
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 628503, 12 pages
doi:10.1155/2012/628503

Research Article
Some Properties of Motion Equations Describing
the Nonlinear Dynamical Response of a Multibody
System with Flexible Elements
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The industrial applications use instruments and machines operating at high speeds, developing
high forces, low temperatures, corrosive environments, extreme pressures, and so forth. Under
these conditions, the elasticity of elements such a machine is built of cannot be ignored anymore,
and models are needed to more accurately “grasp” the mechanical phenomena accompanying
the operation. The vibrations and the loss of stability are the main effects occurring under these
conditions. For the study on this kind of systems with rigid motion and elastic elements, numerous
models have been elaborated, the main idea being the discretization of the elements and the use
of finite element method. Finally, second-order differential equations with variable coefficients are
obtained; these equations are strong nonlinear ones due to the time-dependent values of angular
speed and acceleration, and they can be linearized considering a very short period of time, inwhich
the motion is considered to be “frozen.” The aim of this paper is to present some characteristic
properties of these systems.

1. Introduction

A mechanical system, a machine or instrument, is made up of elastic elements, the elasticity
manifesting itself more or less. The rigid elements assumption generallymadewhen studying
such technical systems represents a first approximation leading to rapid results closer to
reality. Depending on the given instrument operation conditions, this assumption may lead
to correct results or to results considerably deviating from the real situation. If the instrument
or the machine works with low operation speeds or if it is subjected to lower loads, then
the model built based on the rigid elements assumption may lead to excellent results. The
elasticity becomes a significant element if the loads occurred are high and/or the operation
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Elastic element

Figure 1: Mechanical system with elastic elements [1].

speeds are high (Figure 1). In this case, the deformations of the machine element will
influence, usually in a negative way, the correct operation of the system. The resonance and
the loss of stability represent the main forms of manifestation of elasticity. They will occur
in the case of an inadequate design leading to a fast machine damage. The main method of
approach of such a problem is the method of finite elements, a method used in a lot of works
for elaborating models describing the behavior of machines containing elastic elements.

As a result of modeling a set of differential equations having a complex nonlinear form
is obtained. It contains a series of additional terms due to the relative movements of nodal
coordinates and the general motion, and the operation motion is called “rigid motion” of the
system. As the geometrical configuration of a mechanical system with rigid motion changes
from one moment to the other, the motion equations are valid for that very moment, in which
the system motion is to be considered to be “frozen”. In this case, Δt periods of time, when
the coefficients can be approximate as constant, are being considered. It is difficult to estimate
the length of this interval Δt that depends on the topology and geometry of the multibody
system. We consider that it is short enough in order to regard the motion as “frozen.” The
analysis made is an incremental analysis. Themotion equationswritten in the local coordinate
system may be expressed under the form [1–9]

meδ̈e + 2ce(ω)δ̇e +
[
ke + ke(ε) + ke

(
ω2
)
+ kG

e

]
δe

= qe + q∗
e − qi

e(ε) − qi
e

(
ω2
)
−mi

EeIεL −mi
oeR

Tr̈oG,
(1.1)

where me: inertia matrix, symmetric; ce(ω): matrix of Coriolis terms, skew symmetric;
ke: classical rigidity matrix, symmetric; ke(ε): modification of rigidity due to the angular
acceleration of the mobile reference system; ke(ω2): modification of rigidity due to the
angular speed of the mobile reference system; kG

e : rigidity due to the second-order effects;
qe + q∗

e : the external forces concentrated and distributed; qi
e(ε): inertial forces due to the

angular acceleration of the mobile reference system; qi
e(ω

2): inertial forces due to the angular
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speed of the mobile reference system; mi
EeIεL: inertial forces due to rotation only at bars;

mi
oeR

Tr̈oG: inertial forces due to the shifting of the mobile reference system.
After passing to a common global coordinate system (neglecting the second-order

effects), finally, the second-order differential equations system with variable coefficients is
obtained [10–12]

MΔ̈ + CΔ̇ +
[
K +K(ε) +K

(
ω2
)]

Δ = �, (1.2)

where M: inertia matrix, symmetric; C: matrix of Coriolis terms, skew symmetric; K: rigidity
matrix, symmetric; K(ε): modification of rigidity due to the angular acceleration of the
mechanical system components, skew symmetric; K(ω2): modification of rigidity due to the
angular speed of the mechanical system components, symmetric;Q: matrix of the total nodal
loads.

To summarize, matrices M, K, K(ω2) of the whole structure are symmetric and
C, K(ε) are skew symmetric. New researches increase the complexity of the problem of the
study of the multibody systems with flexible elements [13–17], but there are not many useful
results concerning solving the equations. Some properties of such a system will be presented
later.

2. Properties of Motion Equations of the Mechanical System

The motion equations of such system have properties allowing an easier solution of the
equation system obtained but also a qualitative interpretation of the dynamic response of
the system. We are presenting these properties as follows.

2.1. P1. In the Rayleigh Quotient, the Eigenvalues Do Not Depend Directly
on the Damping Matrix

We consider a very short period of time in which the variation of the matrix coefficients of
motion equations is of no importance (very low). The system solution of the following form
is selected:

Δ = A cos
(
ωt + ϕ

)
. (2.1)

By derivation, the following is being successively obtained:

Δ̇ = −ωA sin
(
ωt + ϕ

)
, Δ̈ = −ω2A cos

(
ωt + ϕ

)
. (2.2)

Introducing into the homogeneous system associated to (1.2), we get

−ω2MA cos
(
ωt + ϕ

) −ω CA sin
(
ωt + ϕ

)
+
(
K +K(ε) +K

(
ω2
))

A cos
(
ωt + ϕ

)
= 0.

(2.3)
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By premultiplying (2.3) by A, we get

−ω2ATMA cos
(
ωt + ϕ

) −ωATCA sin
(
ωt + ϕ

)
+AT
(
K +K(ε) +K

(
ω2
))

A cos
(
ωt + ϕ

)
= 0.

(2.4)

Since C and K(ε) are skew-symmetric, we have

ATCA = 0, ATK(ε) A = 0, (2.5)

and (2.4) becomes

[
−ω2ATMA +AT

(
K +K

(
ω2
))

A
]
cos
(
ωt + ϕ

)
= 0, (2.6)

where (see Rayleigh [18])

ω2 =
AT[K +K

(
ω2)]A

ATMA
. (2.7)

Moreover, these values are real, since K + K(ω2) and M are symmetric; thus there is no
damping in the system. It results that the matrix C, having in equations the significance of
a viscous damping, does not introduce a damping term in the obtained solutions. Its skew
symmetry denotes the system property not dissipating the energy to the exterior.

Let us now write the relation (2.1) as follows:

Δ = A1 cosωt +A2 sinωt.
(
2.1′
)

We can enounce the following property.

2.2. P2. Matrix A Defined by Relation (2.11) Has Two Null Eigenvalues

The matrices K(ε) and K(ω2) are neglected; they have generally a small contribution to the
rigidity matrix. We propose ourselves to solve the homogeneous system associated to (1.2)
which becomes under this assumption

MΔ̈ + CΔ̇ +KΔ = 0, (2.8)

withM and K symmetric and C skew-symmetric. With the classical substitution

Δ = x1, Δ̇ = x2, (2.9)

the first-order linear system is obtained

{
ẋ1
ẋ2

}
=
[

0 E
−M−1K −M−1C

]{
x1
x2

}
(2.10)
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or

ẋ = Ax,
(
2.10′
)

where

x =
{
x1
x2

}
; A =

[
0 E

−M−1K −M−1C

]
, (2.11)

and the unit matrix was named E.
If n is the system dimension the dimension of matrix Awill be 2n × 2n.
Let λ1, λ2, . . . , λ2n be the eigenvalues for matrix A and V1,V2, . . . ,V2n the correspond-

ing eigenvectors. We write

Q =
[
V1 V2 . . . V2n

]
. (2.12)

The matrix of eigenvectors is clear. By transforming x = Qq, the system is reduced to

q̇ = λq, (2.13)

where

λ =

⎡
⎢⎢⎢⎣

λ1
λ2 0

0
. . .

λ2n

⎤
⎥⎥⎥⎦, λj ∈ C. (2.14)

The equations q̇i = λi qi allow the solutions qi = Ci exp(λi t).
If in the condition det(A − λE) = 0 we plug in λ = 0, we get the condition det A = 0.
As a proof, Developing on rows, we get finally

detA = (−1)n det
(
M−1K

)
= (−1)n detM−1 detK = 0, (2.15)

because K is singular.
We will show in what follows that A allows another eigenvalue 0. If an eigenvalue λ1

is known, matrix A can be reduced to a matrix of dimension (2n − 1) × (2n − 1) which has
2n − 1 eigenvalues equal to the eigenvalues of A where λ1 has been eliminated. It is known
[19] that matrix B = T−1AT has the same eigenvalues as A, but the eigenvectors are

V′ = T−1V. (2.16)
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Then, if a matrix B has the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
... b12 · · · b1n

· · · ... · · · · · · · · · · · ·
... b22 · · · b2n

0
...
... bn2 · · · bnn=

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
λ1

... B12

· · · · · · · · ·
0

... B22

⎤
⎥⎥⎦ (2.17)

with

B22 =

⎡
⎢⎢⎣

b22 . . . b2n

bn2 . . . bnn

⎤
⎥⎥⎦; B12 =

[
b12 . . . b1n

]
, (2.18)

then the problem of eigenvalues

det(B22 − λE) = 0 (2.19)

is to be written (λ − λ1)det(B22 − λE) = 0 resuming to determine the eigenvalues of B22.
It is checked by direct computation that the transformation T is as follows:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... 0

... · · · · · · · · ·

...

V
... E2n−1
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · · · · · · · · · · · · ·
e2

...

e3
... E2n−1

...
...

e2n
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.20)

By simple computation, we get

T−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · ... · · · · · · · · · · · ·
−e2

...

−e3
... E2n−1
...

−e2n
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.21)
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It results in the possibility of avoiding the computation of the eigenvalues for matrix
A with det A = 0, considering the fact that we know an eigenvalue λ1 = 0, and, by the
transformation presented, we will compute the other eigenvalues as eigenvalues of B22.

For λ1 = 0, the eigenvector V1 corresponding to matrix A will be computed. We will
have

AV1 = 0 (2.22)

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0n
... En
...
...

· · · · · · · · · · · · ... · · · · · · · · ·
...

−M−1K
... −M−1C
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
e2
...
en
· · ·
en1
...

e2n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
...
...
...
...
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(
2.22′
)

The n first rows give us en+1 = 0; en+2 = 0, . . . , e2n = 0.
Using these results, the other n rows give us

⎡
⎢⎢⎢⎢⎣

...

−M−1K
... −M−1C
...

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
e2
...
en
· · ·
0
...
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0. (2.23)

or, carrying out the multiplications of the matrix blocks,

⎡
⎣ −M−1K

⎤
⎦

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e1
e2
...
en

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= 0.
(
2.23′
)
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The result will be that the first n components of the eigenvector are components of the vector
corresponding to value λ1 = 0 for matrix −M−1K which characterizes the system

MΔ̈ +KΔ = 0. (2.24)

With these components, we build

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · · · · · · · · · · · · ·
e2

...
...

...

en
...

· · · ... E2n−1
...

0
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · · · · · · · · · · · · ·
−e2

...
...

...

−en
...

· · · ... E 2n−1
...

0
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.25)

where e1 = 1. We compute B = T−1AT.
Consider

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 01x(n−1)

· · · · · · · · · · · · · · ·
−e2

...
...

...

−en
...

· · · ... E2n−1
...

0
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

...

0n×1
... En
...
...

· · · ... · · ·
...

−M−1K
... −M−1C
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · · · · · · · · · · · · ·
e2

...
...

...

en
...

· · · ... E2n−1
...

0
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
... 0

· · · · · · · · · · · · · · ·
−e2

...
...

...

−en
...

· · · ... E2n−1
...

0
...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

0
... En
...
...

· · · · · · · · · · · · · · ·
0

...
... [α∗]

... −M−1C
...

...

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... 1

... −e2 1

0n×n
... −e3 1
...

... · · ·
... −en 1

· · · · · · · · · ... · · · · · · · · · · · · · · ·
0n× 1

... [α∗]
... −M−1C

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.26)

where [α∗] is the matrix having the dimensions 2n×(2n−1). It is obtained from −M−1K having
the dimension 2n × 2n by eliminating the first column.

We have

B22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... −e2 1

... −e3 0 1

0
...

...
. . .

... −en · · · 1

...

· · · · · · · · · ... · · · · · · · · · · · · · · ·
[α∗]

... −M−1C

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... −e2 1

... −e3
0

...
...

. . .
... −en 1

· · · · · · · · · ... · · · · · · · · · · · ·
...

[α∗]
... C1 C2 Cn
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.27)

where the matrix columns −M−1C have been named C1,C2, . . . ,Cn.
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By developing the matrix determinant B22 on rows, we obtain

detB22 = (−1)ne2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... 0 1

... 0

0
...

...
. . .

... 0 1

· · · · · · · · · ... · · · · · · · · · · · ·
...

[α∗]
... C1 C2 Cn
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+(−1)n ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

... −e3 1

... −e4
0

...
...

. . .
... −en 1

· · · · · · · · · ... · · · · · · · · · · · ·
...

[α∗]
... C1 C2 Cn
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= e2 det
[
α∗ ... C2

]
+ e3 det

[
α∗ ... C3

]
+ · · · + en det

[
α∗ ... Cn

]
+ e1 det

[
α∗ ... C1

]

= det
[
[α∗]

... e1C1 + e2C2 + · · · + enCn

]

(2.28)

(we took into account that e1 = 1).
The following relation has been considered:

det AB = det A det B. (2.29)

We have

1 = det

⎡
⎢⎢⎢⎣

1 0
1

. . .
0 1

⎤
⎥⎥⎥⎦ = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e1

0

1
e2

. . .

0
1
en

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

e1 0
e2

. . .
0 en

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.30)

Taking into account the previous relation, we may write

detB22

=det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e1

0

1
e2

. . .

0
1
en

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

e1 0
e2

. . .
0 en

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

det

⎡
⎢⎢⎢⎢⎣

...

α∗ ... e1C1 + e2C2 + · · · + enCn
...

⎤
⎥⎥⎥⎥⎦
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=det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e1

0

1
e2

. . .

0
1
en

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α∗
L1
e1

... e21C11 + e1e2C12 + · · · + e1enC1n

α∗
L2
e2

... e1e2C21 + e22C22 + · · · + e2enC2n

...

α∗
Ln
en

... e1enCn1 + ene2Cn2 + · · · + e2nCn2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(2.31)

since

α∗
L1
e1 + α∗

L2
e2 + · · · + α∗

Ln
en = {V1}T

[
V2 V3 · · · Vn

]
= 0,

(
e21c11 + e2e1c12 + · · · + ene1cn1

)
+
(
e2e1c21 + e22c22 + · · · + e2encn2

)

+ · · · +
(
ene1cn1 + ene2cn2 + · · · + e2ncnn

)

=
∑
i,j

eiej
(
cij + cji

)
= 0,

(
cij = −cji

)
.

(2.32)

with α∗
L1
, α∗

L2
, . . . , α∗

Ln
, the lines 1, 2, . . . , n of the matrix α∗ have been named. It results in

detB22 = 0, thus, the matrix B22 has a null eigenvalue. Matrix B will have two null
eigenvalues.

To these two eigenvalues corresponds the nonharmonic solution q = C1t + C2 which
will represent the rigid motion of the multibody system in a first approximation (C1 and C2

are integration constants). The other values are different from null for a multibody system
with only one degree of mobility generally being different from each other.

3. Conclusions

The paper presents a few properties of motion equations in the case of mechanical systems
having elastic elements. The properties are due to the existence of the skew-symmetric matrix
C, by which the relative motion of nodal coordinates is manifested in case of applying the
finite element method by the Coriolis effects. These properties allow a qualitative analysis
of the obtained motion equations. Thus, the Coriolis effects due to the relative motions will
determine a modification (generally small) of the systems eigenvalues. The Coriolis damping
is not dissipative, meaning that the systems energy is not being influenced by the terms in
which the skew-symmetric matrix C occurs. The last conclusion is that in case of modeling
with the finite element method, the rigid motion, considered in a first approximation an a
uniform motion of the system, can be eliminated from the motion equations written.

This fact also suggests the incremental solution of the problem on small periods of
time in which the motion may be considered as “frozen” or uniform.
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