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We introduce an iterative for finding the zeros point of the sum of two monotone operators. We
prove that the suggestedmethod converges strongly to the zeros point of the sum of twomonotone
operators.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be a
single-valued nonlinear mapping and let B : H → 2H be a multivalued mapping. The “so-
called” quasi-variational inclusion problem is to find a u ∈ 2H such that

0 ∈ Ax + Bx. (1.1)

The set of solutions of (1.1) is denoted by (A + B)−1(0). A number of problems arising in
structural analysis, mechanics, and economics can be studied in the framework of this kind
of variational inclusions; see, for instance, [1–4]. The problem (1.1) includes many problems
as special cases.

(1) If B = ∂φ : H → 2H , where φ : H → R ∪ +∞ is a proper convex lower
semicontinuous function and ∂φ is the subdif and if onlyerential of φ, then the
variational inclusion problem (1.1) is equivalent to find u ∈ H such that

〈
Au, y − u

〉
+ φ

(
y
) − φ(u) ≥ 0, ∀y ∈ H, (1.2)

which is called the mixed quasi-variational inequality (see, Noor [5]).
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(2) If B = ∂δC, where C is a nonempty closed convex subset ofH and δC : H → [0,∞]
is the indicator function of C, that is,

δC =

⎧
⎨

⎩

0, x ∈ C,

+∞, x /∈ C,
(1.3)

then the variational inclusion problem (1.1) is equivalent to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.4)

This problem is called Hartman-Stampacchia variational inequality (see, e.g., [6]).
Recently, Zhang et al. [7] introduced a new iterative scheme for finding a common

element of the set of solutions to the inclusion problem, and the set of fixed points of
nonexpansive mappings in Hilbert spaces. Peng et al. [8] introduced another iterative scheme
by the viscosity approximate method for finding a common element of the set of solutions of
a variational inclusion with set-valued maximal monotone mapping and inverse strongly
monotone mappings, the set of solutions of an equilibrium problem, and the set of fixed
points of a nonexpansive mapping. For some related works, please see [9–27] and the
references therein.

Inspired and motivated by the works in the literature, in this paper, we introduce
an iterative for solving the problem (1.1). We prove that the suggested method converges
strongly to the zeros point of the sum of two monotone operators A + B.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be
a nonempty closed convex subset of H. Recall that a mapping A : C → H is said to be
α-inverse strongly-monotone if and if only

〈
Ax −Ay, x − y

〉 ≥ α
∥∥Ax −Ay

∥∥2 (2.1)

for some α > 0 and for all x, y ∈ C. It is known that if A is α-inverse strongly monotone, then

∥∥Ax −Ay
∥∥ ≤ 1

α

∥∥x − y
∥∥ (2.2)

for all x, y ∈ C.
Let B be a mapping of H into 2H . The effective domain of B is denoted by dom(B),

that is,

dom(B) = {x ∈ H : Bx/= ∅}. (2.3)

A multivalued mapping B is said to be a monotone operator onH if and if only

〈
x − y, u − v

〉 ≥ 0 (2.4)
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for all x, y ∈ dom(B), u ∈ Bx, and v ∈ By. A monotone operator B onH is said to be maximal
if and if only its graph is not strictly contained in the graph of any other monotone operator
on H. Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}.

For a maximal monotone operator B on H and λ > 0, we may define a single-valued
operator:

JBλ = (I + λB)−1 : H → dom(B), (2.5)

which is called the resolvent of B for λ. It is known that the resolvent JBλ is firmly nonexpan-
sive, that is,

∥
∥
∥JBλ x − JBλ y

∥
∥
∥
2 ≤

〈
JBλ x − JBλ y, x − y

〉
(2.6)

for all x, y ∈ C and B−10 = F(JB
λ
) for all λ > 0.

The following resolvent identity is well known: for λ > 0 and μ > 0, there holds the
following identity:

JBλ x = JBμ

(μ
λ
x +

(
1 − μ

λ

)
JBλ x

)
, x ∈ H. (2.7)

We use the following notation:

(i) xn ⇀ x stands for the weak convergence of (xn) to x;

(ii) xn → x stands for the strong convergence of (xn) to x.

We need the following lemmas for the next section.

Lemma 2.1 (see [28]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let the
mapping A : C → H be α-inverse strongly monotone and let λ > 0 be a constant. Then, one has

∥∥(I − λA)x − (I − λA)y
∥∥2 ≤ ∥∥x − y

∥∥2 + λ(λ − 2α)
∥∥Ax −Ay

∥∥2
, ∀x, y ∈ C. (2.8)

In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.

Lemma 2.2 (see [29]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.9)

Suppose that

xn+1 =
(
1 − βn

)
yn + βnxn (2.10)

for all n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (2.11)

Then, limn→∞‖yn − xn‖ = 0.
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Lemma 2.3 (see [30]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δnγn, (2.12)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1γn = ∞;

(2) lim supn→∞δn ≤ 0 or
∑∞

n=1|δnγn| < ∞.

Then limn→∞an = 0.

3. Main Results

In this section, we will prove our main result.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A be
an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on
H, such that the domain of B is included in C. Let JBλ = (I + λB)−1 be the resolvent of B for λ > 0.
Suppose that (A + B)−10/= ∅. For u ∈ C and given x0 ∈ C, let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn +
(
1 − βn

)
JBλn(αnu + (1 − αn)(xn − λnAxn)) (3.1)

for all n ≥ 0, where {λn} ⊂ (0, 2α), {αn} ⊂ (0, 1), and {βn} ⊂ (0, 1) satisfy

(i) limn→∞αn = 0 and
∑

nαn = ∞;

(ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iii) a ≤ λn ≤ b where [a, b] ⊂ (0, 2α) and limn→∞(λn+1 − λn) = 0.

Then {xn} generated by (3.1) converges strongly to x̃ = P(A+B)−10(u).

Proof. First, we choose any z ∈ (A + B)−10. Note that

z = JBλn(z − λn(1 − αn)Az) = JBλn(αnz + (1 − αn)(z − λnAz)) (3.2)

for all n ≥ 0. Since JBλ is nonexpansive for all λ > 0, we have

∥∥∥JBλn(αnu + (1 − αn)(xn − λnAxn)) − z
∥∥∥
2

=
∥∥∥JBλn(αnu + (1 − αn)(xn − λnAxn)) − JBλn(αnz + (1 − αn)(z − λnAz))

∥∥∥
2

≤ ‖(αnu + (1 − αn)(xn − λnAxn)) − (αnz + (1 − αn)(z − λnAz))‖2

= ‖(1 − αn)((xn − λnAxn) − (z − λnAz)) + αn(u − z)‖2.

(3.3)
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Since A is α-inverse strongly monotone, we get

‖(1 − αn)((xn − λnAxn) − (z − λnAz)) + αn(u − z)‖2

≤ (1 − αn)‖(xn − λnAxn) − (z − λnAz)‖2 + αn‖u − z‖2

= (1 − αn)‖(xn − z) − λn(Axn −Az)‖2 + αn‖u − z‖2

= (1 − αn)
(
‖xn − z‖2 − 2λn〈Axn −Az, xn − z〉 + λ2n‖Axn −Az‖2

)
+ αn‖u − z‖2

≤ (1 − αn)
(
‖xn − z‖2 − 2αλn‖Axn −Az‖2 + λ2n‖Axn −Az‖2

)
+ αn‖u − z‖2

= (1 − αn)
(
‖xn − z‖2 + λn(λn − 2α)‖Axn −Az‖2

)
+ αn‖u − z‖2.

(3.4)

By (3.3) and (3.4), we obtain

∥∥∥JBλn(αnu + (1 − αn)(xn − λnAxn)) − z
∥∥∥
2

≤ (1 − αn)
(
‖xn − z‖2 + λn(λn − 2α)‖Axn −Az‖2

)
+ αn‖u − z‖2

≤ (1 − αn)‖xn − z‖2 + αn‖u − z‖2.

(3.5)

It follows from (3.1) and (3.5) that

‖xn+1 − z‖2 =
∥∥∥βn(xn − z) +

(
1 − βn

)(
JBλn(αnu + (1 − αn)(xn − λnAxn)) − z

)∥∥∥
2

≤ βn‖xn − z‖2 + (
1 − βn

)∥∥∥JBλn(αnu + (1 − αn)(xn − λnAxn)) − z
∥∥∥
2

≤ βn‖xn − z‖2 + (
1 − βn

)(
(1 − αn)‖xn − z‖2 + αn‖u − z‖2

)

=
[
1 − (

1 − βn
)
αn

]‖xn − z‖2 + (
1 − βn

)
αn‖u − z‖2

≤ max
{
‖xn − z‖2, ‖u − z‖2

}
.

(3.6)

By induction, we have

‖xn+1 − z‖ ≤ max{‖x0 − z‖, ‖u − z‖}. (3.7)

Therefore, {xn} is bounded. We deduce immediately that {Axn} is also bounded. Set un =
αnu + (1 − αn)(xn − λnAxn) for all n. Then {un} and {JBλnun} are bounded.
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Next, we estimate ‖JBλn+1un+1 − JBλnun‖. In fact, we have

∥
∥
∥JBλn+1un+1 − JBλnun

∥
∥
∥

=
∥
∥
∥JBλn+1(αn+1u + (1 − αn+1)(xn+1 − λn+1Axn+1)) − JBλn(αnu + (1 − αn)(xn − λnAxn))

∥
∥
∥

≤
∥
∥
∥JBλn+1(αn+1u + (1 − αn+1)(xn+1 − λn+1Axn+1)) − JBλn+1(αnu + (1 − αn)(xn − λnAxn))

∥
∥
∥

+
∥
∥
∥JBλn+1(αnu + (1 − αn)(xn − λnAxn)) − JBλn(αnu + (1 − αn)(xn − λnAxn))

∥
∥
∥

≤ ‖(αn+1u + (1 − αn+1)(xn+1 − λn+1Axn+1)) − (αnu + (1 − αn)(xn − λnAxn))‖

+
∥
∥
∥JBλn+1un − JBλnun

∥
∥
∥

≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖ + |λn+1 − λn|‖Axn‖

+ αn+1(‖u‖ + ‖xn+1‖ + λn+1‖Axn+1‖) + αn(‖u‖ + ‖xn‖ + λn‖Axn‖) +
∥∥∥JBλn+1un − JBλnun

∥∥∥.

(3.8)

Since I −λn+1A is nonexpansive for λn+1 ∈ (0, 2α), we have ‖(I −λn+1A)xn+1 − (I −λn+1A)xn‖ ≤
‖xn+1 − xn‖. By the resolvent identity (2.7), we have

JBλn+1un = JBλn

(
λn
λn+1

un +
(
1 − λn

λn+1

)
JBλn+1un

)
. (3.9)

It follows that

∥∥∥JBλn+1un − JBλnun

∥∥∥ =
∥∥∥∥J

B
λn

(
λn
λn+1

un +
(
1 − λn

λn+1

)
JBλn+1un

)
− JBλnun

∥∥∥∥

≤
∥∥∥∥

(
λn
λn+1

un +
(
1 − λn

λn+1

)
JBλn+1un

)
− un

∥∥∥∥

≤ |λn+1 − λn|
λn+1

∥∥∥un − JBλn+1un

∥∥∥.

(3.10)

So,

∥∥∥JBλn+1un+1 − JBλnun

∥∥∥ ≤ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖ + αn+1(‖u‖ + ‖xn+1‖ + λn+1‖Axn+1‖)

+ αn(‖u‖ + ‖xn‖ + λn‖Axn‖) + |λn+1 − λn|
λn+1

∥∥∥un − JBλn+1un

∥∥∥.

(3.11)

Thus,

lim sup
n→∞

(∥∥∥JBλn+1un+1 − JBλnun

∥∥∥ − ‖xn+1 − xn‖
)
≤ 0. (3.12)
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From Lemma 2.2, we get

lim
n→∞

∥
∥
∥JBλnun − xn

∥
∥
∥ = 0. (3.13)

Consequently, we obtain

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)∥∥
∥JBλnun − xn

∥
∥
∥ = 0. (3.14)

From (3.5) and (3.6), we have

‖xn+1 − z‖2 ≤ βn‖xn − z‖2 + (
1 − βn

)∥∥
∥JBλn(αnu + (1 − αn)(xn − λnAxn)) − z

∥
∥
∥
2

≤ (
1 − βn

){
(1 − αn)

(
‖xn − z‖2 + λn(λn − 2α)‖Axn −Az‖2

)
+ αn‖u − z‖2

}

+ βn‖xn − z‖2

=
[
1 − (

1 − βn
)
αn

]‖xn − z‖2 + (
1 − βn

)
λn(λn − 2α)‖Axn −Az‖2

+
(
1 − βn

)
αn‖u − z‖2

≤ ‖xn − z‖2 + (
1 − βn

)
λn(λn − 2α)‖Axn −Az‖2 + (

1 − βn
)
αn‖u − z‖2.

(3.15)

It follows that

(
1 − βn

)
λn(2α − λn)‖Axn −Az‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + (
1 − βn

)
αn‖u − z‖2

≤ (‖xn − z‖ − ‖xn+1 − z‖)‖xn+1 − xn‖ +
(
1 − βn

)
αn‖u − z‖2.

(3.16)

Since limn→∞αn = 0, limn→∞‖xn+1 − xn‖ = 0, and lim infn→∞(1 − βn)λn(2α − λn) > 0, we have

lim
n→∞

‖Axn −Az‖ = 0. (3.17)

Put x̃ = P(A+B)−10(u). Set vn = xn − (λn/(1 − αn))(Axn − Ax̃) for all n. Take z = x̃ in (3.17) to
get ‖Axn −Ax̃‖ → 0. First, we prove lim supn→∞〈u − x̃, vn − x̃〉 ≤ 0. We take a subsequence
{vni} of {vn} such that

lim sup
n→∞

〈u − x̃, vn − x̃〉 = lim
i→∞

〈u − x̃, vni − x̃〉. (3.18)

It is clear that {vni} is bounded due to the boundedness of {xn} and ‖Axn −Ax̃‖ → 0. Then,
there exists a subsequence {vnij} of {vni} which converges weakly to some point w ∈ C.
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Hence, {xnij} also converges weakly tow because of ‖vnij
−xnij

‖ → 0. By the similar argument

as that in [31], we can show that w ∈ (A + B)−10. This implies that

lim sup
n→∞

〈u − x̃, vn − x̃〉 = lim
j→∞

〈
u − x̃, vnij

− x̃
〉
= 〈u − x̃, w − x̃〉. (3.19)

Note that x̃ = P(A+B)−10(u). Then, 〈u − x̃, w − x̃〉 ≤ 0, w ∈ (A + B)−10. Therefore,

lim sup
n→∞

〈u − x̃, vn − x̃〉 ≤ 0. (3.20)

Finally, we prove that xn → x̃. From (3.1), we have

‖xn+1 − x̃‖2 ≤ βn‖xn − x̃‖2 + (
1 − βn

)∥∥∥JBλnun − x̃
∥∥∥
2

= βn‖xn − x̃‖2 + (
1 − βn

)∥∥∥JBλnun − JBλn(x̃ − (1 − αn)λnAx̃)
∥∥∥
2

≤ βn‖xn − x̃‖2 + (
1 − βn

)‖un − (x̃ − (1 − αn)λnAx̃)‖2

= βn‖xn − x̃‖2 + (
1 − βn

)‖αnu + (1 − αn)(xn − λnAxn) − (x̃ − (1 − αn)λnAx̃)‖2

= βn‖xn − x̃‖2 + (
1 − βn

)‖(1 − αn)((xn − λnAxn) − (x̃ − λnAx̃)) + αn(u − x̃)‖2

= βn‖xn − x̃‖2 + (
1 − βn

)

×
(
(1 − αn)2‖(xn − λnAxn) − (x̃ − λnAx̃)‖2

+2αn(1 − αn)〈u − x̃, (xn − λnAxn) − (x̃ − λnAx̃)〉 + α2
n‖u − x̃‖2

)

≤ βn‖xn − x̃‖2 + (
1 − βn

)

×
(
(1 − αn)‖xn − x̃‖2 + 2αn(1 − αn)〈u − x̃, xn − λn(Axn −Ax̃) − x̃〉

+α2
n‖u − x̃‖2

)

≤ [
1 − (

1 − βn
)
αn

]‖xn − x̃‖2 + (
1 − βn

)
αn

{
2(1 − αn)〈u − x̃, vn − x̃〉 + αn‖u − x̃‖2

}
.

(3.21)

It is clear that
∑

n(1 − βn)αn = ∞ and lim supn→∞(2(1 − αn)〈u − x̃, vn − x̃〉 + αn‖u − x̃‖2) ≤ 0.
We can therefore apply Lemma 2.3 to conclude that xn → x̃. This completes the proof.

4. Applications

Next, we consider the problem for finding the minimum norm solution of a mathematical
model related to equilibrium problems. Let C be a nonempty, closed, and convex subset of a
Hilbert space and let G : C × C → R be a bifunction satisfying the following conditions:
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(E1) G(x, x) = 0 for all x ∈ C;

(E2) G is monotone, that is, G(x, y) +G(y, x) ≤ 0 for all x, y ∈ C;

(E3) for all x, y, z ∈ C, lim supt↓0G(tz + (1 − t)x, y) ≤ G(x, y);

(E4) for all x ∈ C, G(x, ·) is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problems (with respect to C) is to find
x̃ ∈ C such that

G
(
x̃, y

) ≥ 0 (4.1)

for all y ∈ C. The set of such solutions x̃ is denoted by EP(G). The following lemma appears
implicitly in Blum and Oettli [32].

Lemma 4.1. Let C be a nonempty, closed, and convex subset of H and let G be a bifunction of C × C
into R satisfying (E1)–(E4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

G
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C. (4.2)

The following lemma was given by Combettes and Hirstoaga [33].

Lemma 4.2. Assume thatG : C×C → R satisfies (E1)–(E4). For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) =
{
z ∈ C : G

(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ C

}
(4.3)

for all x ∈ H. Then, the following holds:

(1) Tr is single valued;

(2) Tr is a firmly nonexpansive mapping, that is, for all x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤ 〈

Trx − Try, x − y
〉
; (4.4)

(3) F(Tr) = EP(G);

(4) EP(G) is closed and convex.

We call such Tr the resolvent of G for r > 0. Using Lemmas 4.1 and 4.2, we have the
following lemma. See [34] for a more general result.

Lemma 4.3. Let H be a Hilbert space and let C be a nonempty, closed, and convex subset of H. Let
G : C × C → R satisfy (E1)–(E4). Let AG be a multivalued mapping of H into itself defined by

AGx =

⎧
⎨

⎩

{
z ∈ H : G

(
x, y

) ≥ 〈
y − x, z

〉
, ∀y ∈ C

}
,

∅,
x ∈ C,

x /∈ C.
(4.5)
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Then, EP(G) = A−1
G (0) and AG is a maximal monotone operator with dom(AG) ⊂ C. Further, for

any x ∈ H and r > 0, the resolvent Tr of G coincides with the resolvent of AG; that is,

Trx = (I + rAG)
−1x. (4.6)

Form Lemma 4.3 and Theorems 3.1, we have the following result.

Theorem 4.4. Let C be a nonempty, closed, and convex subset of a real Hilbert space H. Let G be a
bifunction from C × C → R satisfying (E1)–(E4) and let Tλ be the resolvent of G for λ > 0. Suppose
EP(G)/= ∅. For u ∈ C and given x0 ∈ C, let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn +
(
1 − βn

)
Tλn(αnu + (1 − αn)xn) (4.7)

for all n ≥ 0, where {λn} ⊂ (0,∞), {αn} ⊂ (0, 1), and {βn} ⊂ (0, 1) satisfy

(i) limn→∞αn = 0 and
∑

nαn = ∞;

(ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1;

(iii) a ≤ λn ≤ b where [a, b] ⊂ (0,∞) and limn→∞(λn+1 − λn) = 0.

Then {xn} converges strongly to a point x̃ = PEP(G)(u).
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