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We characterize the asymptotic cone of the solution set of a convex composite optimization
problem. We then apply the obtained results to study the necessary and sufficient conditions for
the nonemptiness and compactness of the solution set of the problem. Our results generalize and
improve some known results in literature.

1. Introduction

In this paper, we consider the following extended-valued convex composite optimization
problem:

min f
(
g(x)

)
,

s.t. x ∈ S,
(CCOP)

where S ⊂ Rn is closed and convex. The outer function f : Rm → R ∪ {+∞} is a convex
function; denote by dom f the effective domain of f , that is, dom f = {x ∈ Rm | f(x) < +∞}.
The inner function g : Rn → Rm is a vector-valued function such that g(S) ⊆ dom f . It is
known that convex composite optimization model provides a unifying framework for the
convergence behaviour of some algorithms. Moreover, it is also a convenient tool for the
study of first- and second-order optimality conditions in constrained optimization. The study
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of convex composite optimization model has recently received a great deal of attention in the
literature; see, for example, [1–6] and the references therein.

On the other hand, the main idea of some existent algorithms (such as proximal
point algorithm [7], Tikhonov-type regularization algorithm [8], and viscosity approximate
methods [9]) is computing a sequence of subproblems instead of the original one.
Thus, the study of nonemptiness and compactness of solution set of the subproblems is
significant in both theory and methodology. What is worth noting is that it is an important
condition to guarantee the boundedness of the sequences generated by the algorithms
for optimization problems and variational inequality problems (see, e.g., [10–15]). Finding
sufficient conditions, in particular, necessary and sufficient conditions, which are easy to
verify, for the nonemptiness and compactness of the solution set of optimization problems
becomes an interesting issue. It is known that asymptotic analysis is a powerful tool to
study some properties of a set. We may investigate the nonemptiness and compactness of
the solution set based on the asymptotic description of the functions and sets.

However to the best of our knowledge, there is no literature that has been published
to study the asymptotic cone of the solution set of problem (CCOP). Motivated by these
situations, in this paper we firstly try to investigate the asymptotic cone of the solution set of
the problem (CCOP). The paper is organized as follows. In Section 2, we present some basic
assumptions and notations needed to describe the class of convex composite optimization
problem. In Section 3, we provide the main results of this paper. In Section 4, we draw a
conclusion.

2. Preliminaries

To begin, we must develop our basic definitions and assumptions, to describe the class of
convex composite optimization problem which this paper will consider.

Definition 2.1 (see [14]). LetK be a nonempty set inRn. Then the asymptotic cone of the setK,
denoted by K∞, is the set of all vectors d ∈ Rn that are limits in the direction of the sequence
{xk} ⊂ K, namely:

K∞ =
{
d ∈ Rn | ∃tk −→ +∞, xk ∈ K, lim

k→+∞
xk

tk
= d

}
. (2.1)

In the case that K is convex and closed, then, for any x0 ∈ K,

K∞ = {d ∈ Rn | x0 + td ∈ K, ∀t > 0}. (2.2)

Definition 2.2 (see [16]). A subset K of Rn is said to be bounded if to every neighborhood V
of 0 in Rn corresponds to a number s > 0 such that K ⊂ tV for every t > s.

Lemma 2.3 (see [14]). A nonempty set K ⊂ Rn is bounded if and only if its asymptotic cone is just
the zero cone: K∞ = {0}.

Definition 2.4 (see [14]). For any given function φ : Rn → R ∪ {+∞}, the asymptotic
function of φ is defined as the function φ∞ such that epiφ∞ = (epiφ)∞, where
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epiφ = {(x, t) ∈ Rn × R | φ(x) ≤ t} is the epigraph of φ. Consequently, we can give the
analytic representation of the asymptotic function φ∞:

φ∞(d) = inf
{
lim inf
k→+∞

φ(tkdk)
tk

: tk −→ +∞, dk −→ d

}
. (2.3)

When φ is a proper convex and lower semicontinuous (lsc in short) function, we have

φ∞(d) = sup
{
f(x + d) − f(x) | x ∈ domφ

}
(2.4)

or equivalently

φ∞(d) = lim
t→+∞

φ(x + td) − φ(x)
t

= sup
t>0

φ(x + td) − φ(x)
t

, ∀d ∈ dom φ,

φ∞(d) = lim
t→ 0+

tφ
(
t−1d

)
, ∀d ∈ domφ.

(2.5)

For the indicator function δK of a nonempty set K, we have that δ∞
K = δK∞ .

Example 2.5. Let Q be a symmetric n × n positive matrix and f(x) := (1 + 〈x,Qx〉)1/2. Then,

f∞(d) = 〈d,Qd〉1/2. (2.6)

Definition 2.6 (see [17]). The function φ : Rn → R ∪ {+∞} is said to be coercive if its
asymptotic function φ∞(d) > 0, for all d /= 0 ∈ Rn, and it is said to be countercoercive if its
asymptotic function φ∞(d) = −∞, for some d /= 0 ∈ Rn.

Since the inner function is vector valued, wemay define some partial order in objective
and decision spaces. Let C = Rm

+ ⊂ Rm. We define, for any y1, y2 ∈ Rm,

y1 ≤C y2 iff y2 − y1 ∈ C,

y1 �intC y2 iff y2 − y1 /∈ intC.
(2.7)

Through these partial orders, we introduce some definitions in vector optimization theory.

Definition 2.7 (see [18]). LetK ⊂ Rn be convex, and a map F : K → Rm is said to be C-convex
if

F
(
(1 − λ)x + λy

) ≤C (1 − λ)F(x) + λF
(
y
)

(2.8)

for any x, y ∈ K and λ ∈ [0, 1]. F is said to be strictly C-convex if

F
(
(1 − λ)x + λy

) ≤intC (1 − λ)F(x) + λF
(
y
)

(2.9)

for any x, y ∈ K with x /=y and λ ∈ (0, 1).
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Definition 2.8 (see [18]). A map f : K ⊂ Rm → R ∪ {+∞} is said to be C-monotone if, for any
x, y ∈ K and x ≤C y. There holds

f(x) ≤ f
(
y
)
. (2.10)

Next we give an example to show the C-convex and C-monotone of a function.

Example 2.9. Let X = R3
+, Y = R2, C = R2

+, and g : X → Y is defined by

g(·) =

⎛

⎜
⎜
⎝

3∑

i=1
(xi + 1)

1
2
‖x‖2

⎞

⎟
⎟
⎠. (2.11)

Then, g is a C-convex function. Let f : R2 → R be defined by

f(·) = ex1 + ex2 . (2.12)

Then, f is C-monotone.

3. Main Results

Before discussing the main results, we propose the following proposition for continuity and
convexity of the composite function.

Proposition 3.1. In the problem (CCOP), one assumes f is proper, lsc, convex, and C-monotone, and
g is continuous and C-convex. Then, the composite function f(g(·)) is proper, lsc, and convex.

Proof. Since f is proper and lsc, g is continuous, we derive f(g(·)) is proper and lsc by virtue
of Proposition 1.40 in [17]. Next we will check the convexity of f(g(·)). Let x1, x2 ∈ S and
λ ∈ [0, 1]. By the C-convexity of g, we have

g(λx1 + (1 − λ)x2) ≤C λg(x1) + (1 − λ)g(x2). (3.1)

By the C-monotonicity of f , we have from (3.5) that

f
(
g(λx1 + (1 − λ)x2)

) ≤ f
(
λg(x1) + (1 − λ)g(x2)

)
. (3.2)

From the convexity of f , we know

f
(
λg(x1) + (1 − λ)g(x2)

) ≤ λf
(
g(x1)

)
+ (1 − λ)f

(
g(x2)

)
. (3.3)

Combining (3.2) with (3.3), we may conclude the composite function f(g(·)) is convex. The
proof is complete.
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We denote

S1 =
{
u ∈ Rn | f(g(λu + y

)) − f
(
g
(
y
)) ≤ 0, ∀λ > 0, y ∈ S

}
. (3.4)

Theorem 3.2. Let the assumptions in Proposition 3.1 hold. Further one assumes the solution set
X /= ∅. Then, the asymptotic cone of X can be formulated as follows:

X
∞
= S1 ∩ S∞. (3.5)

Proof. ⇒ For any u ∈ X
∞
, obviously u ∈ S∞. From the definition of asymptotic cone, we know

there exist some sequences {xk} ⊂ X and {tk} ⊂ Rwith tk → +∞ such that limk→+∞(xk/tk) =
u. By the fact of xk ∈ X, one has

f
(
g
(
y
)) − f

(
g(xk)

) ≥ 0, ∀y ∈ S. (3.6)

Since f(g(x)) is convex, for any fixed λ > 0 when tk is sufficiently large, we get

f

(
g

((
1 − λ

tk

)
y +

λ

tk
xk

))
≤
(
1 − λ

tk

)
f
(
g
(
y
))

+
λ

tk
f
(
g(xk)

)
, ∀y ∈ S. (3.7)

Combining (3.6) with (3.7), we have

f

(
g

((
1 − λ

tk

)
y +

λ

tk
xk

))
≤ f

(
g
(
y
))
, ∀y ∈ S. (3.8)

Taking limit in (3.8) as k → ∞, we obtain

f
(
g
(
y + λu

)) ≤ f
(
g
(
y
))
, ∀y ∈ S. (3.9)

That is, u ∈ S1 and X
∞ ⊆ S1 ∩ S∞.

⇐ For any d ∈ S1 ∩ S∞. By the assumption that X is nonempty, we have

x + tkd ∈ S, ∀tk > 0, (3.10)

where x ∈ X is fixed and tk → +∞. For any y ∈ S, we know

f
(
g
(
y
)) − f

(
g(x + tkd)

)
= f

(
g
(
y
)) − f

(
g(x)

)
+ f

(
g(x)

) − f
(
g(x + tkd)

)
. (3.11)

Since x ∈ X, it is easy to check that

f
(
g
(
y
)) − f

(
g(x)

) ≥ 0, ∀y ∈ S, (3.12)



6 Journal of Applied Mathematics

and by the definition of S1, we have

f
(
g(x)

) − f
(
g(x + tkd)

) ≥ 0. (3.13)

Combining (3.11) and (3.12)with (3.13), one has

f
(
g
(
y
)) − f

(
g(x + tkd)

) ≥ 0, ∀y ∈ S. (3.14)

Clearly, (3.14)means x + tkd ∈ X. We denote xk = x + tkd, and it follows that

lim
k→+∞

xk

tk
= lim

k→+∞
x + tkd

tk
= d. (3.15)

Hence, d ∈ X
∞
. The proof is complete.

Corollary 3.3. Let assumptions in Proposition 3.1 hold. Then, the solution set X is nonempty and
compact if and only if

S1 ∩ S∞ = {0}. (3.16)

Proof. The necessity part follows from the statements in Theorem 3.2 and in Lemma 2.3. Now
we prove the sufficiency. We may define a function ϕ : Rn → R ∪ {+∞} as ϕ(x) = f(g(x)).
Clearly, ϕ is proper, lsc, and convex. By virtue of Proposition 3.1.3 of [14], we know the
coercivity of ϕ is a sufficient condition for the nonemptiness and compactness of X. From
(3.4), for all y ∈ S we have

{
u ∈ S∞ | f(g(λu + y

)) − f
(
g
(
y
)) ≤ 0, ∀λ > 0

}
= {0},

{

u ∈ S∞ | lim
λ→+∞

f
(
g
(
λu + y

)) − f
(
g
(
y
))

λ
≤ 0

}

= {0}.
(3.17)

Consequently

{
u ∈ S∞ | ϕ∞(u) ≤ 0

}
= {0}. (3.18)

This is ϕ∞(u) > 0, for all u/= 0 and ϕ is coercive. Thus, X is nonempty and compact. The proof
is complete.

4. Conclusion

In this paper, we characterized the asymptotic cone of the solution set of a convex composite
optimization problem (CCOP). We obtained the analytical expression of the asymptotic
cone of the solution set. Furthermore, we studied the necessary and sufficient conditions
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for the nonemptiness and compactness of the solution set of the problem via the analytical
expression of the asymptotic cone. Our results generalized some known results in [14]
and firstly studied the compactness of the solution set of convex composite optimization
problems.
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