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We investigate positive solutions of a prey-predator model with predator saturation and
competition under homogeneous Dirichlet boundary conditions. First, the existence of positive
solutions and some sufficient and necessary conditions is established by using the standard fixed
point index theory in cones. Second, the changes of solution branches, multiplicity, uniqueness,
and stability of positive solutions are obtained by virtue of bifurcation theory, perturbation theory
of eigenvalues, and the fixed point index theory. Finally, the exact number and type of positive
solutions are proved when k orm converges to infinity.

1. Introduction

Considering the destabilizing force of predator saturation and the stabilizing force of
competition for prey, Bazykin [1] proposed the function response f(u, v) = 1/(1+mu)(1+kv)
in the prey-predator model instead of the classical Holling-type II functional response. For
this functional response, the prey-predator model is taken as the following form:

ut −Δu = u

(
a − u − bv

(1 +mu)(1 + kv)

)
, x ∈ Ω, t > 0,

vt −Δv = v

(
c − v +

du

(1 +mu)(1 + kv)

)
, x ∈ Ω, t > 0,

u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.1)
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In this paper, we are concerned with the positive solution of the boundary value
problem of the following elliptic system corresponding to the system (1.1):

−Δu = u

(
a − u − bv

(1 +mu)(1 + kv)

)
, x ∈ Ω,

−Δv = v

(
c − v +

du

(1 +mu)(1 + kv)

)
, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.2)

whereΩ is a bounded domain in RN (N ≥ 1)with smooth boundary ∂Ω; a, b, c are positive
constants; d is constant; m and k are nonnegative constants.

If m = k = 0, then (1.2) is reduced to the classical Lotka-Volterra prey-predator model
which has received extensive study in the last decade, see [2–8]. In particular, the existence
of positive solutions for this case was completely understood, see Dancer [8]. It has been
conjectured that there is at most one positive solution, but this was shown only for the case
the space dimension n is one, see [9]. For space dimension greater than one, this is still an
open problem; we also refer to [10, 11] for some partial results on uniqueness. The stability
of positive solutions was studied in [10, 11], but the results are still far from being complete.

The case when m > 0 and k = 0 was first studied by Blat and Brown [12]. In this case,
the term f(u, v) is known as the Holling-Tanner interaction term, and we refer to [5, 12–17]
for more discussion on this model. In [12], Blat and Brown studied the existence of positive
solutions to (1.2) by making use of both local and global bifurcation theories. The case when
m goes to infinity was extensively studied by Du and Lou in [13, 14, 18]. They gave a good
understanding of the existence, stability, and number of positive solutions for large m.

However, the case when m > 0 and k > 0 was first studied by Bazykin in the paper
[1], more detailed background on this case, we can refer to [1]. And more works can refer
to [19], Wang studies the existence, multiplicity, and stability of positive solutions of (1.2).
However, Our work is more specific and meticulous than theirs. In particular. Firstly, the
changes of solution branches, uniqueness, and stability of positive solutions are obtained by
virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index
theory. Secondly, the exact number and type of positive solutions are proved when k or m is
large.

This paper is organized as follows: in Section 2, we give sufficient and necessary
conditions for the existence of coexistence states of (1.2) by using index theory. In Section 3,
by using a as a main bifurcation parameter, the multiplicity of coexistence stats to (1.2) is
investigated in the gap between the sufficient and necessary conditions for the existence of
coexistence states which are found in Section 2. In Section 4, the multiplicity, uniqueness, and
stability of coexistence states of (1.2) are investigated when k or m converges to infinity.

2. Existence and Nonexistence of Coexistence States

In this section, we will obtain existence and nonexistence of coexistence states. Firstly, we
present some basic results which will be used in this paper.
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Let λ1(q) < λ2(q) ≤ λ3(q) ≤ · · · be all eigenvalues of the following problem:

−Δφ + q(x)φ = λφ, φ
∣∣
∂Ω = 0, (2.1)

where q(x) ∈ C(Ω). It is easy to see that λ1(q) is simple and λ1(q) is strictly increasing in
the sense that q1 ≤ q2 and q1 /≡ q2 imply λ1(q1) < λ1(q2). When q(x) ≡ 0, we denote by
λiλi(0). Moreover, we denote byΦ1 the eigenfunction corresponding to λ1 with normalization
‖Φ1‖∞ = 1 and positive in Ω.

Define C0(Ω) = {u ∈ C(Ω) | u = 0 on ∂Ω}. It is well known that for any a > λ1, the
problem

−Δu = au − u2, u|∂Ω = 0 (2.2)

has a unique positive solution which we denote by θa. It is well known that the mapping
a → θa is strictly increasing, continuously differentiable from (λ1,∞) to C2(Ω) ∩ C0(Ω) and
that θa → 0 uniformly on Ω as a → λ1. Moreover, we have 0 < θa < a in Ω. It follows that
(1.2) has two semitrivial solutions (θa, 0) and (0, θc) if a, c > λ1.

Next, we give an a priori estimate based on maximum principle. Its proof will be
omitted.

Lemma 2.1. Any coexistence state (u, v) of (1.2) has an a priori boundary, that is,

u ≤ a, v ≤ B := c +
ad

1 + am
. (2.3)

In the following, we set up the fixed point index theory for later use. Let E be a Banach
space. W ⊂ E is called a wedge if W is a closed convex set and βW ⊂ W for all β ≥ 0. For
y ∈ W , we defineWy = {x ∈ E : ∃r = r(x) > 0, s.t. y+rx ∈ W}, Sy = {x ∈ Wy : −x ∈ Wy} : we
always assume that E = W −W . Let T : Wy → Wy be a compact linear operator on E. We say
that T has property α onWy if there exists t ∈ (0, 1) and ω ∈ Wy \Sy, such that ω − tTω ∈ Sy.

For any δ > 0 and y ∈ W , we denote B+
δ
(y) = Bδ(y) ∩ W . Assume that F : B+

δ
(y) → W

is a compact operator and y is an isolated fixed point of F. If F ′ is Fréchet differentiable at y,
then the derivative F ′(y) has the property that F ′(y) : Wy → Wy. We denote by indexW(F, y)
the fixed point index of F at y relative toW .

We state a general result of Dancer [20] on the fixed point index with respect to the
positive cone W (see also [6]).

Lemma 2.2. Suppose that I − L is invertible on Wy.

(i) If L has property α onWy, then indexW(F, y) = 0.

(ii) If L does not have property α on Wy, then indexW(F, y) = (−1)σ , where σ is the sum of
algebra multiplicities of the eigenvalues of L which are greater than 1.

We introduce some notations as follows:

X = C1
0(Ω)

⊕
C1

0(Ω), where C1
0(Ω) = {ω ∈ C1(Ω) : ω|∂Ω = 0},
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W = K
⊕

K, where K = {ϕ ∈ C(Ω) : ϕ(x) ≥ 0},
D := {(u, v) ∈ X : u ≤ a + 1, v ≤ B + 1 }, D′ := (intD)

⋂
W .

Define Ft : D′ → W by

Ft(u, v) = (−Δ + P)−1

⎛
⎜⎜⎜⎝

tu

(
a − u − bv

(1 +mu)(1 + kv)

)
+ Pu

tv

(
c − v +

du

(1 +mu)(1 + kv)

)
+ Pv

⎞
⎟⎟⎟⎠, (2.4)

where t ∈ [0, 1] and P > max{a + bB, c + da/(1 +ma)}. It follows from Maximum Principle
that (−Δ + P)−1 is a compact positive operator, Ft is complete continuous and Fréchet
differentiable. Denote F1 = F, observe that (1.2) has a positive solution in W if and only
if Ft = F1 has a positive fixed point in D′.

If a > λ1 and c > λ1, then (0, 0), (θa, 0), and (0, θc) are the only nonnegative fixed points
of F. Then indexW(F, (0, 0)), indexW(F, (θa, 0)), and indexW(F, (0, θc)) are well defined. We
calculate the Fréchet operator of F as follows:

(−Δ + P)−1

⎛
⎜⎜⎜⎝

a − 2u − bv

(1 +mu)2(1 + kv)
+ P − bu

(1 +mu)(1 + kv)2

dv

(1 +mu)2(1 + kv)
c − 2v +

du

(1 +mu)(1 + kv)2
+ P

⎞
⎟⎟⎟⎠. (2.5)

We can obtain the following lemmas by similar methods to those in the proofs of
Lemmas 1 and 2 in [19].

Lemma 2.3. Suppose that a > λ1, one has

(i) degW(I − F,D′) = 1, where degW(I − F,D′) is the degree of T − F in D′ relative toW

(ii) if c /=λ1, then indexW(F, (0, 0)) = 0.

(iii) if c > λ1(−dθa/(1 +mθa)), then indexW(F, (θa, 0)) = 0.

(iv) if c < λ1(−dθa/(1 +mθa)), then indexW(F, (θa, 0)) = 1.

Lemma 2.4. Suppose that c > λ1, one has

(i) if a > λ1(bθc/(1 + kθc)), then indexW(F, (0, θc)) = 0.

(ii) if a < λ1(bθc/(1 + kθc)), then indexW(F, (0, θc)) = 1.

Next, we will show some results of existence and nonexistence of positive solutions of
(1.2).

Theorem 2.5. (i) If a ≤ λ1, then (1.2) has no positive solution; if a ≤ λ1 and c ≤ λ1, then (1.2) has
no nonnegative nonzero solution.

(ii) If c ≤ λ1 and (1.2) has a positive solution, then a > λ1, c + da/(1 +ma) > λ1.
(iii) If c > λ1 and (1.2) has a positive solution, then a > λ1(bθc/(1 +mθa)(1 + kθc)).
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Proof. (i) First assume that (u, v) is a positive solution of (1.2), then (u, v) satisfies

−Δu = u

(
a − u − bv

(1 +mu)(1 + kv)

)
, x ∈ Ω, u = 0, x ∈ ∂Ω, (2.6)

and so a = λ1(u + bv/(1 + mu)(1 + kv)) by the eigenvalue problem. Due to the comparison
principle for eigenvalues, we have a > λ1, a contradiction. Next, assume that (u, v) is a
nonnegative nonzero solution of (1.2). If u/≡ 0 and v ≡ 0, then a > λ1 by the previous proof.
We can also similarly derive c > λ1 when u ≡ 0 and v /≡ 0, which is a contradiction again.

(ii) Assume that (u, v) is a positive solution of (1.2). Then a > λ1 by (i), and so the
positive semitrivial solution θa exists. Since

−Δu = u

(
a − u − bv

(1 +mu)(1 + kv)

)
≤ u(a − u), x ∈ Ω, u = 0, x ∈ ∂Ω, (2.7)

u is a lower solution of (1.2). By the uniqueness of θa, u ≤ θa. Furthermore, since v satisfies
the equation

−Δv = v

(
c − v +

du

(1 +mu)(1 + kv)

)
, x ∈ Ω, v = 0, x ∈ ∂Ω, (2.8)

one has 0 = λ1(−c+v−du/(1+mu)(1+kv)) > λ1(−c−da/(1+ma)), which implies the result.
(iii) Let (u, v) be a positive solution of (1.2); then θa exists with u ≤ θa as in (ii).

Similarly, the given assumption c > λ1 implies the existence of positive solution θc of (1.2)
with θc ≤ v. Similar to the proof of (i), we have a = λ1(u+ bv/(1+mu)(1+kv)) > λ1(bθc/(1+
mθa)(1 + kθc)). This follows since the function bv/(1 +mu)(1 + kv) has a minimum at u = θa
and v = θc (for u ≤ θa and v ≥ θc).

Theorem 2.6. (i) If c > λ1 and a > λ1(bθc/(1 + kθc)). Then (1.2) has at least a positive solution.
(ii) Suppose that c < λ1. Then (1.2) has positive solution if and only if a > λ1 and c >

λ1(−dθa/(1 +mθa)).

Proof. (i) By Lemmas 2.3 and 2.4, we have

degW(I − F,D) − indexW
(
f, (0, 0)

) − indexW
(
f, (θa, 0)

) − indexW
(
f, (0, θc)

)
= 1. (2.9)

So (1.2) has at least one positive solution.
(ii) We first prove the sufficiency. Since c < λ1, (1.2) has no solution taking the form

(0, v) with v > 0. If a > λ1 and c > λ1(−dθa/(1 +mθa)), note that c < λ1; from Lemma 2.4, we
have

degW(I − F,D) − indexW
(
f, (0, 0)

) − indexW
(
f, (θa, 0)

)
= 1. (2.10)

Hence (1.2) has at least one positive solution.
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Conversely, suppose that (u, v) is a positive solution of (1.2). Then a > λ1, and u < θa.
Since (u, v) satisfies

−Δv = v(c − v + du/(1 +mu)(1 + kv)), x ∈ Ω, v = 0, x ∈ ∂Ω. (2.11)

It follows that 0 = λ1(−c + v − du/(1 +mu)(1 + kv)) > λ1(−c − da/(1 +ma)).

Theorem 2.7. If one of the following conditions holds, then (1.2) has no positive solutions:

(i) b ≥ (1 +ma)(1 + kB) and a ≤ c,

(ii) b < (1 +ma)(1 + kB) and c − a ≥ (1 − ba/(1 +ma)(1 + kB)) B.

Proof. Since the proof of Theorem 2.7 is similar to the proof of Theorem 3 of [19], we omit
it.

3. Global Bifurcation and Stability of Positive Solution

In this section, we consider a positive solution bifurcates from the semitrivial nonnegative
branch {(0, θc, a)} by taking a as a bifurcation parameter and fixing c > λ1. Furthermore,
we show that the existence of global bifurcation of (1.2) with respect to parameter a and
its stability. Moreover, the multiplicity, uniqueness, and stability of positive solutions are
obtained by means of perturbation theory of eigenvalues and the fixed point theory.

Let ã be the principal eigenvalue of the following problem:

−Δφ +
bθc

1 + kθc
φ = aφ, φ

∣∣
∂Ω = 0, (3.1)

and Φ is the corresponding eigenfunction with ‖Φ‖∞ = 1.
Let ω = u, χ = v − θc; then 0 ≤ ω ≤ θa, χ ≥ 0, and ω,χ satisfies

−Δω =
(
a − bθc

1 + kθc

)
ω + F1

(
ω,χ
)
, x ∈ Ω,

−Δχ = (c − 2θc)χ +
dθc

1 + kθc
ω + F2

(
ω,χ
)
, x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω,

(3.2)

where

F1
(
ω,χ
)
=

bωθc
1 + kθc

− bω
(
χ + θc

)
(1 +mω)

(
1 + k

(
χ + θc

)) −ω2,

F2
(
ω,χ
)
=

dω
(
χ + θc

)
(1 +mω)

(
1 + k

(
χ + θc

)) − dωθc
1 + kθc

− χ2.

(3.3)
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Clearly, F = (F1, F2) is continuous, F(0, 0) = 0, and the Fréchet derivativeD(ω,χ)F|(0,0) =
0. Let K be the inverse of −Δwith Dirichlet boundary condition. Then, we have

ω = aKω − bK

(
ωθc

1 + kθc

)
+KF1

(
ω,χ
)
, x ∈ Ω,

χ = cKχ − 2K
(
χθc
)
+ dK

(
ωθc

1 + kθc

)
+KF2

(
ω,χ
)
, x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω.

(3.4)

Define the operator T : R+ ×X → X as follows:

T
(
a;ω,χ

)
=

⎛
⎜⎜⎝

aKω − bK

(
ωθc

1 + kθc

)
+KF1

(
ω,χ
)

cKχ − 2K
(
χθc
)
+ dK

(
ωθc

1 + kθc

)
+KF2

(
ω,χ
)

⎞
⎟⎟⎠, (3.5)

then T(a;ω,χ) is a compact operator on X. Let G(a;ω,χ) = (ω,χ)T − T(a;ω,χ); then G is
continuous, and G(a; 0, 0) = 0. G(a;ω,χ) = 0 with 0 ≤ ω ≤ θa, χ ≥ 0 if and only if (ω,χ+ θc, a)
is a nonnegative solution of (1.2).

Lemma 3.1. Assume that c > λ1. Then (a;u, v) = (ã; 0, θc) is a bifurcation point of (3.2), and there
exist positive solutions of (3.2) in the neighborhood of (ã; 0, θc), where ã = λ1(bθc/(1 + kθc)).

Remark 3.2. The proof of Lemma 3.1 is similar to the proof of Theorem 9 in [19]. The proof
of Lemma 3.1 shows that there exist δ > 0 and C1 continuous curve (a(s);φ(s), ϕ(s)) :
(−δ, δ) → R × Z such that a(0) = ã, φ(0) = 0, ϕ(0) = 0, and (a(s);ω(s), χ(s)) = (a(s); s(Φ +
φ(s)), s(Ψ + ϕ(s))) satisfies G(a(s);ω(s), χ(s)) = 0, where X = Z ⊕ span{(Φ,Ψ)}. Hence
(a(s);U(s), V (s)) (|s| < δ) is a bifurcation solution of (3.2), whereU(s) = s(Φ + φ(s)), V (s) =
θc + s(Ψ + ϕ(s)), Ψ = (−Δ − c + 2θc)

−1(dθc/(1 + kθc)Φ).
If we take 0 < s < δ, then the nontrivial nonnegative solutions of (1.2) close to (ã; 0, θc)

are either on the branch {(a; 0, θc) : a ∈ R+} or the branch {(a(s);U(s), V (s)) : 0 < s < δ}.
Let T : X × R → X be a compact continuously differentiable operator such that

T(0, a) = 0. Suppose that we can write T as T(u, a) = K(a)u + R(u, a), where K(a) is a linear
compact operator and the Fréchet derivative Ru(0, 0) = 0. If x0 is an isolated fixed point of T ,
then we can define the index if T at x0 as index(T, x0) = deg(I −T,Uδ(x0), x0), whereUδ(x0)
is a ball with center at x0 such that x0 is the only fixed point of T in Uδ(x0). If I − T ′(x0) is
invertible, then x0 is an isolated fixed point of T and index(T, x0) = deg(I − T,Uδ(x0), x0) =
deg(I − T ′(x0), Uδ(x0), 0). If x0 = 0, then it is well known that the Leray-Schauder degree
deg(I − K(a), Uδ(x0), 0) = (−1)σ , where σ is equal to the algebraic multiplicities of the
eigenvalue of K which is greater than one.

Next, we will extend the local bifurcation solution {(a(s);U(s), V (s)) : 0 < s < δ}
given by Lemma 3.1 to the global bifurcation.

Let P1 = {u ∈ C1
0(Ω) : u(x) > 0, x ∈ Ω, ∂u/∂n < 0, x ∈ ∂Ω}, P = {(u, v, a) ∈ X × R+ :

u, v ∈ P1}.
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Theorem 3.3. Suppose that c > λ1; then the global bifurcation C of bifurcating branch of positive
solutions of (1.2) becomes unbounded by a going to infinity in P .

Proof. Let

T ′(a) · (ω,χ
)
= D(ω,χ)T(a; 0, 0) ·

(
ω,χ
)

=
(
aKω − bK

(
ωθc

1 + kθc

)
, cKχ − 2K

(
χθc
)
+ dK

ωθc
1 + kθc

)
.

(3.6)

Suppose that μ ≥ 1 is an eigenvalue of T ′(a). Then we have

−μΔω =
(
a − bθc

1 + kθc

)
ω, x ∈ Ω,

−μΔχ = (c − 2θc)χ +
dθc

1 + kθc
ω, x ∈ Ω,

ω = χ = 0, x ∈ ∂Ω.

(3.7)

Clearly ω/≡ 0, otherwise, ω ≡ 0, since all eigenvalue of the operator (−μΔ − c + 2θc) is greater
than 0, so χ ≡ 0, a contradiction. Therefore, for some i such that a = ai(μ) is the eigenvalue of
the following problem:

−μΔω +
bθc

1 + kθc
ω = aω, ω|∂Ω = 0. (3.8)

It is well known that ai(μ) is increasing with respect to μ on [1,+∞) and can be ordered as

0 < a1
(
μ
)
< a2

(
μ
) ≤ a3

(
μ
) ≤ · · · −→ ∞, a1(1) = ã. (3.9)

On the other hand, if μ ≥ 1, then all eigenvalues of (−μΔ − c + 2θc) are greater than 0;
furthermore, χ = (−μΔ − c + 2θc)

−1(dθc/(1 + kθc)ω). Thus, μ ≥ 1 is the eigenvalue of T ′(a) if
and only if there exists some i, such that a = ai(μ).

Suppose that a < ã. Then for any μ ≥ 1, i ≥ 1, a < a1(1) ≤ ai(μ). Hence, T ′(a) has no
eigenvalue greater than 1, and index(T(a; ·), 0) = 1 as a < ã.

Suppose that ã < a < a2(1). Then for any μ ≥ 1, i ≥ 2, a < ai(μ). Since a1(1) = ã,
limμ→∞a1(μ) = +∞, and a1(μ) is increasing with respect to μ. Hence, there exists a unique
μ1 > 1, such that a = a1(μ1). SoN(μ1I −T ′(a)) = span{(ω,χ)}, dimN(μ1I −T ′(a)) = 1, where
ω > 0 is the principal eigenvalue of the following problem:

μ1Δω +
(
a − bθc

1 + kθc

)
ω = 0, ω|∂Ω = 0, (3.10)

where χ = (−μ1Δ − c + 2θc)
−1(dθc/(1 + kθc)ω).
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In the following, we will prove that R(μ1I − T ′(a)) ∩N(μ1I − T ′(a)) = 0. In fact, if the
assertion is false, we may assume that (ω,χ) ∈ R(μ1I − T ′(a)). Then there exists (ω,χ) ∈ X,
such that (μ1I − T ′(a))(ω,χ) = (ω,χ), that is,

μ1Δω +
(
a − bθc

1 + kθc

)
ω = Δω, ω|∂Ω = 0. (3.11)

Multiplying the equation by ω, integrating over Ω, and using Green’s formula, we obtain

∫
Ω
ωΔω =

∫
Ω

(
μ1Δω + aω − bωθc

1 + kθc

)
ω =

∫
Ω

(
μ1Δω + aω − bωθc

1 + kθc

)
ω = 0, (3.12)

which leads to
∫
Ω(1/μ1)(a − bθc/(1 + kθc))ω

2 = 0, a contradiction. This proves the assertion,
so it is verified that the multiplicity of μ1 is one and index(T(a; ·), 0) = −1 for ã < a <
a2(1). According to global bifurcation theory [12], there exists a continuum C0 of zeros of
G(a;ω,χ) = 0 in R+ × X bifurcating from (ã; 0, 0), and all zeros of G(a;ω,χ) close to (ã; 0, 0)
lie on the curve whose existence was proved by Lemma 3.1. LetC1 be themaximal continuum
defined by C1 = C0 − {(a(s); s(Φ + φ(s)), s(Ψ + ϕ(s))) : −δ < s < 0}. Then, C1 consists of the
curve {(a(s); s(Φ + φ(s)), s(Ψ + ϕ(s))) : −δ < s < 0} in the neighborhood of the bifurcation
point (ã; 0, 0). Let C = {(a;u, v) : U = ω,V = θc + χ, (ω,χ) ∈ C1}. Then C is the solution
branch of (1.2)which bifurcates from (ã; 0, θc) and remains positive in a small neighborhood
of (ã; 0, θc) and C ⊂ P . Thus the continuum C − {(ã; 0, θc)} must satisfy one of the following
three alternatives.

(i) C contains in its closure points (ã; 0, θc) and (a; 0, θc), where I − T ′(a) is not
invertible, and ã /=a.

(ii) C is joining up from (ã; 0, θc) to∞ in R ×X.

(iii) C is containing points of the form (a;u, θc+v) and (a;−u, θc−v), where (u, v)/= (0, 0).

Next, we prove that C − {(ã; 0, θc)} ⊂ P . Assume that C − {(ã; 0, θc)}/⊆P . Then there
exists (â; û, v̂) ∈ (C − {(ã; 0, θc)}) ∩ ∂P and sequence {(an;un, vn)} ⊂ C ∩ P, un > 0, vn > 0 such
that (an;un, vn) → (â; û, v̂) when n → ∞. It is easy to get that û ∈ ∂P1 or v̂ ∈ ∂P1. Suppose
û ∈ ∂P1, then û ≥ 0, x ∈ Ω. Hence, we find either x0 ∈ Ω such that û(x0) = 0 or x0 ∈ ∂Ω such
that ∂û/∂n|x0

= 0. Since û satisfies

−Δû =
(
â − û − bv̂

(1 +mû)(1 + kv̂)

)
û, û|∂Ω = 0. (3.13)

It follows from the maximum principle that û ≡ 0. Similarly, we can show that v̂ ≡ 0 for
v̂ ∈ ∂P1.

Thus we only need the following three cases:

(i)(û, v̂) ≡ (θâ, 0), (ii)(û, v̂) ≡ (0, θc), (iii) (û, v̂) ≡ (0, 0). (3.14)
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Suppose that (û, v̂) ≡ (θâ, 0). Then (an;un, vn) → (â; θâ, 0) when n → ∞. Let Vn =
vn/||vn||∞; then Vn satisfies

−ΔVn =
(
c − vn +

dun

(1 +mun)(1 + kvn)

)
Vn, Vn|∂Ω = 0. (3.15)

Thanks to LP estimates and Sobolev embedding theorem, there exists a convergent
subsequence of Vn, which we still denote by Vn, such that Vn → V in C1

0(Ω) as n → ∞,
and V ≥ 0, /≡ 0, x ∈ Ω because of ‖V ‖ = 1. So taking the limit in (3.15) as n → ∞, we get

−ΔV =
(
c +

dθâ
1 +mθâ

)
V, V |∂Ω = 0. (3.16)

It follows from the maximum principle that V > 0, x ∈ Ω, which implies c = λ1(−dθâ/(1 +
mθâ)). This contradicts c > λ1.

Suppose that (û, v̂) ≡ (0, θc). Then (an;un, vn) → (â; 0, θc) as n → ∞. Let Un =
un/||un||∞; thenUn satisfies

−ΔUn =
(
an − un − bvn

(1 +mun)(1 + kvn)

)
Un, Un|∂Ω = 0. (3.17)

Similarly, By LP estimates and and Sobolev embedding theorem, there exists a convergent
subsequence ofUn, which we still denote byUn, such thatUn → U in C1

0(Ω) as n → ∞, and
U ≥ 0, /≡ 0, x ∈ Ω because of ‖V ‖ = 1. So taking limit in (3.17) as n → ∞, we obtain

−ΔU =
(
â − bθc

1 + kθc

)
U, U|∂Ω = 0. (3.18)

It follows from the maximum principle that U > 0, x ∈ Ω. Hence â = λ1(bθc/(1 + kθc)). A
contradiction with â /= ã.

Suppose that (û, v̂) ≡ (0, 0). Similar to the previously mentioned, we can get
contradiction.

Thus C − {(ã; 0, θc)} ⊂ P . By Lemma 2.1, we have 0 ≤ U ≤ a, θc ≤ V ≤ c + da/(1 + αa).
Thanks to LP estimates and and Sobolev embedding theorem, then there exists a constant
M > 0 such that ||U||C1 ,||V ||C1 ≤ M. Hence the global bifurcation C of positive solutions of
(1.2) bifurcating at (ã; 0, θc) contains points with a is arbitrarily large in P .

In the following, we will study the stability of the bifurcation solution. Let X1 =
[C2,α(Ω) × C2,α(Ω) ∩ X], Y = [Cα(Ω) × Cα(Ω)], where 0 < α < 1. i : X1 → Y is the inclusion
mapping. Since L1 is the linearized operator at (ã; 0, θc) for (1.2). By the proof of Lemma 3.1,
we have N(L1) = span{(Φ,Ψ)}, CodimR(L1) = 1, and R(L0) = {(u, v) ∈ X :

∫
Ω uΦdx = 0}.

Since i(Φ,Ψ) ∈ R(L1), so it follows from [21] that 0 is an i-simple eigenvalue of L1.

Lemma 3.4. 0 is the eigenvalue of L1 with the largest real part, and all the other eigenvalue of L1 lie
in the left half complex plane.
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Proof. We assume that μ0 is the eigenvalue of L1 with the largest real part Re μ0 > 0, and
(ξ, η) is the corresponding eigenfunction; then L1(ξ, η) = μ0(ξ, η), equivalently,

Δξ +
(
ã − bθc

1 + kθc

)
ξ = μ0ξ, x ∈ Ω,

Δη + (c − 2θc)η +
dθc

1 + kθc
ξ = μ0η, x ∈ Ω,

η = ξ = 0, x ∈ ∂Ω.

(3.19)

Suppose that ξ ≡ 0. Then μ0 is an eigenvalue of the operator (Δ + (c − 2θc)I), and then
μ0 ∈ R and μ0 < 0, a contradiction. Thus Φ ≡ 0. It follows that μ0 is an eigenvalue of the
operator (Δ + (ã − bθc/(1 + kθc))I). Since ã = λ1(bθc/(1 + kθc)), 0 is the principal eigenvalue
of the operator (Δ+(ã−bθc/(1+kθc))I); furthermore, μ0 ≤ 0. This contradicts the assumption,
so assumption does not hold. Which proves our conclusion.

We will use the linearized stability theory from [22]. Let L(u(s), v(s), a(s)), and
L(a; 0, θc) be the linearized operators of (1.2) at (u(s), v(s), a(s)), and (a; 0, θc), respectively. It
follows that from Lemma 7, Corollary 1.13, and Theorem 1.16 [22, 23] that Lemma 3.5 holds.

Lemma 3.5. There existsC1-function: a → (M(a), γ(a)), and s → (N(s), π(s)), defined from the
neighborhood of ã and 0 intoX1×R, respectively, such that γ(ã) = π(0) = 0, M(ã) = N(0) = (Φ,Ψ)
and

L(a; 0, θc)M(a) = γ(a)M(a), for |a − ã| � 1,

L(u(s), v(s), a(s))N(s) = π(s)N(s), for |s| � 1,
(3.20)

where M(a) = (φ1(a), φ2(a)), N(s) = (ϕ1(a)ϕ2(a)). Moreover γ ′(ã)/= 0, whence π(s)/= 0, π(s)
and −sa′(s)γ ′(ã) have the same sign for |s| � 1. Where γ ′(ã) is the derivative of γ(a) with respect to
a at a = ã, and a′(s) is the derivative of a(s) with respect to s.

Lemma 3.6. The derivative of γ(s) with respect to a at ã is positive.

Proof. It follows from L(a; 0, θc)M(a) = γ(a)M(a), for, |a − ã| � 1, that is,

Δφ1 +
(
a − bθc

1 + kθc

)
φ1 = γ(a)φ1, x ∈ Ω,

Δφ2 + (c − 2θc)φ2 +
dθc

1 + kθc
φ1 = γ(a)φ2, x ∈ Ω,

φ1 = φ2 = 0, x ∈ ∂Ω.

(3.21)

Since |a − ã| � 1, so |γ(a)| � 1. Clearly, φ1 /≡ 0, otherwise, φ1 ≡ 0, then φ2 ≡ 0, a contradiction.
Hence γ(a) is an eigenvalue of the operator (Δ + (a − bθc/(1 + kθc))I). We consider Φ > 0,
then φ1 = φ1(a) > 0, as |a − ã| � 1. So γ(a) is the principal eigenvalue of the operator
(Δ + (a − bθc/(1 + kθc))I), and γ(a) is increasing with respect to a as |a − ã| � 1. Moreover,
γ ′(ã)/= 0. Hence γ ′(ã) > 0.
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Lemma 3.7. The derivative of a(s) with respect to s at s = 0 satisfies

a′(0)
∫
Ω
Φ2dx =

∫
Ω

(
1 − bmθc

1 + kθc

)
Φ3dx +

∫
Ω

bΨ

(1 + kθc)
2
Φ2dx. (3.22)

Proof. By substituting (u(s), v(s), a(s)) into (1.2), differentiating with respect to s, and then
setting s = 0, we find that

−Δφ′(0) =
(
ã − bθc

1 + kθc

)
φ′(0) +

[
a′(0) −Φ − b

Ψ −mθcΦ(1 + kθc)

(1 + kθc)
2

]
Φ, (3.23)

where φ′(0) is the derivative of φ with respect to s at s = 0.
Taking the inner product with Φ, using Green’s formula, and noting the definition of

Φ, we have

a′(0)
∫
Ω
Φ2dx =

∫
Ω

(
1 − bmθc

1 + kθc

)
Φ3dx +

∫
Ω

bΨ

(1 + kθc)
2
Φ2dx. (3.24)

It follows from Lemmas 3.4–3.7 that we obtain the following Theorem.

Theorem 3.8. Let σ =
∫
Ω(1 − bmθc/(1 + kθc))Φ3dx +

∫
Ω(bΨ/(1 + kθc)

2)Φ2dx. If σ > 0, then
bifurcation solution (u(s), v(s)) is stable; If σ < 0, then bifurcation solution (u(s), v(s)) is unstable.

In Section 2, from Theorems 2.5–2.6, we can obtain the sufficient condition and
necessary condition on the existence of positive solution and find that there exists a gap
between a > λ1(bθc/(1+ kθc)) and a > λ1(bθc/(1+mθa)(1+ kθc))when c > λ1. Next, we will
consider the multiplicity, stability, and uniqueness of positive solutions in the gap.

Theorem 3.9. Assume c > λ1 and
∫
Ω(1 − bmθc/(1 + kθc))Φ3dx < 0. Then there exist ε > 0 such

that bifurcation positive solution (u(s), v(s)) is nondegenerate and unstable for a ∈ (ã − ε, ã) and
d � 1. Moreover, Problem (1.2) has at least two positive solutions.

Proof. We first prove that bifurcation positive solution (u(s), v(s)) is nondegenerate and
unstable. To this end, it suffices to show that there exists a sufficiently small ε > 0 such that for
a ∈ (ã − ε, ã), any positive solution (u(s), v(s)) of (1.2) is nondegenerate and the linearized
eigenvalue problem:

−Δξ −
[
a(s) − u(s) − bv(s)

(1 +mu(s))2(1 + kv(s))

]
ξ +

bu(s)

(1 +mu(s))(1 + kv(s))2
η = μξ, x ∈ Ω,

−Δη −
[
c − 2v(s) +

du(s)

(1 +mu(s))(1 + kv(s))2

]
η − dv(s)

(1 +mu(s))2(1 + kv(s))
= μη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω,

(3.25)

has a unique eigenvalue μ∗ and Re(μ∗) < 0 with algebra multiplicity one.
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Let {εi > 0} and {di > 0} be sequences which approach 0 as i → ∞. Due to a =
ã + a′(0)s +O(s2), we can set sequences {εi > 0} and {ai} such that ai ∈ (ã − εi, ã) and si → 0
as i → ∞. It follows that (ui, vi) is a solution of (1.2). Then the corresponding linearized
problem (3.25) can become the following form:

Li

(
ξi
ηi

)
= μi

(
ξi
ηi

)
, Li =

⎛
⎝M11

i M12
i

M21
i M22

i

⎞
⎠, (3.26)

where (ξi, ηi)/≡ (0, 0) and

M11
i = −Δ −

[
ai − 2ui − bvi

(1 +mui)2(1 + kvi)

]
, M12

i =
bui

(1 +mui)(1 + kvi)
2
,

M21
i = − dvi

(1 +mui)2(1 + kvi)
, M22

i = −Δ −
[
c − 2vi +

dui

(1 +mui)(1 + kvi)
2

]
.

(3.27)

Observe that as i → ∞, Li

(
ξi
ηi

)
converges to

L0

(
ξ
η

)
=

⎛
⎝−Δξ −

(
ã − bθc

1 + kθc

)
ξ 0

0 −Δη − (c − 2θc)η

⎞
⎠. (3.28)

It is easy to get that 0 is a simple eigenvalue of the operator L0 with corresponding
eigenfunction (ξ, η)T = (Φ, 0)T . Moreover, all the other eigenvalues of L0 are positive and
stand apart from 0. Therefore, using perturbation theory [24], we get that for large i, Li

has a unique eigenvalue μi which is close to zero. In addition, all the other eigenvalues of
Li have positive real parts and stand apart from 0. Note that μi is simple real eigenvalue
which converges to zero, and we can take the corresponding eigenfunction (ξi, ηi)

T such that
(ξi, ηi) → (Φ, 0) as i → ∞. If we show that Reμi < 0 for large i, then the result follows. By
multiplyingΦ to the first equation of Li(ξi, ηi)

T = μi(ξi, ηi)
T and integrating overΩ, we obtain

−
∫
Ω
ΦΔξi −

∫
Ω

(
ai − 2ui − bvi

(1 +mui)2(1 + kvi)

)
Φξi +

∫
Ω

buiΦηi

(1 +mui)(1 + kvi)
2
=
∫
Ω
μiΦξi.

(3.29)

Multiplying the first equation of (1.2)with (a, u, v) = (ai, ui, vi) by ξi and integrating, we have

−
∫
Ω
ξiΔui −

∫
Ω

(
ai − ui − bvi

(1 +mui)(1 + kvi)

)
uiξi. (3.30)

Due to ui = siΦ +O(s2i ), the previous equation becomes

−
∫
Ω
ΦΔξi −

∫
Ω
ξiΦ
(
ai − ui − bvi

(1 +mui)(1 + kvi)

)
+O
(
s2i

)
. (3.31)
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Using (3.29) and (3.31), we have

∫
Ω

[
1 − bmvi

(1 +mui)2(1 + kvi)

]
uiΦξi +

∫
Ω

buiΦηi

(1 +mui)(1 + kvi)
2
=
∫
Ω
uiΦξi. (3.32)

Recall that (ui, vi) = (siΦ+O(s2i ), θc + siΨdi +O(s2i )), hereΨdi isΨ defined in Remark 3.2, and
so dividing the previous equation by si and taking the limit, we have

lim
i→∞

μi

si
=

∫
Ω(1 − bmθc/(1 + kθc))Φ3∫

Ω Φ2 < 0
, (3.33)

which implies that Reμi < 0 for large i. This proved our claim.
Next, we apply the method in [25] to show the remaining part of Theorem 3.9. A

contradiction argument will be used; we assume that (1.2) has a unique positive solution
(ũ, ṽ), then this solution must be bifurcated from (0, θc). Since there exists a positive solution
near ã by the local bifurcation theory. So (ũ, ṽ) is nondegenerate, and the corresponding
linearized eigenvalue problem has a unique eigenvalue μ̃ with algebra multiplicity one such
that Re μ̃ < 0. Due to these facts, it is easy to show that I − F ′(ũ, ṽ) is invertible and does not
have property α on W (ũ,ṽ); it follows that index(F, (ũ, ṽ)) = (−1)1 = −1 by Lemma 2.2 (ii).
Finally, Using Lemmas 2.3–2.4 and the additivity property of the index, we obtain

1 = indexW(F,D) = indexW(F, (0, 0)) + indexW(F, (θa, 0))

+ indexW(F, (0, θc)) + indexW(F, (ũ, ṽ)) = 0 + 0 + 1 − 1 = 0,
(3.34)

which derives a contradiction. Hence the Proof is complete.

Remark 3.10. In Theorem 3.9, the multiplicity can be shown easily when m ≥ 0. Note that
a′(0) < 0 for a sufficiently small d, since

∫
Ω(1−bmθc/(1+kθc))Φ3 < 0, and so a = a(s) ∈ (λ1, ã).

Since there is no positive solution of (1.2) if a ≤ λ1(bθc/(1 + mθa)(1 + kθc)) by Theorem 2.5
(i) when m ≥ 0 and c > λ1. Therefore we easily see that there must be at least two positive
solutions for a ∈ (a∗, ã) and some a∗ ∈ (λ1(bθc/(1 +mθa)(1 + kθc)), λ1(bθc/(1 + kθc))).

4. Multiplicity, Uniqueness and Stability as k or m Is Large

In this section, taking k or m as a parameter, we investigate the multiplicity, stability, and
uniqueness of positive solutions of (1.2) as k or m is large. In the following, we will always
assume that c > λ1, and let b, c, d be fixed, unless otherwise specified.

Firstly, we consider the case that k is large and a is bounded away from λ1. Hence the
upper solution θa for u and the lower solution θc for v do not depend on k when a > λ1 and
c > λ1.

Lemma 4.1. For any small ε > 0, there exists K(ε) such that for k ≥ K(ε), (1.2) has at least one
positive solution (u, v) which satisfies

θ(a−ε) ≤ u ≤ θa, θc ≤ v ≤ θ(c+ε). (4.1)
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Proof. Since the proof of Lemma 4.1 is similar to the proof of Lemma 3 in [19], we omit it.

Lemma 4.2. (i) If k → ∞, then any positive solution of (1.2) approaches (θa, θc).
(ii) There exists a large K(ε) such that any positive solution of (1.2) is nondegenerate and

linearly stable when k > K(ε).

Proof. (i) Let k → ∞, we show that the compact operator F(u, v) converges to F̂(u, v), where

F̂(u, v) = (−Δ + P)−1
⎛
⎝u(a − u) + Pu

v(c − v) + Pv

⎞
⎠. (4.2)

It follows that any positive solution of (1.2) converges to the fixed point of F̂(u, v) in this case.
It is easy to see that (θa, θc) is a unique fixed point of F̂(u, v), so the positive solutions of (1.2)
could not converge to semitrivial solutions when k → ∞. Thus the conclusion is complete.

(ii)We use a contradiction method. Assume that there exists ki → ∞, μi with Reμi ≤ 0
and (ξi, ηi)/≡ (0, 0) with ‖ξi‖2L2 + ‖ηi‖2L2 = 1 such that

−Δξi −
[
a − 2ui − bvi

(1 +mui)2(1 + kivi)

]
ξi +

bui

(1 +mui)(1 + kivi)
2
ηi = μiξi, x ∈ Ω,

−Δηi −
[
c − 2vi +

dui

(1 +mui)(1 + kivi)
2

]
ηi − dvi

(1 +mui)2(1 + kivi)
ξi = μiηi, x ∈ Ω,

ξi = ηi = 0, x ∈ ∂Ω,

(4.3)

where (ui, vi) is a positive solution of (1.2)with k = ki. By computing, we have

μi =
∫
Ω
|∇ξi|2 −

∫
Ω

(
a − 2ui − bvi

(1 +mui)2(1 + kivi)

)
|ξi|2 +

∫
Ω

buiηiξi

(1 +mui)(1 + kivi)
2

+
∫
Ω

∣∣∇ηi
∣∣2 −

∫
Ω

dviξiηi

(1 +mui)2(1 + kivi)
−
∫
Ω

(
c − 2vi +

dui

(1 +mui)(1 + kivi)
2

)∣∣ηi∣∣2,
(4.4)

where ξi, ηi are the complex conjugates of ξi, ηi. From Lemma 2.1, we know that 0 ≤ un ≤ θa
and θc ≤ vi ≤ c + da/(1 +ma). It follows that Imμi is bounded and Reμi is bounded from the
following. Thus μi is bounded as we assume Reμi ≤ 0. Hence we can suppose that μi → μ
and Reμ ≤ 0. Thanks to Lp estimate, we obtain ‖ξi‖W2,2 and ‖ηi‖W2,2 are bounded. Hence we
may assume that ξi → ξ and ηi → η in H1

0 strongly, here (ξ, η)/≡ (0, 0). Setting i → ∞ in
(3.1) and (3.2), we know that ξ, η satisfy the following two single equations weakly (then
strongly):

−Δξ − (a − 2θa)ξ = μξ, x ∈ Ω,

−Δζ − (c − 2θc)η = μη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(4.5)
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Clearly μ ∈ R. If ξ /≡ 0, then μ = λ1(−a + 2θa) > λ1(−a + θa) = 0. However, Reμ ≤ 0. Hence
ξ ≡ 0. Similarly, we have η ≡ 0, a contradiction; hence the proof is complete.

Theorem 4.3. (i) Assume that λ1 < a < λ1(bθc/(1 + kθc)). Then (1.2) has no positive solution
when k is sufficiently large.

(ii) Assume that a > λ1(bθc/(1 + kθc)) and k is sufficiently large. Then (1.2) has a unique
positive solution, and it is asymptotically stable.

Proof. (i) Assume that there exists a positive solution (u∗, v∗) of (1.2) for sufficiently large
k. It is easy to show that indexW(F, (u∗, v∗)) = 1 by Lemma 4.2. By Lemmas 2.3–2.4 and the
additivity property of the index, we obtain

1 = indexW
(
F,D′) = indexW(F, (0, 0)) + indexW(F, (θa, 0))

+ indexW(F, (0, θc)) + indexW(F, (u∗, v∗)) = 0 + 0 + 1 + 1 = 2,
(4.6)

which gives a contradiction.
(ii) From Theorem 2.6, the existence is trivial. Since a > λ1(bθc/(1 + kθc)) and c > λ1,

for k sufficiently large, the nondegenerate positive solutions may not converge to semitrivial
solutions by the proof of Lemma 4.2 (i). We need only to show the uniqueness. It follows
from compactness and nondegeneracy that F has at most finitely many positive fixed points
in the region D′. We denote them by (ui, vi) for i = 1, 2, . . . , l. From the proof of (i), we obtain
indexW(F, (ui, vi)) = 1. Applying Lemmas 2.3–2.4 and the additivity property of the index
again, we have

1 = indexW
(
F,D′) = indexW(F, (0, 0)) + indexW(F, (θa, 0))

+ indexW(F, (0, θc)) +
l∑

i=1

indexW(F, (ui, vi)) = 0 + 0 + 0 + l = l.
(4.7)

Hence the uniqueness is obtained. The stability has been given in Lemma 4.2.

In the following, we investigate the case whenm is large. This part is motivated by the
work of Du and Lou in [13, 14, 18], and many of our methods used nextly come from their
work.

Theorem 4.4. For any ε > 0 to be small, there that existsM = M(ε) is large such that form ≥ M,

(i) if a ∈ [λ1 + ε, λ1(bθc/(1 + kθc))), then (1.2) has at least two positive solutions;

(ii) if a ≥ λ1(bθc/(1 + kθc)), then (1.2) has a unique positive solution and it is asymptotically
stable.

Theorem 4.4 is the main result we will prove that when m is large. The cases a ∈
[λ1 + ε, λ1(bθc/(1 + kθc))) and a ≥ λ1(bθc/(1 + kθc))will be treated separately. First, we deal
with the multiplicity in Theorem 4.4. Similar to the method of [19], if a ∈ [λ1 + ε, ∞), and m
is sufficiently large, then we can get the following result on (1.2).
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Lemma 4.5. For any given small ε, there exists thatM = M(ε) such that if a ≥ λ1 + ε andm ≥ M,
(1.2) has a positive solution (ũ, ṽ), which satisfy

θ(a−ε/2) ≤ ũ ≤ θa, θc ≤ ṽ ≤ θ(c+ε/2). (4.8)

Lemma 4.6. For any ε > 0 to be small and any Â > λ1, there exists that M = M(ε, Â) > 0 is
large such that if a ∈ (λ1 + ε, Â] and m ≥ M, then any positive solution which satisfies (4.8) is
nondegenerate and linearly stable.

Proof. Assume that a ∈ (λ1 + ε, Â] andm is large, then we can easily get that (1.2) is a regular
perturbation of

−Δu − (a − u)u = 0, x ∈ Ω,

−Δv − (c − v)v = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4.9)

It is well know that (4.9) has a unique positive solution (θa, θc) which is linearly stable. So
the positive solutions cannot bifurcate from semitrivial ones. Hence, Lemma 4.6 is proved by
a standard regular perturbation argument. We omit the details.

Proof of (i) of Theorem 4.4. For any ε > 0 to be small, let

M = max
{
M(ε),M

(
ε, λ1

(
bθc

1 + kθc

))}
, (4.10)

where M(ε) and M(ε, λ1(bθc/(1 + kθc))) are defined in Lemmas 4.5 and 4.6, respectively.
Assume that for some m ≥ M and some a ∈ [λ1 + ε, λ1(bθc/(1 + kθc))), Thus the unique
positive solution (ũ, ṽ) must be the one found in Lemma 4.5. It follows from Lemma 4.5
that I − F ′(ũ, ṽ) is invertible in X and F ′(ũ, ṽ) has no eigenvalue greater than one. Hence
indexW(F, (ũ, ṽ)) = (−1)0 = 1. Applying Lemmas 2.3–2.4 and the additivity property of the
index, we obtain

1 = indexW
(
F,D′) = indexW(F, (0, 0)) + indexW(F, (θa, 0))

+ indexW(F, (0, θc)) + indexW(F, (ũ, ṽ)) = 0 + 0 + 1 + 1 = 2,
(4.11)

a contradiction. Hence the proof if complete.

Part (i) in Theorem 4.4 implies that when a ∈ [λ1+ε, λ1(bθc/(1+kθc))) andm is large,
(1.2) has at least two positive solutions. In the following, we will show that (1.2) has only two
types of positive solutions in this case, one of which is close to (θa, θc) and asymptotically
stable and the other is close to (0, θc) which is not stable.

Theorem 4.7. For any ε, δ > 0 to be small, there exists that M = M(ε, δ) > 0 is large such that if
m ≥ M and a ∈ [λ1 + ε, λ1(bθc/(1 + kθc))), one obtains either (i) ‖u − θa‖C1 + ‖v − θc‖C1 ≤ δ or
(ii) ‖u‖C1 + ‖v − θc‖C1 ≤ δ, where (u, v) is any positive solution of (1.2). In particular, if (ii) occurs,
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by choosing M(ε, δ) suitably larger, one gets ‖mu −w‖C1 ≤ δ, where w is a positive solution of the
following equation:

−Δw −
(
a − bθc

(1 +w)(1 + kθc)

)
w = 0, w|∂Ω = 0. (4.12)

Proof. Suppose that the conclusion does not hold. Then there exist mi → ∞ ai ∈ [λ1 +
ε, λ1(bθc/(1 + kθc))) and a positive solution (ui, vi) of (1.2) with (a,m) = (ai,mi) such that
(ui, vi) is bounded away from (θa, θc) and (0, θc). We may assume that ai → a ∈ [λ1 +

ε, λ1(bθc/(1 + kθc))] and (1/(1 +miui)(1 + kvi))
L2

⇀ h with 0 < h < 1. Since θc ≤ vi ≤ θ(c+d/mi),

we have vi
C1

−−→ θc as i → ∞. Thanks to Lp estimate and Sobolev embedding theorems, we

may assume that ui
C1

−−→ u and u satisfies

Δu + (a − u − bθch)u = 0, u ≥ 0, u|∂Ω = 0. (4.13)

If u ≡ 0, then (ui, vi)
C1

−−→ (u, θc) ≡ (0, θc), which contradicts our assumption that (ui, vi) is
bounded away from (0, θc). If u ≥ 0, /≡ 0, from maximum principle, we have u > 0 in Ω.
Hence h ≡ 0 and u ≡ θa, which also contradicts our assumption. Thus, the first part of the
proof is complete.

To complete the proof, it suffices to prove that if mi → ∞, ai ∈ [λ1 + ε, λ1(bθc/(1 +
kθc))) and ‖ui‖C1 + ‖vi − θc‖C1 → 0, then miui approaches some positive solution of (4.12)
with a = ai in the C1 norm. It is easy to see that (4.12) has a positive solution when a ∈
[λ1 + ε, λ1(bθc/(1 + kθc))). First we claim that mi‖ui‖∞ is uniformly bounded. If this is not
true, we may assume that mi‖ui‖∞ → ∞. Let ũi = ui/‖ui‖∞. Then we have

Δũi +
(
ai − ui − bvi

(1 +miui)(1 + kvi)

)
ũi = 0, ‖ũi‖∞ = 1, ũi|∂Ω = 0. (4.14)

Thanks to standard elliptic regularity theory, we may assume that ũi
C1

−−→ ũ, (1/((1+miui)(1+

kvi)))
L2

⇀ h and ai → a ∈ [λ1 + ε, λ1(bθc/(1 + kθc))]. By taking the limit in (4.12), we know
that ũ satisfies the following equation weakly:

Δũ + (a − bθch)ũ = 0, ‖ũ‖∞ = 1, ũ|∂Ω = 0. (4.15)

By Harnack’s inequality, we have ũ > 0 in Ω. Since mi‖ui‖∞ → ∞ and ũi → ũ, then 1/(1 +
miui)(1 + kvi) = 1/(1 + mi‖ui‖∞ũi)(1 + kvi) → 0 in any compact subset of Ω. Hence h ≡ 0
and a = λ1, which contradicts the assumption that a ≥ λ1 + ε. Thereforemi‖ui‖∞ is uniformly
bounded.

Let wi = miui. Then wi satisfies

Δwi +
(
ai − ui − bvi

(1 +wi)(1 + kvi)

)
wi = 0, wi|∂Ω = 0. (4.16)
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Since ‖wi‖∞ = mi‖ui‖∞ is bounded, due to standard elliptic regularity theory and Sobolev

embedding theorems, we may assume that wi
C1

−−→ w. By letting i → ∞ in (4.16), we know
that w is a nonnegative solution of (4.12). There are two possibilities as follows.

(i) a = λ1(bθc/(1 + kθc)). For this case, miui = wi → w ≡ 0. Since any positive
solution of (4.12) with a = ai approaches zero when ai → a, miui is certainly close
to positive solutions of (4.12)with a = ai.

(ii) λ1+ε ≤ a < λ1(bθc/(1 + kθc)). In this case, wewill prove thatw is a positive solution
of (4.12). If not, by Harnack’s inequality, we have w ≡ 0. Let w̃i = wi/‖wi‖∞. Then
we have

Δw̃i +
(
ai − ui − bvi

(1 +wi)(1 + kvi)

)
w̃i = 0, w̃i|∂Ω = 0. (4.17)

Hence we may assume that w̃i
C1

−−→ w. By taking the limit in (4.17), we find

Δw̃ +
(
a − bθc

1 + kθc

)
w̃ = 0, w̃|∂Ω = 0. (4.18)

Since a < λ1(bθc/(1+kθc)), wemust have w̃ ≡ 0, which contradicts ‖w̃‖∞ = limi→∞‖w̃i‖∞ = 1.
The proof is complete.

The proof of (ii) in Theorem 4.4 is more difficult. To this end, we need several lemmas.
First we show that there is no positive solution of (1.2) with small u component if a ≥
λ1(bθc/(1 + kθc)) and m is large.

Lemma 4.8. There exists a large M such that if m ≥ M, then for all a ≥ λ1(bθc/(1 + kθc)), any
positive solution (u, v) of (1.2) satisfies u ≥ θλ̃, where λ̃ = (λ1 + λ1(bθc/(1 + kθc)))/2.

Proof. Suppose that our conclusion is not true, then there exist mi → ∞, ai ≥ λ1(bθc/(1 +
kθc)), and a positive solution sequence {(ui, vi)} of (1.2) with (a,m) = (ai,mi) such that
ui ≥ θλ̃ does not hold.

First, let ai → a ∈ (λ1(bθc/(1+kθc)),∞]. Since θc ≤ vi ≤ θ(c+d/mi), for large i, we obtain

−Δui ≥
(

a + λ1(bθc/(1 + kθc))
2

− ui −
bθ(c+δ)

1 + kθ(c+δ)

)
ui, (4.19)

where δ > 0 is small such that λ1(bθ(c+δ)/(1 + kθ(c+δ))) < (a + λ1(bθc/(1 + kθc)))/2, which is
possible when a > λ1(bθc/(1 + kθc)). Due to the super- and subsolution method, we obtain
ui ≥ w̃, where w̃ is a unique positive solution of

−Δw̃ =
(
a + λ1(bθc/(1 + kθc))

2
− bθ(c+δ)

1 + kθ(c+δ)
− w̃

)
w̃, w̃|∂Ω = 0. (4.20)
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Hence for large i, we get

−Δui ≥
(
λ1

(
bθc

1 + kθc

)
− ui − b

mi
sup
Ω

θ(c+d/mi)

w̃

)
ui ≥

(
λ̃ − ui

)
ui. (4.21)

Applying the super- and subsolution method again, we obtain ui ≥ θλ̃, which contradicts the
assumption.

Secondly, we consider the case that ai → a = λ1(bθc/(1 + kθc)). Thanks to standard
elliptic regularity theory, we may assume that ui → u, vi → v in C1 and 1/(1+miui)(1+kvi)
weakly converge to h in L2 with 0 ≤ h ≤ 1. Hence u satisfies the following equation weakly:

−Δu =
(
λ1

(
bθc

1 + kθc

)
− bvh − u

)
u, u|∂Ω = 0. (4.22)

If u ≥ 0, /≡ 0, by Harnack’s inequality, we have u > 0 inΩ. Thus h ≡ 0 and ui
C1

−−→ θλ1(bθc/(1+kθc)).
Since θλ1(bθc/(1+kθc)) > θλ̃, we have ui ≥ θλ̃ for large i. This contradicts our assumption at the
beginning of the proof. If u ≡ 0, by letting ûi = ui/||ui||∞, then we know that ûi satisfies

Δûi +
(
ai − ui − bvi

(1 +miui)(1 + kvi)

)
ûi = 0, ûi|∂Ω = 0. (4.23)

Thanks to standard elliptic regularity theory, we may assume that ûi
C1

−−→ ûwith ‖û‖∞ = 1 and

û > 0 in Ω. Since ui
C1

−−→ u ≡ 0, we have vi
C1

−−→ θc. By taking the weak limit in (4.23), we have

Δû +
(
λ1

(
bθc

1 + kθc

)
− bθch

)
û = 0, û|∂Ω = 0. (4.24)

Let Φ > 0 be the positive solution to

−ΔΦ +
bθc

1 + kθc
Φ = λ1

(
bθc

1 + kθc

)
Φ, Φ|∂Ω = 0, ‖Φ‖∞ = 1. (4.25)

Multiplying (4.24) by Φ and integrating, we obtain

b

∫
Ω
ûΦθc

(
1

1 + kθc
− h

)
= 0. (4.26)

Since 0 ≤ h ≤ 1/(1 + kθc), we must have h ≡ 1/(1 + kθc) and û ≡ Φ. Investigate the following
equation for ui:

Δui +
(
ai − ui − bvi

(1 +miui)(1 + kvi)

)
ui = 0, ui|∂Ω = 0. (4.27)
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Multiplying (4.27) by Φ and using (4.25), we obtain

(
ai − λ1

(
bθc

1 + kθc

))∫
Ω
uiΦ =

∫
Ω
u2
iΦ +

∫
Ω

buiviΦ
(1 +miui)(1 + kvi)

−
∫
Ω

bθcuiΦ
1 + kθc

. (4.28)

After some rearrangements, we obtain

(
ai − λ1

(
bθc

1 + kθc

))∫
Ω
uiΦ =

∫
Ω
u2
iΦ + b

∫
Ω

ui(vi − θc)Φ
(1 +miui)(1 + kvi)(1 + kθc)

− bmi

∫
Ω

θcu
2
iΦ

(1 +miui)(1 + kθc)
.

(4.29)

Set wi = (vi − θc)/||ui||∞. By the definition of vi and θc, we have

−Δwi + (−c + 2θc)wi = (θc − vi)wi +
dviûi

(1 +miui)(1 + kvi)
. (4.30)

Multiplying (4.30) by wi and integrating, we obtain

λ1(−c + 2θc)
∫
Ω
w2

i ≤
∫
Ω

(
|∇wi|2 +

(−c + 2θ[c]
)
w2

i

)

≤ ‖vi − θc‖∞
∫
Ω
w2

i + d‖ûi‖∞‖vi‖∞
∫
Ω
wi.

(4.31)

Since ||vi − θc||∞ → 0, ‖ûi‖∞ and ‖vi‖∞ are bounded, we know that ‖wi‖2 is bounded by
Hölder inequality. Therefore from Lp estimate and Sobolev embedding theorem, it is easy to
see that ||wi||∞ is bounded. Dividing (4.29) by ‖ui‖2∞, we show that

ai − λ1(bθc/(1 + kθc))
‖ui‖∞

∫
Ω
ûiΦ =

∫
Ω
û2
iΦ + b

∫
Ω

ûiwiΦ
(1 +miui)(1 + kvi)(1 + kθc)

− bmi

∫
Ω

θcû
2
iΦ

(1 +miui)(1 + kθc)
.

(4.32)

Since ûi
C1

−−→ Φ > 0, 1/(1 + miui)(1 + kvi) ⇀ 1/(1 + kθc) weakly in L2 and wi are uniformly
bounded, we obtain

ai − λ1(bθc/(1 + kθc))
‖ui‖∞

−→ −∞ (4.33)

as i → ∞. Hence ai < λ1(bθc/(1+kθc)) if i is large enough, which contradicts our assumption
that ai ≥ λ1(bθc/(1 + kθc)) for all i. Thus, the proof is complete.

By Lemma 4.8 and a simple variant of the proof of Lemma 4.6, we immediately get the
following result.
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Lemma 4.9. For any given A > λ1(bθc/(1 + kθc)), there exists that M = M(A) > 0 is large such
that if a ∈ [λ1(bθc/(1 + kθc)), A] andm ≥ M; then any positive solution of (1.2) is nondegenerate
and linearly stable.

Next we investigate the case that a is large.

Lemma 4.10. For any ε > 0, there exists that Ã = Ã(ε) > 0 is large such that if m ≥ ε, c ≤ 1/ε and
a > Ã, then any positive solution of (1.2) is nondegenerate and linearly stable.

Proof. Suppose the conclusion is not true. Then there exist some ε0 > 0, mi ≥ ε0, ci ≤
1/ε0, ai → ∞, Reηi ≤ 0, and (φi, ϕi)/≡ (0, 0) with ‖φi‖22 + ‖ϕi‖22 = 1 such that

Δφi +

(
ai − 2ui − bvi

(1 +miui)2(1 + kvi)

)
φi − bui

(1 +miui)(1 + kvi)
2
ϕi + ηiφi = 0, (4.34)

Δϕi +

(
ci − 2vi +

dui

(1 +miui)(1 + kvi)
2

)
ϕi +

dvi

(1 +miui)2(1 + kvi)
φi + ηiϕi = 0, (4.35)

where (ui, vi) is a positive solution of (1.2) with (a, c,m) = (ai, ci,mi). Since ci > λ1 − d/mi,
we may assume that ci → c ∈ [λ1 − d/ε0, (1/ε0)], mi → m ∈ [ε0,∞]. Let δ = b(1 + d)/(ε0 +
k(1 + d)). From vi ≤ θ(ci+d/mi) ≤ (1 + d)/ε0, we have

−Δui ≥
(
ai − ui − bvi

1 + kvi

)
ui ≥ (ai − δ − ui). (4.36)

Hence ui ≥ θ(ai−δ). Due to Kato’s inequality, we have

−Δ∣∣φi

∣∣ ≤ − Re

(
φi∣∣φi

∣∣Δφi

)

≤
(
ai − 2ui − bvi

(1 +miui)2(1 + kvi)

)∣∣φi

∣∣ + bui

∣∣ϕi

∣∣
(1 +miui)(1 + kvi)

2
+ Reηi

∣∣φi

∣∣

≤ (ai − 2ui)
∣∣φi

∣∣ + b
∣∣ϕi

∣∣
mi

.

(4.37)

Multiplying (4.37) by |φi| and integrating by parts, we obtain

λ1
(−ai + 2θ(ai−δ)

) ∫
Ω

∣∣φi

∣∣2 ≤ λ1(−ai + 2ui)
∫
Ω

∣∣φi

∣∣2

≤
∫
Ω

(∣∣∇∣∣φi

∣∣∣∣2 + (−ai + 2ui)
∣∣φi

∣∣2) ≤ b

mi

∫
Ω

∣∣φi

∣∣∣∣ϕi

∣∣ ≤ C.

(4.38)
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By the method of Lemma 2.2 in [18], there exists k0 ∈ (1, 22/3) such that

λ1
(−ai + 2θ(ai−δ)

)
= − ai + λ1

(
2θ(ai−δ)

) ≥ −ai + k0(ai − δ)

= (k0 − 1)ai − k0δ −→ +∞.
(4.39)

It follows from (4.38) and (4.39) that ‖φi‖2 → 0. Multiplying (4.34) by φi and integrating, we
have

∫
Ω

∣∣∇φi

∣∣2 =
∫
Ω

[
ai − 2ui − bvi

(1 +miui)2(1 + kvi)

]∣∣φi

∣∣2 − b

∫
Ω

uiϕiφi

(1 +miui)(1 + kvi)
2
+ ηi

∫
Ω

∣∣φi

∣∣2.
(4.40)

Multiplying (4.35) by ϕi and integrating, we have

∫
Ω

∣∣∇ϕi

∣∣2 =
∫
Ω

[
ci − 2vi +

dui

(1 +miui)(1 + kvi)
2

]∣∣ϕi

∣∣2 + d

∫
Ω

viφiϕi

(1 +miui)2(1 + kvi)
+ ηi

∫
Ω

∣∣ϕi

∣∣2.
(4.41)

Adding the previous two identities, we have

ηi =
∫
Ω

∣∣∇φi

∣∣2 −
∫
Ω

[
ai − 2ui − bvi

(1 +miui)2(1 + kvi)

]∣∣φi

∣∣2 + b

∫
Ω

uiϕiφi

(1 +miui)(1 + kvi)
2

+
∫
Ω

∣∣∇ϕi

∣∣2 −
∫
Ω

[
ci − 2vi +

dui

(1 +miui)(1 + kvi)
2

]∣∣ϕi

∣∣2 − d

∫
Ω

viφiϕi

(1 +miui)2(1 + kvi)
.

(4.42)

It is easy to show that the imaginary part of the right-hand side of the previous identity is
bounded. On the other hand, due to (4.38), (4.39) and the fact that

∫
Ω |(∇|φi|)|2 ≤

∫
Ω |∇φi|2, we

have Reηi is bounded nextly. Hence ηi is bounded as we assume that Reηi ≤ 0. Thus we may
assume that ηi → η with Reη ≤ 0. Thanks to (4.35) and standard elliptic regularity theory,
‖ϕi‖W2,2 is bounded. Therefore we may assume that ϕi → ϕ in H1

0 . Since ai → ∞, θ(ai−δ) ≤
ui ≤ θ(ai) and θ(ai)/ai → 1, we have ui → ∞ and vi → θ(c+d/m) in C1. By letting i → ∞ in
(4.35), we know that ϕ satisfies the following equation weakly:

Δϕ +
(
c +

d

m
− 2θ(c+d/m)

)
ϕ + ηϕ = 0 (4.43)

with Reη ≤ 0. The self-disjointness of the previous problem implies η ∈ R. Since λ1(θ(c+d/m) −
(c + d/m)) = 0, we have

η = λ1

(
2θ(c+d/m) −

(
c +

d

m

))
≥ λ1

(
θ(c+d/m) −

(
c +

d

m

))
= 0. (4.44)
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Hence η = 0, which implies c + d/m = λ1, θ(c+d/m) ≡ 0 and ϕ = βΦ1/‖Φ1‖2, |β| = 1. Using
Kato’s inequality again, we have

−Δ∣∣ϕi

∣∣ ≤ − Re

(
ϕi∣∣ϕi

∣∣Δϕi

)

≤
[
ci − 2vi +

dui

(1 +miui)(1 + kvi)
2

]∣∣ϕi

∣∣ + dvi

∣∣φi

∣∣
(1 +miui)2(1 + kvi)

+ Reηi
∣∣ϕi

∣∣.
(4.45)

It follows that vi satisfies

Δvi +
(
ci − vi +

dui

(1 +miui)(1 + kvi)

)
vi = 0, vi |∂Ω = 0. (4.46)

Multiplying (4.45) by vi, integrating by parts, and using (4.46), we obtain

∫
Ω
v2
i

∣∣ϕi

∣∣ ≤ d

∫
Ω

v2
i

∣∣φi

∣∣
(1 +miui)2(1 + kvi)

+ Reηi

∫
Ω
vi

∣∣ϕi

∣∣ ≤ d

∫
Ω
v2
i

∣∣φi

∣∣. (4.47)

Set v̂i = vi/||vi||∞. Then v̂i satisfies

Δv̂i +
(
ci − vi +

dui

(1 +miui)(1 + kvi)

)
v̂i = 0. (4.48)

Thanks to standard elliptic regularity theory, we may assume that v̂i
C1

−−→ v̂. Then v̂ satisfies

Δv̂ +
(
c +

d

m
− θ(c+d/m)

)
v̂ = 0. (4.49)

Since c + d/m = λ1, we have v̂ ≡ Φ1. Dividing both sides of (4.47) by ||vi||2∞, we know that

∫
Ω

(
vi

‖vi‖∞

)2∣∣ϕi

∣∣ ≤ d

∫
Ω

(
vi

‖vi‖∞

)2∣∣φi

∣∣. (4.50)

Since ‖φi‖2 → 0, the right-hand side of (4.50) converges to 0 by Hölder inequality. However,
the previous discussion implies that

∫
Ω(vi/||vi||∞)2|ϕi| → ∫

Ω(Φ
3
1/||Φ1||2)(i → ∞). The

contradiction completes the proof.
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Proof of (ii) of Theorem 4.4. It suffices to prove the uniqueness. Investigate the following
system with t ∈ [0, 1]:

Δu + u

(
a − u − tbv

(1 +mu)(1 + kv)

)
= 0, x ∈ Ω,

Δv + v

(
c − v +

tdu

(1 +mu)(1 + kv)

)
= 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4.51)

Set S = {(u, v) ∈ X | θλ̃/2 < u < a, θc/2 < v < c + ad} and Bt : S → W by

Bt(u, v) = (−Δ + P)−1

⎛
⎜⎜⎜⎝

u

(
a + P − u − tbv

(1 +mu)(1 + kv)

)

v

(
c + P − v +

tdu

(1 +mu)(1 + kv)

)
⎞
⎟⎟⎟⎠, (4.52)

where P = max{ad, b(c + ad)}. Thanks to standard regularity results, we can prove that Bt is
a completely continuous operator. Clearly, (u, v) is a positive solution of (4.51) if and only if
it is a positive fixed point of Bt in S. Form ≥ M and a ≥ λ1(bθc/(1 + kθc)), we first show that
Bt has no fixed point on ∂S.

We claim that any positive solution (u, v) of (4.51) satisfies u ≥ θλ̃, where λ̃ = (λ1 +
λ1(bθc/(1 + kθc)))/2. Suppose that this claim is not true. Then there exist mi → ∞, ai ≥
λ1(bθc/(1 + kθc)), ti ∈ [0, 1], and a positive solution (ui, vi) of (4.51)with(a,m, t) = (ai,mi, ti)
such that ui ≥ θλ̃ fails. Since the case that ti → t0 ≡ 1 is considered in Lemma 4.8, it remains
to discuss the case that ti → t0 ∈ [0, 1). Since vi ≤ θ(c+d/mi), we have

−Δui ≥
(
λ1

(
bθc

1 + kθc

)
− tibθ(c+d/mi)

1 + kθc
− ui

)
ui ≥

(
λ1

(
tbθc

1 + kθc

)
− t0bθc
1 + kθc

− ui

)
ui, (4.53)

for large i, where t ∈ (t0, 1). Therefore ui is a supersolution to

−Δω =

(
λ1

(
tbθc

1 + kθc

)
− t0bθc
1 + kθc

−ω

)
ω, ω|∂Ω = 0. (4.54)

Due to the choice of t, (4.54) has a unique positive solution ω. Thus we have ui ≥ ω for all
large i. Hence,

−Δui ≥
(
λ1

(
bθc

1 + kθc

)
− b

mi
sup
Ω

θ(c+d/mi)

ω
− ui

)
ui ≥

(
λ̃ − ui

)
ui. (4.55)

By the super- and subsolution method again, we have ui ≥ θλ̃ for large i. This is a
contradiction.
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Our claim implies that Bt has no fixed point on ∂S. Hence indexW(Bt, S) ≡ constant. In
particular,

indexW(B1, S) = indexW(B0, S). (4.56)

Since B0 has a unique fixed point (θa, θc) in S and indexW(B0, (θa, θc)) = 1, we have
indexW(B1, S) = 1. From Lemmas 4.8–4.10, we see that for m ≥ M, all fixed points of B1

fall into S, and they are nondegenerate and linearly stable. Then by compactness, there are at
most finitely many fixed points of B1, which we denote by {(ui, vi)}li=1. As shown in the proof
of part (i), we have indexW(B1, (ui, vi)) = 1. Using the additivity property of the index, we
know that

1 = indexW(B1, S) =
l∑

i=1

indexW(B1, (ui, vi)) = l. (4.57)

Hence for m ≥ M and a ≥ λ1(bθc/(1 + kθc)), (1.2) has a unique positive solution, and it is
stable.

Our final task is to establish the exact multiplicity and stability results for large m and
a close to λ1 + ε or λ1(bθc/(1 + kθc)). Firstly we consider the elliptic equation (4.12), which
acts as a limiting problem of (1.2)whenm → ∞. Applying the similar method to Lemma 2.7
in paper [18], we have the following conclusion.

Lemma 4.11. The problem (4.12) has a positive solution if and only if λ1 < a < λ1(bθc/(1 + kθc)).
Moreover, all positive solutions of (4.12) are unstable. Furthermore, there exists some ε1 > 0 such that
if a ∈ (λ1, λ2] ∪ [λ1(bθc/(1 + kθc)) − ε1, λ1(bθc/(1 + kθc))), then (4.12) has at most one positive
solution and it is nondegenerate (if it exists).

Define ε0 = min{λ2, λ1(bθc/(1 + kθc)) − ε1} − λ1, where ε1 is defined by Lemma 4.11.

Theorem 4.12. For any ε ∈ (0, ε0), one can find that M = M(ε) is large such that if a ∈ (λ1 +
ε, λ2 + ε0]∪ [λ1(bθc/(1+ kθc))− ε1, λ1(bθc/(1+ kθc))), andm > M(ε), then (1.2) has exactly two
positive solutions, one asymptotically stable and the other unstable.

To verify Theorem 4.12, we need some intermediate results. Theorem 4.7 has shown
that (1.2) has only two types of positive solutions for when m large and a ∈ [λ1(bθc/(1 +
kθc)) − ε1, λ1(bθc/(1 + kθc))). In the following lemma, we will prove another result.

Lemma 4.13. There exist that ε2 > 0 is small and M1 > 0 is large; both depend only on b, c, d, and
k, such that if a ∈ [λ1(bθc/(1 + kθc)) − ε2, λ1(bθc/(1 + kθc))), andm > M1, then (1.2) has exactly
two positive solutions, one asymptotically stable and the other unstable.

Proof. First we prove that for large m, (1.2) has a unique asymptotically stable positive
solution of type (i) in Theorem 4.7. In fact, if we choose δ small enough in Theorem 4.7,
then any positive solution of (1.2) of type (i) satisfies (4.8). Hence by Lemma 4.6, they are
nondegenerate and linearly stable. Now by a simple variant of the proof of part (ii) of
Theorem 4.4, we find that there is only one positive solution of (1.2) satisfying type (i), and it
is asymptotically stable.
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Next we show that (1.2) has a unique unstable positive solution of type (ii). If we can
prove this, then by Theorem 4.7, our proof of Lemma 4.13 is complete. Due to Theorem 4.7
and Lemmas 4.11, if any solution (u;v) of (1.1) is close to (0, θc), then mu must be close to
w, wherew is the unique positive solution of (4.12). Hence to prove uniqueness, it suffices to
show that for a ∈ [λ1(bθc/(1 + kθc)) − ε2, λ1(bθc/(1 + kθc))), and m > M1, there is a unique
pair (mu, v), (u;v) being a positive solution of (1.2), close to (w, θc) for certain ε2 andM1. Set
U = mu, ρ = 1/m, and discuss

−ΔU = U

(
a − ρU − bv

(1 +U)(1 + kv)

)
, x ∈ Ω,

−Δv = v

(
c − v +

ρdU

(1 +U)(1 + kv)

)
, x ∈ Ω,

U = v = 0, x ∈ ∂Ω.

(4.58)

Clearly (u, v) solves (1.2) if and only if (mu, v) solves (4.58) with ρ = 1/m. Thus it suffices
to prove uniqueness for (4.58). For fixed ρ ≥ 0, regarding a as a parameter, we know that
(λ1(bθc/(1 + kθc)), 0, θc) is a simple bifurcation point of (4.58). Due to a variant of Theorem 1
in [21], there exist δ1 > 0 and C1 curves

Γρ =
{(

a
(
ρ, s
)
, U
(
ρ, s
)
, v
(
ρ, s
))

: 0 < s ≤ δ1
}
, 0 ≤ ρ ≤ δ1, (4.59)

such that, if 0 ≤ ρ ≤ δ1, then all positive solutions of (4.58) are close to

(
λ1

(
bθc

1 + kθc

)
, 0, θc

)
= (a(0, 0), U(0, 0), v(0, 0)) ∈ Γρ. (4.60)

Hence we need only to prove that these curves uniformly cover a− Range[λ1(bθc/(1+kθc))−
ε2, λ1(bθc/(1 + kθc))), for suitably chosen ε2, and for fixed ε2 and ρ, Γρ cover the range only
once. It is easy to obtain (see Theorem 3.9)

∂a

∂s
(0, 0) < 0, 0 ≤ ρ ≤ δ1, 0 < s ≤ δ1. (4.61)

Hence

λ1

(
bθc

1 + kθc

)
− a(0, δ1) = a(0, 0) − a(0, δ1) > 0. (4.62)

By the continuity of a(ρ, s), there exist δ ∈ (0, δ1] such that

ε2 = min
0≤ρ≤δ

[
λ1

(
bθc

1 + kθc

)
− a
(
ρ, δ1

)]
> 0. (4.63)

Therefore, if a ≥ λ1(bθc/(1 + kθc)) − ε2, then for any ρ ∈ (0, δ], a(ρ, δ1) ≤ a. This implies that
for ρ ∈ (0, δ], Γρ covers the a−range[λ1(bθc/(1+kθc))−ε2, λ1(bθc/(1+kθc))). Moreover, since
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∂a/∂s/= 0 for 0 ≤ ρ, s ≤ δ1, each curve covers the range only once. By choosing M1 = 1/δ, we
get that form > M1 and a ∈ ([λ1(bθc/(1 + kθc)) − ε2, λ1(bθc/(1 + kθc))), (1.2) has exactly one
positive solution of type (ii) in Theorem 4.7.

It remains to show that the positive solution of (1.2) close to (0, θc) is unstable. In fact,
when m is sufficiently large, applying the method of the proof in Theorem 3.9, we can show
that the positive solution of (1.2) close to (0, θc) is unstable. we omit the proof procedure.

Proof of Theorem 4.12. By Lemma 4.13, it suffices to establish the exact multiplicity and
stability when a ∈ I = [λ1 + ε, λ1 + ε0] ∪ [λ1(bθc/(1 + kθc)) − ε1, λ1(bθc/(1 + kθc)) − ε2) for any
given ε ∈ (0, ε0), where ε2 is defined in Lemma 4.13

From Theorem 4.7 we know that the solutions of (1.2) for a ∈ [λ1+ε, λ1(bθc/(1+kθc)))
and m large are of two types, that is, types (i) or (ii). As in the proof of Lemma 4.13, we can
prove that there is a unique asymptotically stable positive solution of type (i). Thus to end
the proof, we need only to show that there is a unique unstable positive solution of (1.2)
close to (0, θc) if a ∈ I and m is large. Again by Lemma 4.11, it suffices to prove that there
is a unique unstable positive solution (u, v) of (1.2) such that (mu, v) is close to (wa, θc),
wherewa is the unique positive solution of (4.12) as shown in Lemma 4.11. In this connection,
we investigate (4.58) with a ∈ I and ρ small. Let a∗ ∈ I. Since the unique solution wa∗ of
(4.12) with a = a∗ is nondegenerate, then (wa∗ , θc) is a nondegenerate solution of (4.58) with
(a, ρ) = (a∗, 0). Clearly, (4.58) with ρ > 0 small is a regular perturbation of (4.58) with ρ = 0,
and the perturbation is uniform for a in the compact set I. Thus it follows from the implicit
function theorem that there exist δ, ε > 0 small such that for any a ∈ I, 0 ≤ ρ ≤ ε, (4.58)
possesses a unique positive solution (ua, va)which satisfies

‖ua −wa‖ + ‖va − θc‖ ≤ δ. (4.64)

SetM = max{1/ε,M(ε, δ)}, whereM(ε, δ) is defined in Lemma 4.11. It is easy to see that for
any ε ∈ (0, ε0), there exists M = M(ε) such that if m ≥ M and a ∈ I, then (1.2) has a unique
positive solution of type (ii).

It remains to prove the instability for the unique positive solution of (1.2) of type (ii).
Define T and T0 : C

2,α
0 (Ω) × C2,α

0 (Ω) → Cα(Ω) × Cα(Ω) by

T

(
ξ
η

)
=

⎛
⎜⎜⎜⎜⎝

Δξ +

(
a − 2u − bv

(1 +mu)2(1 + kv)

)
ξ − bu

(1 +mu)(1 + kv)2
η

Δη +

(
c − 2v +

du

(1 +mu)(1 + kv)2

)
η +

dv

(1 +mu)2(1 + kv)
ξ

⎞
⎟⎟⎟⎟⎠,

T0

(
ξ
η

)
=

⎛
⎜⎜⎜⎝

Δξ +

(
a − bθc

(1 +wa)2(1 + kθc)

)
ξ

Δη + (c − 2θc)η +
dθc

(1 +wa)2(1 + kθc)
ξ

⎞
⎟⎟⎟⎠.

(4.65)
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It is easy to show that, as m → ∞, T → T0 in the operator norm uniformly for (u, v)
approaches (0, θc)withmu close towa and a ∈ [λ1+ε, λ1+ε0]. Since 0 belongs to the resolvent
set of T0 and

μ0 = λ1

(
−a +

bθc

(1 +wa)2(1 + kθc)

)
< 0 (4.66)

is an eigenvalue of T0. Due to standard perturbation theory, it is easy to get that 0 also belongs
to the resolvent set of T and that T has an eigenvalue μ close to μ0. In particular, Reμ < 0.
This shows that for all large m, the positive solution of (1.2) close to (0, θc) is nondegenerate
and unstable. Thus, the proof of Theorem 4.12 is complete.
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