibrium flows, and ϕ-parametric equilibrium
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flows. By using these new concepts, we have characterized vector equilibrium problems on
networks and derived some necessary and sufficient conditions for a (weak) vector equilib-
rium flow.
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