
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 629149, 13 pages
doi:10.1155/2012/629149

Research Article
On Multivalued Nonexpansive Mappings
in R-Trees

K. Samanmit and B. Panyanak

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Correspondence should be addressed to B. Panyanak, banchap@chiangmai.ac.th

Received 25 April 2012; Accepted 20 June 2012

Academic Editor: Hong-Kun Xu

Copyright q 2012 K. Samanmit and B. Panyanak. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The relationships between nonexpansive, weakly nonexpansive, ∗-nonexpansive, proximally non-
expansive, proximally continuous, almost lower semicontinuous, and ε-semicontinuousmappings
in R-trees are studied. Convergence theorems for the Ishikawa iteration processes are also dis-
cussed.

1. Introduction

A mapping t on a subset E of a Banach space (X, ‖ · ‖) is said to be nonexpansive if

∥
∥t(x) − t

(

y
)∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ E. (1.1)

A point x in E is called a fixed point of t if x = t(x). The existence of fixed points for non-
expansive mappings in Banach spaces was studied independently by three authors in 1965
(see Browder [1], Göhde [2], and Kirk [3]). They showed that every nonexpansive mapping
defined on a bounded closed convex subset of a uniformly convex Banach space always has a
fixed point. Since then many researchers generalized the concept of nonexpansive mappings
in different directions and also studied the fixed point theory for various types of generalized
nonexpansive mappings.

Browder-Göhde-Kirk’s result was extended to multivalued nonexpansive mappings
by Lim [4] in 1974. Husain and Tarafdar [5] and Husain and Latif [6] introduced the con-
cepts of weakly nonexpansive and ∗-nonexpansive multivalued mappings and studied the
existence of fixed points for such mappings in uniformly convex Banach spaces. In 1991, Xu
[7] pointed out that a weakly nonexpansive multivalued mapping must be nonexpansive
and thus the main results of Husain-Tarafdar and Husain-Latif on weakly nonexpansive
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multivalued mappings are special cases of those of Lim [4]. Xu [7] also showed that ∗-non-
expansiveness is different from nonexpansiveness for multivalued mappings. In 1995, Lopez
Acedo and Xu [8] introduced the concept of proximally nonexpansive multivaluedmappings
and proved that it coincides with the concept of ∗-nonexpansive mappings when the map-
pings take compact values.

In 2009, Shahzad and Zegeye [9] proved strong convergence theorems of the Ishikawa
iteration for quasi-nonexpansive multivalued mappings satisfying the endpoint condition.
They also constructed a modified Ishikawa iteration for proximally nonexpansive mappings
and proved strong convergence theorems of the proposed iteration without the endpoint
condition. Puttasontiphot [10] gave the analogous results of Shahzad and Zegeye in complete
CAT(0) spaces. However, there is not any result in linear or nonlinear spaces concerning
the convergence of Ishikawa iteration for quasi-nonexpansive multivalued mappings which
completely removes the endpoint condition.

In this paper, motivated by the above results, we obtain the relationships between non-
expansive, weakly nonexpansive, ∗-nonexpansive, and proximally nonexpansive mappings
in a nice subclass of CAT(0) spaces, namely, R-trees. We also introduce a condition on map-
pings which is muchmore general than the endpoint condition and prove strong convergence
theorems of a modified Ishikawa iteration for quasi-nonexpansive multivalued mappings
satisfying such condition.

2. Preliminaries

Let (X, d) be a metric space and let ∅/=E ⊆ X, x ∈ X. The distance from x to E is defined by

dist(x, E) = inf
{

d
(

x, y
)

: y ∈ E
}

. (2.1)

The set E is called proximal if for each x ∈ X, there exists an element y ∈ E such that d(x, y) =
dist(x, E). Let ε > 0 and x0 ∈ X. We will denote the open ball centered at x0 with radius ε
by B(x0, ε), the closed ε-hull of E by Nε(E) = {x ∈ X : dist(x, E) ≤ ε}, and the family of
nonempty subsets of E by 2E. Let H(·, ·) be the Hausdorff distance on 2E, that is,

H(A,B) = max

{

sup
a∈A

dist(a, B), sup
b∈B

dist(b,A)

}

, A, B ∈ 2E. (2.2)

Let T : E → 2E be a multivalued mapping. For each x ∈ E, we let

PT(x)(x) := {u ∈ T(x) : d(x, u) = dist(x, T(x))}. (2.3)

In the case of PT(x)(x) is a singleton; we will assume, without loss of generality, that PT(x)(x)
is a point in E. A point x ∈ E is called a fixed point of T if x ∈ T(x). A point x ∈ E is called an
endpoint of T if x is a fixed point of T and T(x) = {x}. We will denote by Fix(T) the set of all
fixed points of T and by End(T) the set of all endpoints of T . We see that for each mapping
T , End(T) ⊆ Fix(T) and the converse is not true in general. A mapping T is said to satisfy the
endpoint condition if End(T) = Fix(T).
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Definition 2.1. Let E be a nonempty subset of a metric space (X, d) and T : E → 2E. Then T is
said to be

(i) nonexpansive ifH(T(x), T(y)) ≤ d(x, y) for all x, y ∈ E;

(ii) quasi-nonexpansive if Fix(T)/= ∅ and

H
(

T(x), T
(

p
)) ≤ d

(

x, p
) ∀x ∈ E, p ∈ Fix(T); (2.4)

(iii) weakly nonexpansive if for each x, y ∈ E and ux ∈ T(x), there exists uy ∈ T(y) such
that

d
(

ux, uy

) ≤ d
(

x, y
)

; (2.5)

(iv) ∗-nonexpansive if for each x, y ∈ E and ux ∈ PT(x)(x), there exists uy ∈ PT(y)(y) such
that

d
(

ux, uy

) ≤ d
(

x, y
)

; (2.6)

(v) proximally nonexpansive if the map F : E → 2E defined by F(x) := PT(x)(x) is non-
expansive;

(vi) proximally continuous if the map F(x) := PT(x)(x) is continuous;

(vii) almost lower semicontinuous if given ε > 0, for each x ∈ E there is an open neighbor-
hood U of x such that

⋂

y∈U
Nε

(

T
(

y
))

/= ∅; (2.7)

(viii) ε-semicontinuous if given ε > 0, for each x ∈ E there is an open neighborhoodU of x
such that

T
(

y
) ∩Nε(T(x))/= ∅ ∀y ∈ U. (2.8)

The following facts can be found in [7, 8].

Proposition 2.2. Let E be a nonempty subset of a metric space (X, d) and T : E → 2E be a multi-
valued mapping. Then the following statements hold:

(i) if T is weakly nonexpansive, then T is nonexpansive;

(ii) if T is ∗-nonexpansive and T takes nonempty proximal values, then T is proximally non-
expansive;

(iii) the converses of (i) and (ii) hold if T takes compact values.
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For any pair of points x, y in a metric space (X, d), a geodesic path joining these points
is an isometry c from a closed interval [0, l] to X such that c(0) = x and c(l) = y. The image of
c is called a geodesic segment joining x and y. If there exists exactly one geodesic joining x and
y we denote by [x, y] the geodesic joining x and y. For x, y ∈ X and α ∈ [0, 1], we denote the
point z ∈ [x, y] such that d(x, z) = αd(x, y) by (1 − α)x ⊕ αy. The space (X, d) is said to be a
geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset E of X is
said to be convex if E includes every geodesic segment joining any two of its points, and E is
said to be gated if for any point x /∈ E there is a unique point yx such that for any z ∈ E,

d(x, z) = d
(

x, yx

)

+ d
(

yx, z
)

. (2.9)

The point yx is called the gate of x in E. From the definition of yx we see that it is also the
unique nearest point of x in E. The set E is called geodesically bounded if there is no geodesic
ray in E, that is, an isometric image of [0,∞). We will denote by P(E) the family of nonempty
proximinal subsets of E, by CC(E) the family of nonempty closed convex subsets of E, and
byKC(E) the family of nonempty compact convex subsets of E.

Definition 2.3. An R-tree (sometimes called metric tree) is a geodesic metric space X such that:

(i) there is a unique geodesic segment [x, y] joining each pair of points x, y ∈ X;

(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

By (i) and (ii) we have

(i) if u, v,w ∈ X, then [u, v] ∩ [u,w] = [u, z] for some z ∈ X.

An R-tree is a special case of a CAT(0) space. For a thorough discussion of these spaces
and their applications, see [11]. Notice also that a metric space X is a complete R-tree if and
only ifX is hyperconvex with unique metric segments, see [12]. For more about hyperconvex
spaces and fixed point theorems in hyperconvex spaces, see [13]. We now collect some basic
properties of R-trees.

Lemma 2.4. Let X be a complete R-tree. Then the following statements hold:

(i) [14, page 1048] the gate subsets of X are precisely its closed and convex subsets;

(ii) [11, page 176] if E is a closed convex subset ofX, then, for each x ∈ X, there exists a unique
point PE(x) ∈ E such that

d(x, PE(x)) = dist(x, E); (2.10)

(iii) [11, page 176] if E is closed convex and if x′ belong to [x, PE(x)], then PE(x′) = PE(x);

(iv) [15, Lemma 3.1] if A and B are closed convex subsets of X, then, for any u ∈ X,

d(PA(u), PB(u)) ≤ H(A,B); (2.11)
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(v) [16, Lemma 3.2] if E is closed convex, then, for any x, y ∈ X, one has either

PE(x) = PE

(

y
)

(2.12)

or

d
(

x, y
)

= d(x, PE(x)) + d
(

PE(x), PE

(

y
))

+ d
(

PE

(

y
)

, y
)

; (2.13)

(vi) [17, Lemma 2.5] if x, y, z ∈ X and α ∈ [0, 1], then

d2((1 − α)x ⊕ αy, z
) ≤ (1 − α)d2(x, z) + αd2(y, z

) − α(1 − α)d2(x, y
)

; (2.14)

(vii) [18, Proposition 1] if E is a closed convex subset of X and T : E → CC(E) is a quasi-non-
expansive mapping, then Fix(T) is closed and convex.

3. Results in R-Trees

In general metric spaces, the concepts of nonexpansive and ∗-nonexpansive multivalued
mappings are different (see Examples 5.1 and 5.2). But, if we restrict ourself to an R-tree we
can show that every nonexpansive mapping with nonempty closed convex values is a ∗-non-
expansive mapping. The following lemma is very crucial.

Lemma 3.1. Let E be a nonempty closed convex subset of a complete R-tree X and v /∈ E. If v ∈
[PE(v), u] for some u ∈ X, then PE(v) = PE(u).

Proof. By Lemma 2.4(iii), PE(x) = PE(v) for all x ∈ [PE(v), v]. Then for z ∈ E, we have

d(z, x) = d(z, PE(v)) + d(PE(v), x) ∀x ∈ [PE(v), v]. (3.1)

This implies that PE(v) is the gate of z in [PE(v), v] for all z ∈ E. Since v ∈ [PE(v), u], then v
is the gate of u in [PE(v), v]. By Lemma 2.4(v), for each z ∈ E we have

d(u, z) = d(u, v) + d(v, PE(v)) + d(PE(v), z)

= d(u, PE(v)) + d(PE(v), z)

≥ d(u, PE(v)).

(3.2)

Hence PE(v) = PE(u) as desired.

Proposition 3.2. Let E be a nonempty subset of a complete R-tree X and T : E → 2E be a multi-
valued mapping. If T takes closed and convex values, then the following statements hold:

(i) T is weakly nonexpansive if and only if T is nonexpansive;

(ii) T is ∗-nonexpansive if and only if T is proximally nonexpansive;

(iii) if T is nonexpansive, then T is proximally nonexpansive;
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(iv) if T is proximally nonexpansive, then T is proximally continuous;

(v) if T is proximally continuous, then T is almost lower semicontinuous;

(vi) if T is almost lower semicontinuous, then T is ε-semicontinuous.

Proof. (i) (⇒) Follows from Proposition 2.2(i). (⇐): let x, y ∈ E and ux ∈ T(x). Choose uy =
PT(y)(ux). Then

d
(

ux, uy

)

= dist
(

ux, T
(

y
))

≤ H
(

T(x), T
(

y
))

≤ d
(

x, y
)

.

(3.3)

(ii) (⇒) Follows from Proposition 2.2(ii). (⇐): for each x ∈ E, we let ux = PT(x)(x).
Then

d
(

ux, uy

)

= d
(

PT(x)(x), PT(y)
(

y
)) ≤ d

(

x, y
)

. (3.4)

This means T is ∗-nonexpansive.
(iii)We let x, y ∈ E and divide the proof to 3 cases.
Case 1. PT(x)(x), PT(y)(y) ∈ [x, y]. Then d(PT(x)(x), PT(y)(y)) ≤ d(x, y).
Case 2. PT(x)(x) /∈ [x, y], PT(y)(y) ∈ [x, y] or vice versa. Let u ∈ [PT(y)(y), y]. Then by

Lemma 2.4(iii), PT(y)(y) = PT(y)(u). We claim that PT(x)(x) = PT(x)(u). Let v be the gate of
PT(x)(x) in [x, y]. Then v /=PT(x)(x). Since v ∈ [x, PT(x)(x)], then by Lemma 2.4(iii) we have
PT(x)(v) = PT(x)(x). This implies that v ∈ [PT(x)(v), u]. Since v /∈ T(x), by Lemma 3.1 we have

PT(x)(x) = PT(x)(v) = PT(x)(u). (3.5)

By Lemma 2.4(iv),

d
(

PT(x)(x), PT(y)
(

y
))

= d
(

PT(x)(u), PT(y)(u)
)

≤ H
(

T(x), T
(

y
))

≤ d
(

x, y
)

.

(3.6)

Case 3. PT(x)(x) /∈ [x, y] and PT(y)(y) /∈ [x, y]. Let v and w be the gates of PT(x)(x) and
PT(y)(y) in [x, y], respectively. Since v ∈ [PT(x)(x), x] and w ∈ [PT(y)(y), y], then

PT(x)(x) = PT(x)(v), PT(y)
(

y
)

= PT(y)(w). (3.7)

Let u ∈ [v,w]. Then by Lemma 3.1, we have

PT(x)(v) = PT(x)(u), PT(y)(w) = PT(y)(u). (3.8)
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By (3.7), we have

PT(x)(x) = PT(x)(u), PT(y)
(

y
)

= PT(y)(u). (3.9)

By Lemma 2.4(iv),

d
(

PT(x)(x), PT(y)
(

y
))

= d
(

PT(x)(u), PT(y)(u)
)

≤ H
(

T(x), T
(

y
))

≤ d
(

x, y
)

.

(3.10)

(iv) Follows from the fact that nonexpansiveness implies continuity.
(v) Given ε > 0 and let x0 ∈ E. Since the map F(x) = PT(x)(x) is single valued contin-

uous, then there exists δ > 0 such that

d
(

PT(x)(x), PT(x0)(x0)
)

< ε ∀x ∈ B(x0, δ). (3.11)

Let U = B(x0, δ). ThenU is an open neighborhood of x0. Since

dist
(

PT(x0)(x0), T(x)
) ≤ d

(

PT(x0)(x0), PT(x)(x)
)

< ε ∀x ∈ U, (3.12)

then

PT(x0)(x0) ∈
⋂

x∈U
Nε(T(x)). (3.13)

Therefore, T is almost lower semicontinuous.
(vi) See [19, page 114].

The following result can be found in [19, Theorem 4].

Proposition 3.3. LetX be a completeR-tree,E a nonempty closed convex geodesically bounded subset
of X, and T : E → CC(E) an ε-semicontinuous mapping. Then T has a fixed point.

As a consequence of Propositions 3.2 and 3.3, we obtain the following.

Corollary 3.4. Let E be a nonempty closed convex geodesically bounded subset of a complete R-tree
X and T : E → CC(E) be a multivalued mapping. Then T has a fixed point if one of the following
statements holds:

(i) T is weakly nonexpansive;

(ii) T is nonexpansive;

(iii) T is ∗-nonexpansive;
(iv) T is proximally nonexpansive;

(v) T is proximally continuous;

(vi) T is almost lower semicontinuous.
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4. Convergence Theorems

Let E be a nonempty convex subset of an R-treeX,T : E → P(E) a multivalued mapping and
{αn},{βn} ⊆ [0, 1].

(A) The sequence of Ishikawa iterates [9] is defined by x1 ∈ E,

yn = βnzn ⊕
(

1 − β
)

xn, n ≥ 1, (4.1)

where zn ∈ PT(xn)(xn), and

xn+1 = αnz
′
n ⊕ (1 − αn)xn, n ≥ 1, (4.2)

where z′n ∈ PT(yn)(yn).
Recall that a multivalued mapping T : E → P(E) is said to satisfy Condition (I) if there

is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such
that

dist(x, T(x)) ≥ f(dist(x,Fix(T))) ∀x ∈ E. (4.3)

The mapping T is called hemicompact if for any sequence {xn} in E such that

lim
n→∞

dist(xn, T(xn)) = 0, (4.4)

there exists a subsequence {xnk} of {xn} and q ∈ E such that limk→∞xnk = q.
The following theorems are consequences of [10, Theorems 3.6 and 3.7].

Theorem 4.1. Let X be a complete R-tree, E a nonempty closed convex subset of X, and T : E →
P(E) a proximally nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates defined
by (A). Assume that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1). Then {xn} converges to a
fixed point of T .

Theorem 4.2. Let X be a complete R-tree, E a nonempty closed convex subset of X, and T : E →
P(E) a proximally nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates defined
by (A). Assume that T is hemicompact and (i) 0 ≤ αn, βn < 1; (ii) βn → 0; (iii)

∑
αnβn = ∞. Then

{xn} converges to a fixed point of T .

As consequences of Proposition 3.2, Theorems 4.1 and 4.2, we obtain the following.

Corollary 4.3. Let X be a complete R-tree, E a nonempty closed convex subset of X, and T : E →
CC(E) a nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates defined by (A).
Assume that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1). Then {xn} converges to a fixed point
of T .

Corollary 4.4. Let X be a complete R-tree, E a nonempty closed convex subset of X, and T : E →
CC(E) a nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates defined by (A).
Assume that T is hemicompact and (i) 0 ≤ αn, βn < 1; (ii) βn → 0 and (iii)

∑
αnβn = ∞. Then {xn}

converges to a fixed point of T .
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Definition 4.5. Let E be a nonempty subset of a complete R-tree and T : E → CC(E) be
a multivalued mapping for which Fix(T)/= ∅. We say that u ∈ E is a key of T if, for each
x ∈ Fix(T), x is the gate of u in T(x). We say that T satisfies the gate condition if T has a key in
E.

It follows from the definitions that the endpoint condition implies the gate condition
and the converse is not true. Example 5.3 shows that there is a nonexpansive mapping satis-
fying the gate condition but does not satisfy the endpoint condition.

Motivated by the above results, we introduce a modified Ishikawa iteration as follows:
let E be a nonempty convex subset of an R-tree X, T : E → CC(E) a multivalued mapping,
and {αn}, {βn} ⊆ [0, 1]. Fix u ∈ E.

(B) The sequence of Ishikawa iterates is defined by x1 ∈ E,

yn = βnzn ⊕
(

1 − βn
)

xn, n ≥ 1, (4.5)

where zn is the gate of u in T(xn), and

xn+1 = αnz
′
n ⊕ (1 − αn)xn, n ≥ 1, (4.6)

where z′n is the gate of u in T(yn).
Recall that a sequence {xn} in a metric space (X, d) is said to be Fejér monotone with

respect to a subset E of X if

d
(

xn+1, p
) ≤ d

(

xn, p
) ∀p ∈ E, n ≥ 1. (4.7)

The following fact can be found in [20].

Proposition 4.6. Let (X, d) be a complete metric space, E be a nonempty closed subset of X, and
{xn} be Fejér monotone with respect to E. Then {xn} converges to some p ∈ E if and only if
limn→∞ dist(xn, E) = 0.

Lemma 4.7. Let E be a nonempty closed convex subset of a complete R-tree X and T : E → CC(E)
be a quasi-nonexpansive mapping satisfying the gate condition. Let u be a key of T and let {xn}
be the Ishikawa iterates defined by (B). Then {xn} is Fejér monotone with respect to Fix(T) and
limn→∞d(xn, p) exists for each p ∈ Fix(T).

Proof. Let p ∈ Fix(T). For each n, we have

d
(

yn, p
)

= d
(

βnzn ⊕
(

1 − βn
)

xn, p
)

≤ βnd
(

zn, p
)

+
(

1 − βn
)

d
(

xn, p
)

= βnd
(

PT(xn)(u), PT(p)(u)
)

+
(

1 − βn
)

d
(

xn, p
)

≤ βnH
(

T(xn), T
(

p
))

+
(

1 − βn
)

d
(

xn, p
)

≤ βnd
(

xn, p
)

+
(

1 − βn
)

d
(

xn, p
)

≤ d
(

xn, p
)

,

(4.8)
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d
(

xn+1, p
)

= d
(

αnz
′
n ⊕ (1 − αn)xn, p

)

≤ αnd
(

z′n, p
)

+ (1 − αn)d
(

xn, p
)

= αnd
(

PT(yn)(u), PT(p)(u)
)

+ (1 − αn)d
(

xn, p
)

≤ αnH
(

T
(

yn

)

, T
(

p
))

+ (1 − αn)d
(

xn, p
)

≤ αnd
(

yn, p
)

+ (1 − αn)d
(

xn, p
)

≤ d
(

xn, p
)

.

(4.9)

This shows that {xn} is Fejér monotone with respect to Fix(T). Notice from (4.9) that
d(xn, p) ≤ d(x1, p) for all n ≥ 1. This implies that {d(xn, p)}∞n=1 is bounded and decreasing.
Hence limn→∞d(xn, p) exists.

Theorem 4.8. Let E be a nonempty closed convex subset of a complete R-treeX and T : E → CC(E)
be a quasi-nonexpansive mapping satisfying the gate condition. Let u be a key of T and let {xn} be
the Ishikawa iterates defined by (B). Assume that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1).
Then {xn} converges to a fixed point of T .

Proof. Let p ∈ Fix(T). By Lemma 2.4(vi), we have

d2(xn+1, p
)

= d2(αnz
′
n ⊕ (1 − αn)xn, p

)

≤ (1 − αn)d2(xn, p
)

+ αnd
2(z′n, p

) − αn(1 − αn)d2(xn, z
′
n

)

= (1 − αn)d2(xn, p
)

+ αnd
2(PT(yn)(u), PT(p)(u)

) − αn(1 − αn)d2(xn, z
′
n

)

≤ (1 − αn)d2(xn, p
)

+ αnH
2(T

(

yn

)

, T
(

p
)) − αn(1 − αn)d2(xn, z

′
n

)

≤ (1 − αn)d2(xn, p
)

+ αnd
2(yn, p

)

,

d2(yn, p
)

= d2(βnzn ⊕
(

1 − βn
)

xn, p
)

≤ (

1 − βn
)

d2(xn, p
)

+ βnd
2(zn, p

) − βn
(

1 − βn
)

d2(xn, zn)

=
(

1 − βn
)

d2(xn, p
)

+ βnd
2(PT(xn)(u), PT(p)(u)

) − βn
(

1 − βn
)

d2(xn, zn)

≤ (

1 − βn
)

d2(xn, p
)

+ βnH
2(T(xn), T

(

p
)) − βn

(

1 − βn
)

d2(xn, zn)

≤ (

1 − βn
)

d2(xn, p
)

+ βnd
2(xn, p

) − βn
(

1 − βn
)

d2(xn, zn)

≤ d2(xn, p
) − βn

(

1 − βn
)

d2(xn, zn)

≤ d2(xn, p
) − βn

(

1 − βn
)

d2(xn, zn).

(4.10)

Thus, by (4.10) we have

d2(xn+1, p
) ≤ (1 − αn)d2(xn, p

)

+ αnd
2(xn, p

) − αnβn
(

1 − βn
)

d2(xn, zn). (4.11)
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This implies that

a2(1 − b)d2(xn, zn) ≤ αnβn
(

1 − βn
)

d2(xn, zn) ≤ d2(xn, p
) − d2(xn+1, p

)

(4.12)

and so

∞∑

n=1

a2(1 − b)d2(xn, zn) < ∞. (4.13)

Thus, limn→∞d2(xn, zn) = 0. Also dist(xn, T(xn)) ≤ d(xn, zn) → 0 as n → ∞. Since T satisfies
condition (I), we have limn→∞d(xn,Fix(T)) = 0. By Lemma 4.7, {xn} is Fejér monotone with
respect to Fix(T). The conclusion follows from Proposition 4.6.

As a consequence of Proposition 3.2 and Theorem 4.8, we obtain the following.

Corollary 4.9. Let E be a nonempty closed convex subset of a complete R-treeX and T : E → CC(E)
be a nonexpansive mapping satisfying the gate condition. Let u be a key of T and let {xn} be the
Ishikawa iterates defined by (B). Assume that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1).
Then {xn} converges to a fixed point of T .

Theorem 4.10. LetE be a nonempty closed convex subset of a completeR-treeX and T : E → CC(E)
be a quasi-nonexpansive mapping satisfying the gate condition. Let u be a key of T and let {xn} be the
Ishikawa iterates defined by (B). Assume that T is hemicompact and continuous and (i) 0 ≤ αn, βn < 1;
(ii) βn < 1 and (iii)

∑
αnβn = ∞. Then {xn} converges strongly to a fixed point of T .

Proof. As in the proof of Theorem 4.8, we obtain

lim
n→∞

dist(xn, T(xn)) = 0. (4.14)

Since T is hemicompact, there is a subsequence {xnk} of {xn} such that xnk → q for some q ∈
E. Since T is continuous, then

dist
(

q, T
(

q
)) ≤ d

(

q, xnk

)

+ dist(xnk , T(xnk)) +H
(

T(xnk), T
(

q
)) −→ 0 as k −→ ∞. (4.15)

This implies that q ∈ T(q). By Lemma 4.7, limn→∞d(xn, q) exists and hence q is the limit of
{xn} itself.

Corollary 4.11. Let E be a nonempty closed convex subset of a complete R-tree X and T : E →
CC(E) be a nonexpansive mapping satisfying the gate condition. Let u be a key of T and let {xn} be
the Ishikawa iterates defined by (B). Assume that T is hemicompact and (i) 0 ≤ αn, βn < 1; (ii) βn < 1;
(iii)

∑
αnβn = ∞. Then {xn} converges strongly to a fixed point of T .
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5. Examples

Example 5.1 (see [7] (A nonexpansive mapping which is not ∗-nonexpansive)). Let E be the
triangle in the Euclidean plane with vertexes O(0, 0), A(1, 0), B(0, 1). Let T : E → KC(E) be
given by

T
(

x, y
)

= the segment joining (0, 1) and (x, 0). (5.1)

Then for each (x1, y1), (x2, y2) ∈ E, we have

H
(

T
(

x1, y1
)

, T
(

x2, y2
))

= |x1 − x2| ≤ d
((

x1, y1
)

,
(

x2, y2
))

. (5.2)

Therefore, T is nonexpansive.
For each (x, y) ∈ E, we denote by u(x,y) the point in T(x, y) nearest to (x, y). Thus, for

(x, y) ∈ E with 0 < x, y < 1 we have

∣
∣u(x,y) − u(1,0)

∣
∣ > d

((

x, y
)

, (1, 0)
)

. (5.3)

This implies that T is not ∗-nonexpansive.

Example 5.2 (see [7] (A ∗-nonexpansive mapping which is not nonexpansive)). Let E = [0,∞)
and T : E → KC(E) be defined by

T(x) = [x, 2x] ∀x ∈ E. (5.4)

Then ux = x for every x ∈ E. This implies that T is ∗-nonexpansive. However, we have

H
(

T(x), T
(

y
))

= H
(

[x, 2x],
[

y, 2y
])

= 2
∣
∣x − y

∣
∣. (5.5)

This shows that T is not nonexpansive.

Example 5.3. Let E = [0, 1] and T : E → CC(E) be defined by T(x) = [0, x] for x ∈ E. Then
H(T(x), T(y)) = |x − y| for all x, y ∈ E. This implies that T is nonexpansive. We see that
Fix(T) = [0, 1] and u = 1 is a key of T . Since End(T) = {0}, then T does not satisfy the end-
point condition.

6. Questions

It is not clear that the gate condition in Theorems 4.8 and 4.10 can be omitted. We finish the
paper with the following questions.

Question 1. Let E be a nonempty closed convex subset of a complete R-tree X and T : E →
CC(E) be a quasi-nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates
defined by (B). Assume that T satisfies condition (I) and αn, βn ∈ [a, b] ⊂ (0, 1). Does {xn}
converge to a fixed point of T?
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Question 2. Let E be a nonempty closed convex subset of a complete R-tree X and T : E →
CC(E) be a quasi-nonexpansive mapping with Fix(T)/= ∅. Let {xn} be the Ishikawa iterates
defined by (B). Assume that T is hemicompact and continuous and (i) 0 ≤ αn, βn < 1; (ii) βn <
1; (iii)

∑
αnβn = ∞. Does {xn} converge to a fixed point of T?
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[2] D. Göhde, “Zum Prinzip der kontraktiven Abbildung,” Mathematische Nachrichten, vol. 30, pp. 251–
258, 1965.

[3] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances,” The American
Mathematical Monthly, vol. 72, pp. 1004–1006, 1965.

[4] T. C. Lim, “A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex
Banach space,” Bulletin of the American Mathematical Society, vol. 80, pp. 1123–1126, 1974.

[5] T. Husain and E. Tarafdar, “Fixed point theorems for multivalued mappings of nonexpansive type,”
Yokohama Mathematical Journal, vol. 28, no. 1-2, pp. 1–6, 1980.

[6] T. Husain and A. Latif, “Fixed points of multivalued nonexpansive maps,” Mathematica Japonica, vol.
33, no. 3, pp. 385–391, 1988.

[7] H. K. Xu, “On weakly nonexpansive and ∗-nonexpansive multivalued mappings,” Mathematica Japo-
nica, vol. 36, no. 3, pp. 441–445, 1991.

[8] G. Lopez Acedo andH. K. Xu, “Remarks onmultivalued nonexpansive mappings,” Soochow Journal of
Mathematics, vol. 21, no. 1, pp. 107–115, 1995.

[9] N. Shahzad and H. Zegeye, “On Mann and Ishikawa iteration schemes for multi-valued maps in
Banach spaces,” Nonlinear Analysis A, vol. 71, no. 3-4, pp. 838–844, 2009.

[10] T. Puttasontiphot, “Mann and Ishikawa iteration schemes for multivalued mappings in CAT(0)
spaces,” Applied Mathematical Sciences, vol. 4, no. 61–64, pp. 3005–3018, 2010.

[11] M. Bridson and A. Haefliger,Metric Spaces of Non-Positive Curvature, Springer, Berlin, Germany, 1999.
[12] W. A. Kirk, “Hyperconvexity of R-trees,” Fundamenta Mathematicae, vol. 156, no. 1, pp. 67–72, 1998.
[13] M.A. Khamsi andW. A. Kirk,An Introduction toMetric Spaces and Fixed Point Theory, Pure andApplied

Mathematics, Wiley-Interscience, New York, NY, USA, 2001.
[14] R. Espinola and W. A. Kirk, “Fixed point theorems in R-trees with applications to graph theory,”

Topology and its Applications, vol. 153, no. 7, pp. 1046–1055, 2006.
[15] J. T. Markin, “Fixed points, selections and best approximation for multivalued mappings in R-trees,”

Nonlinear Analysis A, vol. 67, no. 9, pp. 2712–2716, 2007.
[16] A. G. Aksoy and M. A. Khamsi, “A selection theorem in metric trees,” Proceedings of the American

Mathematical Society, vol. 134, no. 10, pp. 2957–2966, 2006.
[17] S. Dhompongsa and B. Panyanak, “On Δ-convergence theorems in CAT(0) spaces,” Computers &

Mathematics with Applications, vol. 56, no. 10, pp. 2572–2579, 2008.
[18] J. T. Markin, “Fixed points for generalized nonexpansive mappings in R-trees,” Computers & Mathe-

matics with Applications, vol. 62, no. 12, pp. 4614–4618, 2011.
[19] B. Piatek, “Best approximation of coincidence points in metric trees,” Annales Universitatis Mariae

Curie-Skodowska A, vol. 62, pp. 113–121, 2008.
[20] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,

Springer, New York, NY, USA, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


