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This paper presents a direct eigenanalysis procedure for multibody system in equilibrium. The
first kind Lagrange’s equation of the dynamics of multibody system is a set of differential algebraic
equations, and the equations can be used to solve the equilibrium of the system. The vibration of
the system about the equilibrium can be described by the linearization of the governing equation
with the generalized coordinates and the multipliers as the perturbed variables. But the multiplier
variables and the generalize coordinates are not in the same dimension. As a result, the system
matrices in the perturbed vibration equations are badly conditioned, and a direct application of
the mature eigensolvers does not guarantee a correct solution to the corresponding eigenvalue
problem. This paper discusses the condition number of the problem and proposes a method for
preconditioning the systemmatrices, then the corresponding eigenvalue problem of the multibody
system about equilibrium can be smoothly solved with standard eigensolver such as ARPACK. In
addition, a necessary frequency shift technology is also presented in the paper. The importance
of matrix conditioning and the effectiveness of the presented method for preconditioning are
demonstrated with numerical examples.

1. Introduction

Modal analysis of multibody system [1, 2] has important application in structure analysis and
modal reductionmethod [3–6]. The eigenanalysis methods for constrainedmultibody system
can bemainly divided into two categories, namely, the eigenanalysis method by transforming
the equations of motion from DAEs to ODEs by selecting independent coordinates [7–
9] and the direct eigenanalysis method [10–12]. Compared with structural systems, the
governing equation of constrained multibody system is differential algebraic equations,
instead of the ordinary differential systems. In the reduction methods, the differential
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algebraic equations of multibody system are reduced into ordinary differential equations for
independent general coordinates, through looking for a set of orthogonal basis of constraint
Jacobian matrix to eliminate the constraints from the system governing equations. The
reduction method is accurate, efficient, and stable provided that the degree of freedom
of the system and the number of constraints are small. However, the reduction method
is considered not suitable for large scale problems due to the spoilage of sparse matrices
[13].

In the direct methods, the nonlinear differential and algebraic equations are simul-
taneously linearized about a given state of the system, that is, the algebraic constraint
equations are kept during the eigenanalysis and the sparsity of system matrices is
preserved. Depending on how the problem is actually formulated, the enlarged mass
matrix may become structurally singular (eigenvalues associated to constraints become
infinite); other approaches may result in a structurally singular enlarged stiffness matrix
(eigenvalues associated to constraints become 0). Usually a frequency shift is applied,
and structurally nonsingular enlarged matrices are resulted. But in most cases, matrices’
condition number of the frequency shifted system is very large and numerical singular
due to the constraints and a corresponding precondition is needed. The root cause for
numerical singularity can be understood by the fact that the dynamic equations and the
Lagrange multipliers carry a dimension of force while the constraint equations and the
general coordinate a dimension of length or angular. The literature [14, 15] suggested
multiplying a parameter to the constraints’ corresponding rows and columns of system
matrices as a preconditioning. The time step integration takes a parameter associate with
time step and integration format to do the precondition. But the eigenanalysis about a static
equilibrium has nothing to do with time integration, and we need to find an appropriate
parameter.

For the direct eigenanalysis of constrained multibody system in static equilibrium,
this paper proposes a procedure and a necessary preconditioning method of system
matrices to guarantee correct eigensolution. This paper is organized as follows. Section 2
schematically describes the formulation of constrained multibody system based on Lagrange
equation with multipliers and the direct eigenvalue problem about equilibrium. Section 3
presented a detailed condition number analysis of the systemmatrices and a preconditioning
scaling technique. Section 4 introduces the selection of eigensolver and numerical exam-
ples.

2. Governing Equations of Multibody System and
the Direct Eigenvalue Problem

The dynamic equations of a general multibody system are usually established with
Lagrange’s equations with multipliers [16]. The system equations are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=
(
∂Φ
∂x

)T

λ + f,

Φ(x) = 0,

(2.1)

where x ∈ R
n is the vector of general coordinates, λ ∈ R

m is the vector of Lagrangemultipliers,
L is the Lagrange function associated with (ẋ, x), f is the vector of general nonconservative
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forces which are functions of (ẋ, x, t), Φ is the vector of constraint functions associated with
(x), and (∂Φ/∂x)Tλ is the vector of generalized constraint forces. Denote

F(ẍ, ẋ, x, t) =
(
− d

dt

(
∂L

∂ẋ

)
+
∂L

∂x
+ f

)
(ẍ, ẋ, x, t),

G(x) =
(
∂Φ(x)
∂x

)T

.

(2.2)

Then (2.1) becomes

F(ẍ, ẋ, x, t) +G(x)λ = 0,

Φ(x) = 0.
(2.3)

The equilibrium state (x0,λ0, t0) satisfies

F(0, 0, x0, t) +G(x0)λ0 = 0,

Φ(x0) = 0.
(2.4)

Assume small vibration about the equilibrium (δẍ, δẋ, x0 + δx,λ0 + δλ, t), then

F(δẍ, δẋ, x0 + δx, t) +G(x0 + δx)(λ0 + δλ) = 0,

Φ(x0 + δx) = 0.
(2.5)

Carry out the Taylor expansion and reserve linear terms, we have

M̂(x0)δÿ + Ĉ(x0)δẏ + K̂(x0,λ0)δy = 0, (2.6)

where M̂(x0) =
[
M(x0) 0

0 0

]
, Ĉ(x0)

[
C(x0) 0
0 0

]
, K̂(x0,λ0) =

[
K(x0,λ0) G(x0)
GT (x0) 0

]
, M(x0) = (∂F/∂ẍ)(x0),

C(x0) = (∂F/∂ẋ)(x0), K(x0,λ0) = (∂(F +Gλ)/∂x)(x0,λ0), δy =
[
δx
δλ

]
.

Write the solution as δy(t) = ertV, where r is one of the eigenvalues, V is the corres-
ponding eigenvector, and the eigenvalue problem is

(
r2M̂ + rĈ + K̂

)
V = 0. (2.7)

A frequency shift is applied to (2.7) by let r = r − α, α ∈ R
+, and then

(
r2M + rC +K

)
V = 0, (2.8)

where M = M̂, K = α2M̂ + αĈ + K̂, C = 2αM̂ + Ĉ. The frequency shift makes us calculate the
eigenvalues about α andmakes sureK’s reversibility (the probability of singular is zero when
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α/= 0) as the system’s energy must be in the form of kinetic energy or deformation energy. The
eigenvalue problem can be transformed into the state space form as the following:

rM̃Y = K̃Y, (2.9)

where Y =
(

y
ry

)
, M̃ =

[
−C −M
I 0

]
, K̃ =

[
K 0
0 I

]
.

3. Ill-Condition in the Matrices of the Perturbed Vibration Equations
and the Preconditioning

Consider the shifted eigenvalue problem (2.8) in the undamped case
[
r2M +K

]
V = 0. (3.1)

It is more convenient to consider the standard eigenvalue problem than the original
generalized one

[
K−1M + r−2I

]
V = 0. (3.2)

As the inverse of matrixK is used, cases in large condition number ofK could make the direct
solution of K−1M result in erroneous eigensolution. As shown in Section 4, the eigenvalue
problems (2.8) obtained by the linearization of the Lagrange equations with multipliers
for practical multibody systems usually encounter serious condition number problem. The
reason mainly lies in the different dimensions of the multiplier variables and constraint
equations with that of generalized coordinates and governing equations.

Inspired by the eigenanalysis method through transforming the equations of motion
from DAEs to ODEs by selecting independent coordinates, we divide the matrix into blocks
and calculate its inverse by Gaussian elimination. Let α2M +K = cD where c = ‖α2M +K‖∞.
Without loss of generality, let the first m (the number of constraints) rows of G be linearly
independent and be denoted as G1 ∈ R

m×m. Divide the matrix as

K =

⎡
⎢⎢⎣
cD11 cD12 G1

cD21 cD22 G2

GT
1 GT

2 0

⎤
⎥⎥⎦, (3.3)

whereD11 ∈ R
m×m,D22 ∈ R

(n−m)×(n−m),D12 ∈ R
m×(n−m),D21 ∈ R

(n−m)×m,G2 ∈ R
(n−m)×m, n is the

number of freedom of general coordinates.
Then

K−1 = c−1

⎡
⎢⎢⎣

G−T
1 GT

2P
−1G2G−1

1 −G−T
1 GT

2P
−1 c

(
G−T

1 +G−T
1 GT

2P
−1R

)
−P−1G2G−1

1 P−1 −cP−1R

c
(
G−1

1 +QP−1G2G−1
1

) −cQP−1 c2
(
QP−1R −N

)

⎤
⎥⎥⎦, (3.4)

where N = G−1
1 D11G−T

1 , P = D22 + G2NGT
2 − D21G−T

1 GT
2 − G2G−1

1 D12, Q = G−1
1 D12 − NGT

2 ,
R = D21G−T

1 −G2N. See appendix for detail of Gaussian elimination.
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Assume

‖N‖∞ ≈
∥∥∥P−1

∥∥∥
∞
≈ ‖Q‖∞ ≈ ‖R‖∞ = O(1). (3.5)

Then it shows ‖K−1‖∞ = O(c) and by taking condition number cond(·) = ‖ · ‖∞‖·−1‖∞

cond
(
K
)
≈ O

(
c2
)
. (3.6)

Equation (3.5) can be expected when the elements of eigenvector of the underlying
ODE system have about the same magnitude, that is, the elastic parameters of the physical
system are about the same magnitude in physical description, and this is often the case. The
elastic parameters mean the Young’ modulus of flexible bodies, stiffness of spring forces, and
so forth.

The condition number of the original system can be changed by scaling the multiplier
variables and constraint equations. Let λ̂ = k−1λ and multiply the constraint equations by k
in (2.1) we have

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= k

(
∂Φ
∂x

)T

λ̂ + f,

kΦ(x) = 0.

(3.7)

The corresponding block matrices are

K =

⎡
⎢⎢⎣
cD11 cD12 kG1

cD21 cD22 kG2

kGT
1 kGT

2 0

⎤
⎥⎥⎦,

K−1 = c−1

⎡
⎢⎢⎣

G−T
1 GT

2P
−1G2G−1

1 −G−T
1 GT

2P
−1 k−1c

(
G−T

1 +G−T
1 GT

2P
−1R

)
−P−1G2G−1

1 P−1 −k−1cP−1R

k−1c
(
G−1

1 +QP−1G2G−1
1

) −k−1cQP−1 k−2c2
(
QP−1R −N

)

⎤
⎥⎥⎦.

(3.8)

Then the condition number analysis shows

cond
(
K
)
≈ O

(
max(k, c) ×max

(
k−1c, k−2c2

))
. (3.9)

Choosing k ≈ c, the estimation of condition number decreases from about O(c2) to about
O(1).

The elements of matrix K stand for the elastic coefficients of the system and the
elements of G and GT work similarly as the stiffness of constraints. Taking K as an enlarged
stiffness matrix, the scaling is equivalent to changing the stiffness of constraints fromO(1) to
the same magnitude of physical stiffness.
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Note that the condition cannot be improved by only scaling multipliers or by only
scaling constraint equations. It is suggested that any different dimension in the procedure of
modeling could lead to bad condition of numerical calculation.

The complete process for direct eigenanalysis of constrained deformable multibody
system is thus as follows.

Step 1. Calculate the static equilibrium (x0,λ0) from (2.4).

Step 2. Calculate M̂, Ĉ, K̂ at (x0,λ0).

Step 3. Precondition K̂ with c which is the maximum absolute element of K̂.

Step 4. Frequency shift with parameter α(1 ∼ 10) with (2.8).

Step 5. Enlarge the matrix into state space as (2.9).

Step 6. Solve the eigenvalues and eigenvectors form (2.9)with eigensolver such as ARPACK.

Step 7. Add α to the eigenvalues and multiply the eigenvector components of Lagrange
multipliers with c.

4. Selection of Eigensolver and Numerical Examples

The famous iteration method Implicitly Restarted Arnoldi Method (IRAM) [17, 18] is used in
the numerical solution of eigenvalue problem (2.9) in the paper. Arnoldi method is one of the
Krylov subspace methods [19] which calculate the largest few eigenvalues of a matrix. The
presented numerical examples have verified the efficiency of IRAM in practical calculation.
The famous parallel sparse linear system solver PARDISO [20, 21] is used to provide K̃−1

of (2.9) in the paper. A cantilever and a four-bar linkage are calculated to illustrate the
effect of the condition number of the system matrix and the effectiveness of the presented
preconditioning method. It is shown that the numerical results are physically meaningless
without scaling and the precondition presented in the paper is very effective.

4.1. A Cantilever

In this example, beam element and 3-dimensional solid element are separately used to model
the cantilever in the multibody frame, as shown in Figure 1. The parameters of the cantilever
are shown in Table 1. The models are computed with the presented direct eigenanalysis
method in two cases, that is, with and without axial tension, and the results are compared
with analytical results based on the mathematical physics, see Tables 2 and 3.

The governing equation and boundary conditions for the single-mode-free vibration
of the cantilever under axial tension is as the following:

EI
d4y

dx4
− F

d2y

dx2
− ρω2y = 0,

y
∣∣
0 = 0

dy

dx

∣∣∣∣
0
= 0

d2y

dx2

∣∣∣∣∣
l

= 0
d3y

dx3

∣∣∣∣∣
l

= a
dy

dx

∣∣∣∣
l

,

(4.1)
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200

F

200

XY

Z

Model 2: cantilever realized with solid elements

Model 1: cantilever realized with beam elements

Figure 1: Two models of cantilever.

Table 1: Parameters for the cantilever.

Item Density Young’s modulus Poisson’s ratio Beta damping Size Area Inertia moment
Value 7860 2.06e11 0 0.0 10∗10∗200 102 (10)4/12
Unit kg/m3 N/m — — m∗m∗m m2 m4

Table 2: Eigenvalues comparison for cantilever (F = 0 Newton).

Frequency
order

Unscaled
model 1

Unscaled
model 2

Euler-Bernoulli
beams Analytical

Scaled model 1 Scaled model 2

value error value error

1st-X 0.15 + 0.43i −0.01 + 0.26i 0.2067i 0.2065i −0.10% 0.2208i 6.82%
1st-Y −0.47 + 0.49i −0.49 + 0.33i 0.2067i 0.2065i −0.10% 0.2208i 6.82%
2nd-X −0.76 + 0.03i −0.38 + 0.95i 1.2957i 1.2906i −0.40% 1.3701i 5.74%
2nd-Y −0.87 + 0.01i −0.73 + 1.35i 1.2957i 1.2906i −0.40% 1.3701i 5.74%
3rd-X −1.45 + 1.17i −0.41 + 1.49i 3.6280i 3.6049i −0.64% 3.7803i 4.20%
3rd-Y −1.44 + 0.38i −2.68 + 0.11i 3. 6280i 3.6049i −0.64% 3.7803i 4.20%
Condition
number 3.9409e + 22 2.3198e + 19 9.3813e + 06 3.4183e + 07

Note: Error = (Algorithm−Analytical)/Analytical.

where x is the material coordinate, y is the lateral vibration displacement mode, E is the
Young’s modulus, I is the sectional moment of inertia, F is the axial tension, ρ is the linear
density, and ω is the circular frequency of vibration. l is the length of the cantilever and a =
F/EI. With the conventional mathematical procedure, characteristic equation for frequency
ω is

[
r21 cosh(r1l) + r22 cos(r2l)

]
{
r31 sinh(r1l) − r32 sin(r2l) + a[−r1 sinh(r1l) − r2 sin(r2l)]

}

=

[
r21 sinh(r1l) + r1r2 sin(r2l)

]
{
r31 cosh(r1l) + r1r

2
2 cos(r2l) + a[−r1 cosh(r1l) − r1 cos(r2l)]

} ,
(4.2)

where b = ρω2/EI, r1 =
√
(
√
a2 + 4b + a)/2, and r2 =

√
(
√
a2 + 4b − a)/2.
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Table 3: Eigenvalues comparison for cantilever (F = 1e10 Newton).

Frequency
order

Unscaled
model 1

Unscaled
model 2

Euler-Bernoulli
beam Analytical

Scaled model 1 Scaled model 2

value error value error

1st-X 0.12 + 0.42i −0.03 + 0.28i 0.2796i 0.2792i −0.14% 0.2906i 3.93%
1st-Y −0.87 + 0.19i −0.16 + 0.60i 0.2796i 0.2792i −0.14% 0.2906i 3.93%
2nd-X −1.14 + 0.05i 0.07 + 1.35i 1.3923i 1.3863i −0.43% 1.4611i 4.94%
2nd-Y 1.27 + 0.22i 1.45 + 0.88i 1.3923i 1.3863i −0.43% 1.4611i 4.94%
3rd-X −0.18 + 1.38i −1.06 + 1.41i 3.7127i 3.6876i −0.68% 3.8602i 3.97%
3rd-Y −1.26 + 0.71i −0.23 + 2.73i 3.7127i 3.6876i −0.68% 3.8602i 3.97%
Condition
number 4.3103e + 21 7.9065e + 18 5.1001e + 06 6.4188e + 07

Note: error = (Algorithm−Analytical)/Analytical.

Gravity

60 deg 45 deg

100

100
122.5

Balance configuration under gravity

Figure 2: Four-bar linkage discrete model.

It is shown in Tables 2 and 3 that the results without the scaling precondition are totally
erroneous in both cases. In the two models, through computation c = 1.39167e + 06 for F = 0
and c = 1.39252e + 06 for F = 1e + 10. Precondition parameter k is chosen the same as c and
the condition numbers in the two computed cases are decreased about O(c2) times after the
precondition. The results show that the presented precondition procedure could guarantee
correct results for the direct eigenanalysis, and the unscaled models give out meaningless
results by ARPACK as the condition numbers are too large for the nonphysical contribution of
constraints. Note that model 2 is used to illustrate the precondition’s effectiveness for models
including other flexible elements such as 3D solid elements, and the error of scaled model
2 to Euler beam analytical results is partly because the solid model does not agree with the
plan cross section assumption of Euler-Bernoulli beam.

4.2. Four-Bar Linkage

The four-bar linkage is shown in Figure 2, and the parameters of the bar are shown in Table 4.
The model is modeled with Cartesian coordinates, and the constraints in the model are all
revolute joints. The beam element model is used in this example, as shown in Figure 3. The
equilibrium under gravity is first calculated with dynamic relaxation method, [22] and the
eigenvalues are calculated about the deformed configuration. The equilibrium configuration
of the four-bar system is also shown in Figure 3; the computed results with and without
the preconditioning scaling are shown in Table 5 compared with results of FEA software
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Table 4: Parameters for the linkage.

Item Density Young’s modulus Poisson’s ratio Beta damping Area Moment of inertia Gravity

Value 7860 2.06e11 0 0 102 (10)4/12 10

Unit kg/m3 N/m — — m2 m4 m/s2

1st mode (in XY plane 0.0808 Hz)

X

Y

(a)

2nd mode (out of XY plane 0.4236 Hz)

X

Y

Z

(b)

3rd mode (out of XY plane 1.2134 Hz)

Z
X

Y

(c)

4th mode (in XY plane 1.6520 Hz)

X

Y

(d)

5th mode (in XY plane 2.2633 Hz)

Balance
Mode

X

Y

(e)

6th mode (in XY plane 2.5967 Hz)

X

Y

Balance
Mode

(f)

Figure 3: Modes of the four-bar linkage.
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Table 5: Eigenvalues with or without scaling.

Frequency order ABAQUS Unscaled model Scaled model
value error value error

1st 0.0805i −1.09 + 0.02i — 0.0808i 0.37%
2nd 0.4215i −1.06 + 0.34i — 0.4236i 0.50%
3rd 1.1922i −1.20 + 0.35i — 1.2134i 1.78%
4th 1.6457i −1.30 + 0.08i — 1.6520i 0.38%
5th 2.2631i −1.30 + 0.03i — 2.2633i 0.01%
6th 2.6006i −1.34 + 0.23i — 2.5967i −0.15%
Condition number 3.3416e + 19 1.1560e + 10
Note: error = (Algorithm−ABAQUS)/ABAQUS.

ABAQUS with the same model. Again the unscaled results in the case are all meaningless as
they have nonphysical real parts. In this problem c = 9.11047e+ 13 and precondition parame-
ter k is chosen, the same value as c. The condition numbers are reduced aboutO(c) times after
the preconditioning, and correct results are obtained with the direct eigenanalysis method.

5. Summary and Conclusions

In this paper, the bad condition of the eigenvalue problem formulated from the direct
linearization of the differential-algebraic equations of multibody system is reviewed and
then discussed. The root cause may be attributed to the different dimensions of constraint
multipliers and equations with physical system. Through analysis, a simple scale of the
constraint multiplier variables and equations according to the stiffness of the elastic elements
in the system can reduce the condition number of the system matrix to be inverted. After
the preconditioning scale, eigensolvers such as ARPACK can be directly applied to the
preconditioned system and yield correct result. The soundness of proposed approach and
applicability are illustrated by comparing the results of a cantilever and a four-bar linkage
with those obtained from either analysis or ABAQUS.

Appendix

A. Gaussian elimination to get (3.4) from (3.3)

⎡
⎢⎢⎣
cD11 cD12 G1

cD21 cD22 G2

GT
1 GT

2 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣
Im 0 0

0 In−m 0

0 0 Im

⎤
⎥⎥⎦.

1. Unitize 1st and 3rd line by left multiplying G−1
1 to 1st line and G−T

1 3rd line.

2. Exchange 1st and 3rd line.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⎡
⎢⎢⎣

Im G−T
1 GT

2 0

cD21 cD22 G2

cG−1
1 D11 cG−1

1 D12 Im

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

0 0 G−T
1

0 In−m 0

G−1
1 0 0

⎤
⎥⎥⎦.
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1. Left multiply −cD21 to 1st line and add to 2nd line.

2. Left multiply −cG−1
1 D11 to 1st line and add to 3rd line.

3. Left multiply −G2 to 3rd line and add to 2nd line.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⎡
⎢⎢⎣
Im G−T

1 GT
2 0

0 c
(
D22 +G2G−1

1 D11G−T
1 GT

2 −D21G−T
1 GT

2 −G2G−1
1 D12

)
0

0 c
(
G−1

1 D12 −G−1
1 D11G−T

1 GT
2

)
Im

⎤
⎥⎥⎦

∼

⎡
⎢⎢⎣

0 0 G−T
1

−G2G−1
1 In−m −c(D21G−T

1 −G2G−1
1 D11G−T

1

)
G−1

1 0 −cG−1
1 D11G−T

1

⎤
⎥⎥⎦.

Let N=G−1
1 D11G−T

1 , P=D22+G2NGT
2−D21G−T

1 GT
2−G2G−1

1 D12,Q=G−1
1 D12−NGT

2 , R=D21G−T
1 −G2N.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

⎡
⎢⎢⎣
Im G−T

1 GT
2 0

0 cP 0

0 cQ Im

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

0 0 G−T
1

G2G−1
1 In−m −cR

G−1
1 0 −cN

⎤
⎥⎥⎦.

1. Unitize 2nd line by left multiplying c−1P−1(reversibility of the whole matrix ensure the existence of P−1).
2. Left multiply − −G−T

1 GT
2 to 2nd line and add to 1st line.

3. Left multiply −cQ to 2nd line and add to 3rd line.−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⎡
⎢⎢⎣
Im 0 0

0 In−m 0

0 0 Im

⎤
⎥⎥⎦ ∼ c−1

⎡
⎢⎢⎣

G−T
1 GT

2P
−1G2G−1

1 −G−T
1 GT

2P
−1 c

(
G−T

1 +G−T
1 GT

2P
−1R

)
−P−1G2G−1

1 P−1 −cP−1R

c
(
G−1

1 +QP−1G2G−1
1

) −cQP−1 c2
(
QP−1R −N

)

⎤
⎥⎥⎦.

(A.1)
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