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A modified spectral PRP conjugate gradient method is presented for solving unconstrained
optimization problems. The constructed search direction is proved to be a sufficiently descent
direction of the objective function. With an Armijo-type line search to determinate the step length,
a new spectral PRP conjugate algorithm is developed. Under some mild conditions, the theory of
global convergence is established. Numerical results demonstrate that this algorithm is promising,
particularly, compared with the existing similar ones.

1. Introduction

Recently, it is shown that conjugate gradient method is efficient and powerful in solving
large-scale unconstrained minimization problems owing to its low memory requirement
and simple computation. For example, in [1–17], many variants of conjugate gradient
algorithms are developed. However, just as pointed out in [2], there exist many theoretical
and computational challenges to apply these methods into solving the unconstrained
optimization problems. Actually, 14 open problems on conjugate gradient methods are
presented in [2]. These problems concern the selection of initial direction, the computation
of step length, and conjugate parameter based on the values of the objective function,
the influence of accuracy of line search procedure on the efficiency of conjugate gradient
algorithm, and so forth.

The general model of unconstrained optimization problem is as follows:

min f(x), x ∈ Rn, (1.1)



2 Journal of Applied Mathematics

where f : Rn → R is continuously differentiable such that its gradient is available. Let
g(x) denote the gradient of f at x, and let x0 be an arbitrary initial approximate solution
of (1.1). Then, when a standard conjugate gradient method is used to solve (1.1), a sequence
of solutions will be generated by

xk+1 = xk + αkdk, k = 0, 1, . . . , (1.2)

where αk is the steplength chosen by some line search method and dk is the search direction
defined by

dk =

⎧
⎨

⎩

−gk if k = 0,

−gk + βkdk−1 if k > 0,
(1.3)

where βk is called conjugacy parameter and gk denotes the value of g(xk). For a strictly
convex quadratical programming, βk can be appropriately chosen such that dk and dk−1 are
conjugate with respect to the Hessian matrix of the objective function. If βk is taken by

βk = βPRPk =
gT
k

(
gk − gk−1

)

∥
∥gk−1

∥
∥2

, (1.4)

where ‖ · ‖ stands for the Euclidean norm of vector, then (1.2)–(1.4) are called Polak-Ribiére-
Polyak (PRP) conjugate gradient method (see [8, 18]).

It is well known that PRP method has the property of finite termination when the
objective function is a strong convex quadratic function combined with the exact line search.
Furthermore, in [7], for a twice continuously differentiable strong convex objective function,
the global convergence has also been proved. However, it seems to be nontrivial to establish
the global convergence theory under the condition of inexact line search, especially for a
general nonconvex minimization problem. Quite recently, it is noticed that there are many
modified PRP conjugate gradient methods studied (see, e.g., [10–13, 17]). In these methods,
the search direction is constructed to possess the sufficient descent property, and the theory
of global convergence is established with different line search strategy. In [17], the search
direction dk is given by

dk =

⎧
⎨

⎩

−gk if k = 0,

−gk + βPRP
k

dk−1 − θkyk−1 if k > 0,
(1.5)

where

θk =
gT
k
dk−1

∥
∥gk−1

∥
∥2

, yk−1 = gk − gk−1, sk−1 = xk − xk−1. (1.6)
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Similar to the idea in [17], a new spectral PRP conjugate gradient algorithmwill be developed
in this paper. On one hand, wewill present a new spectral conjugate gradient direction, which
also possess the sufficiently descent feature. On the other hand, a modified Armijo-type line
search strategy is incorporated into the developed algorithm. Numerical experiments will be
used to make a comparison among some similar algorithms.

The rest of this paper is organized as follows. In the next section, a new spectral
PRP conjugate gradient method is proposed. Section 3 will be devoted to prove the global
convergence. In Section 4, some numerical experiments will be done to test the efficiency,
especially in comparison with the existing other methods. Some concluding remarks will be
given in the last section.

2. New Spectral PRP Conjugate Gradient Algorithm

In this section, wewill firstly study how to determine a descent direction of objective function.
Let xk be the current iterate. Let dk be defined by

dk =

⎧
⎨

⎩

−gk if k = 0,

−θkgk + βPRPk dk−1 if k > 0,
(2.1)

where βPRPk is specified by (1.4) and

θk =
dT
k−1yk−1
∥
∥gk−1

∥
∥2

− dT
k−1gkg

T
k
gk−1

∥
∥gk
∥
∥2
∥
∥gk−1

∥
∥2

. (2.2)

It is noted that dk given by (2.1) and (2.2) is different from those in [3, 16, 17], either
for the choice of θk or for that of βk.

We first prove that dk is a sufficiently descent direction.

Lemma 2.1. Suppose that dk is given by (2.1) and (2.2). Then, the following result

gT
k dk = −∥∥gk

∥
∥2 (2.3)

holds for any k ≥ 0.

Proof. Firstly, for k = 0, it is easy to see that (2.3) is true since d0 = −g0.
Secondly, assume that

dT
k−1gk−1 = −∥∥gk−1

∥
∥2 (2.4)
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holds for k − 1 when k ≥ 1. Then, from (1.4), (2.1), and (2.2), it follows that

gT
k dk = −θk

∥
∥gk
∥
∥2 +

gT
k

(
gk − gk−1

)

∥
∥gk−1

∥
∥2

dT
k−1gk

= −d
T
k−1
(
gk − gk−1

)

∥
∥gk−1

∥
∥2

gT
k gk +

dT
k−1gkg

T
k gk−1

∥
∥gk
∥
∥2
∥
∥gk−1

∥
∥2

gT
k gk +

gT
k

(
gk − gk−1

)

∥
∥gk−1

∥
∥2

dT
k−1gk

=
dT
k−1gk−1
∥
∥gk−1

∥
∥2

gT
k gk =

∥
∥gk
∥
∥2

∥
∥gk−1

∥
∥2

(
−∥∥gk−1

∥
∥2
)
= −∥∥gk

∥
∥2.

(2.5)

Thus, (2.3) is also true with k−1 replaced by k. By mathematical induction method, we obtain
the desired result.

From Lemma 2.1, it is known that dk is a descent direction of f at xk. Furthermore, if
the exact line search is used, then gT

k dk−1 = 0; hence

θk =
dT
k−1yk−1
∥
∥gk−1

∥
∥2

− dT
k−1gkg

T
k
gk−1

∥
∥gk
∥
∥2
∥
∥gk−1

∥
∥2

= −d
T
k−1gk−1
∥
∥gk−1

∥
∥2

= 1. (2.6)

In this case, the proposed spectral PRP conjugate gradient method reduces to the standard
PRP method. However, it is often that the exact line search is time-consuming and sometimes
is unnecessary. In the following, we are going to develop a new algorithm, where the search
direction dk is chosen by (2.1)-(2.2) and the stepsize is determined by Armijio-type inexact
line search.

Algorithm 2.2 (Modified Spectral PRP Conjugate Gradient Algorithm). We have the following
steps.

Step 1. Given constants δ1, ρ ∈ (0, 1), δ2 > 0, ε > 0. Choose an initial point x0 ∈ Rn. Let k := 0.

Step 2. If ‖gk‖ ≤ ε, then the algorithm stops. Otherwise, compute dk by (2.1)-(2.2), and go
to Step 3.

Step 3. Determine a steplength αk = max{ρj , j = 0, 1, 2, . . .} such that

f(xk + αkdk) ≤ f(xk) + δ1αkg
T
k dk − δ2α

2
k‖dk‖2. (2.7)

Step 4. Set xk+1 := xk + αkdk, and k := k + 1. Return to Step 2.

Since dk is a descent direction of f at xk, we will prove that there must exist j0 such
that αk = ρj0 satisfies the inequality (2.7).
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Proposition 2.3. Let f : Rn → R be a continuously differentiable function. Suppose that d is a
descent direction of f at x. Then, there exists j0 such that

f(x + αd) ≤ f(x) + δ1αg
Td − δ2α

2‖d‖2, (2.8)

where α = ρj0 , g is the gradient vector of f at x, δ1, ρ ∈ (0, 1) and δ2 > 0 are given constant scalars.

Proof. Actually, we only need to prove that a step length α is obtained in finitely many steps.
If it is not true, then for all sufficiently large positive integer m, we have

f
(
x + ρmd

) − f(x) > δ1ρ
mgTd − δ2ρ

2m‖d‖2. (2.9)

Thus, by the mean value theorem, there is a θ ∈ (0, 1) such that

ρmg
(
x + θρmd

)T
d > δ1ρ

mgTd − δ2ρ
2m‖d‖2. (2.10)

It reads

(
g
(
x + θρmd

) − g
)T
d > (δ1 − 1)gTd − δ2ρ

m‖d‖2. (2.11)

When m → ∞, it is obtained that

(δ1 − 1)gTd < 0. (2.12)

From δ1 ∈ (0, 1), it follows that gTd > 0. This contradicts the condition that d is a descent
direction.

Remark 2.4. From Proposition 2.3, it is known that Algorithm 2.2 is well defined. In addition,
it is easy to see that more descent magnitude can be obtained at each step by the modified
Armijo-type line search (2.7) than the standard Armijo rule.

3. Global Convergence

In this section, we are in a position to study the global convergence of Algorithm 2.2. We first
state the following mild assumptions, which will be used in the proof of global convergence.

Assumption 3.1. The level set Ω = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.

Assumption 3.2. In some neighborhood N of Ω, f is continuously differentiable and its
gradient is Lipschitz continuous, namely, there exists a constant L > 0 such that

∥
∥g(x) − g

(
y
)∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ N. (3.1)

Since {f(xk)} is decreasing, it is clear that the sequence {xk} generated by
Algorithm 2.2 is contained in a bounded region from Assumption 3.1. So, there exists a
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convergent subsequence of {xk}. Without loss of generality, it can be supposed that {xk} is
convergent. On the other hand, from Assumption 3.2, it follows that there is a constant γ1 > 0
such that

∥
∥g(x)

∥
∥ ≤ γ1, ∀x ∈ Ω. (3.2)

Hence, the sequence {gk} is bounded.
In the following, we firstly prove that the stepsize αk at each iteration is large enough.

Lemma 3.3. With Assumption 3.2, there exists a constant m > 0 such that the following inequality

αk ≥ m

∥
∥gk
∥
∥2

‖dk‖2
(3.3)

holds for all k sufficiently large.

Proof. Firstly, from the line search rule (2.7), we know that αk ≤ 1.
If αk = 1, then we have ‖gk‖ ≤ ‖dk‖. The reason is that ‖gk‖ > ‖dk‖ implies that

∥
∥gk
∥
∥2 >

∥
∥gk
∥
∥‖dk‖ ≥ −gT

k dk, (3.4)

which contradicts (2.3). Therefore, taking m = 1, the inequality (3.3) holds.
If 0 < αk < 1, then the line search rule (2.7) implies that ρ−1αk does not satisfy the

inequality (2.7). So, we have

f
(
xk + ρ−1αkdk

)
− f(xk) > δ1αkρ

−1gT
k dk − δ2ρ

−2α2
k‖dk‖2. (3.5)

Since

f
(
xk + ρ−1αkdk

)
− f(xk) = ρ−1αkg

(
xk + tkρ

−1αkdk

)T
dk

= ρ−1αkg
T
k dk + ρ−1αk

(
g
(
xk + tkρ

−1αkdk

)
− gk

)T
dk

≤ ρ−1αkg
T
k dk + Lρ−2α2

k‖dk‖2,

(3.6)

where tk ∈ (0, 1) satisfies xk+tkρ−1αkdk ∈ N and the last inequality is from (3.2), it is obtained
that

δ1αkρ
−1gT

k dk − δ2ρ
−2α2

k‖dk‖2 < ρ−1αkg
T
k dk + Lρ−2α2

k‖dk‖2 (3.7)

due to (3.5) and (3.1). It reads

(1 − δ1)αkρ
−1gT

k dk + (L + δ2)ρ−2α2
k‖dk‖2 > 0, (3.8)
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that is,

(L + δ2)ρ−1αk‖dk‖2 > (δ1 − 1)gT
k dk. (3.9)

Therefore,

αk >
(δ1 − 1)ρgT

k
dk

(L + δ2)‖dk‖2
. (3.10)

From Lemma 2.1, it follows that

αk >
ρ(1 − δ1)

∥
∥gk
∥
∥2

(L + δ2)‖dk‖2
. (3.11)

Taking

m = min
{

1,
ρ(1 − δ1)
L + δ2

}

, (3.12)

then the desired inequality (3.3) holds.

From Lemmas 2.1 and 3.3 and Assumption 3.1, we can prove the following result.

Lemma 3.4. Under Assumptions 3.1 and 3.2, the following results hold:

∑

k≥0

∥
∥gk
∥
∥4

‖dk‖2
< ∞, (3.13)

lim
k→∞

α2
k‖dk‖2 = 0. (3.14)

Proof. From the line search rule (2.7) and Assumption 3.1, there exists a constantM such that

n−1∑

k=0

(
−δ1αkg

T
k dk + δ2α

2
k‖dk‖2

)
≤

n−1∑

k=0

(
f(xk) − f(xk+1)

)
= f(x0) − f(xn) < 2M. (3.15)

Then, from Lemma 2.1, we have

2M ≥
n−1∑

k=0

(
−δ1αkg

T
k dk + δ2α

2
k‖dk‖2

)

=
n−1∑

k=0

(
δ1αk

∥
∥gk
∥
∥2 + δ2α

2
k‖dk‖2

)
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≥
n−1∑

k=0

(

δ1m

∥
∥gk
∥
∥2

‖dk‖2
∥
∥gk
∥
∥2 + δ2 ·m2 ·

∥
∥gk
∥
∥4

‖dk‖4
· ‖dk‖2

)

=
n−1∑

k=0

(δ1 + δ2m)

∥
∥gk
∥
∥4

‖dk‖2
·m.

(3.16)

Therefore, the first conclusion is proved.
Since

2M ≥
n−1∑

k=0

(
δ1αk

∥
∥gk
∥
∥2 + δ2α

2
k‖dk‖2

)
≥ δ2

n−1∑

k=0

α2
k‖dk‖2, (3.17)

the series

∞∑

k=0

α2
k‖dk‖2 (3.18)

is convergent. Thus,

lim
k→∞

α2
k‖dk‖2 = 0. (3.19)

The second conclusion (3.14) is obtained.

In the end of this section, we come to establish the global convergence theorem for
Algorithm 2.2.

Theorem 3.5. Under Assumptions 3.1 and 3.2, it holds that

lim
k→∞

inf
∥
∥gk
∥
∥ = 0. (3.20)

Proof. Suppose that there exists a positive constant ε > 0 such that

∥
∥gk
∥
∥ ≥ ε (3.21)

for all k. Then, from (2.1), it follows that

‖dk‖2 = dT
kdk

=
(
−θkgT

k + βPRPk dT
k−1
)(

−θkgk + βPRPk dk−1
)
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= θ2
k

∥
∥gk
∥
∥2 − 2θkβPRPk dT

k−1gk +
(
βPRPk

)2
‖dk−1‖2

= θ2
k

∥
∥gk
∥
∥2 − 2θk

(
dT
k + θkg

T
k

)
gk +

(
βPRPk

)2
‖dk−1‖2

= θ2
k

∥
∥gk
∥
∥2 − 2θkdT

kgk − 2θ2
k

∥
∥gk
∥
∥2 +

(
βPRPk

)2
‖dk−1‖2

=
(
βPRPk

)2
‖dk−1‖2 − 2θkdT

kgk − θ2
k

∥
∥gk
∥
∥2.

(3.22)

Dividing by (gT
k
dk)

2 in the both sides of this equality, then from (1.4), (2.3), (3.1), and (3.21),
we obtain

‖dk‖2
∥
∥gk
∥
∥4

=

(
βPRPk

)2‖dk−1‖2 − 2θkdT
kgk − θ2

k

∥
∥gk
∥
∥2

∥
∥gk
∥
∥4

=

(
gT
k

(
gk − gk−1

))2

∥
∥gk−1

∥
∥4

‖dk−1‖2
∥
∥gk
∥
∥4

− (θk − 1)2
∥
∥gk
∥
∥2

+
1

∥
∥gk
∥
∥2

≤
∥
∥gk − gk−1

∥
∥2

∥
∥gk−1

∥
∥4

‖dk−1‖2
∥
∥gk
∥
∥2

− (θk − 1)2
∥
∥gk
∥
∥2

+
1

∥
∥gk
∥
∥2

≤
∥
∥gk − gk−1

∥
∥2

∥
∥gk
∥
∥2

‖dk−1‖2
∥
∥gk−1

∥
∥4

+
1

∥
∥gk
∥
∥2

<
L2α2

k−1‖dk−1‖2
ε2

‖dk−1‖2
∥
∥gk−1

∥
∥4

+
1

∥
∥gk
∥
∥2

.

(3.23)

From (3.14) in Lemma 3.4, it follows that

lim
k→∞

α2
k−1‖dk−1‖2 = 0. (3.24)

Thus, there exists a sufficient large number k0 such that for k ≥ k0, the following inequalities

0 ≤ α2
k−1‖dk−1‖2 < ε2

L2
(3.25)

hold.
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Therefore, for k ≥ k0,

‖dk‖2
∥
∥gk
∥
∥4

≤ ‖dk−1‖2
∥
∥gk−1

∥
∥4

+
1

∥
∥gk
∥
∥2

≤ · · · ≤ ‖dk0‖2
∥
∥gk0

∥
∥4

+
k∑

i=k0+1

1
∥
∥gi
∥
∥2

<
C0

ε2
+

k∑

i=k0+1

1
ε2

=
C0 + k − k0

ε2
,

(3.26)

where C0 = ε2‖dk0‖2/‖gk0‖2 is a nonnegative constant.
The last inequality implies

∑

k≥1

∥
∥gk
∥
∥4

‖dk‖2
≥
∑

k>k0

∥
∥gk
∥
∥4

‖dk‖2
> ε2

∑

k>k0

1
C0 + k − k0

= ∞, (3.27)

which contradicts the result of Lemma 3.4.
The global convergence theorem is established.

4. Numerical Experiments

In this section, we will report the numerical performance of Algorithm 2.2. We test
Algorithm 2.2 by solving the 15 benchmark problems from [19] and compare its numerical
performance with that of the other similar methods, which include the standard PRP
conjugate gradient method in [6], the modified FR conjugate gradient method in [16], and
the modified PRP conjugate gradient method in [17]. Among these algorithms, either the
updating formula or the line search rule is different from each other.

All codes of the computer procedures are written in MATLAB 7.0.1 and are imple-
mented on PC with 2.0GHz CPU processor, 1GB RAM memory, and XP operation system.

The parameters are chosen as follows:

ε = 10−6, ρ = 0.75, δ1 = 0.1, δ2 = 1. (4.1)

In Tables 1 and 2, we use the following denotations:

Dim: the dimension of the objective function;

GV: the gradient value of the objective function when the algorithm stops;

NI: the number of iterations;

NF: the number of function evaluations;

CT: the run time of CPU;

mfr: the modified FR conjugate gradient method in [16];

prp: the standard PRP conjugate gradient method in [6];
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Table 1: Comparison of efficiency with the other methods.

Function Algorithm Dim GV NI NF CT(s)

Rrosenbrock

mfr 2 8.8818e − 007 328 7069 0.2970
prp 2 9.2415e − 007 760 41189 1.4370
mprp 2 8.6092e − 007 124 2816 0.0940
msprp 2 6.9643e − 007 122 2597 0.1400

Freudenstein
and Roth

mfr 2 5.5723e − 007 236 5110 0.2190
prp 2 7.1422e − 007 331 18798 0.6250
mprp 2 2.4666e − 007 67 1904 0.0940
msprp 2 8.6967e − 007 62 1437 0.0780

Brown badly

mfr 2 — — — —
prp 2 — — — —
mprp 2 7.9892e − 007 105 10279 0.2030
msprp 2 7.6029e − 007 70 7117 0.2660

Beale

mfr 2 6.1730e − 007 74 714 0.0780
prp 2 8.2455e − 007 292 12568 0.4370
mprp 2 6.2257e − 007 130 1539 0.0940
msprp 2 8.7861e − 007 91 877 0.0470

Powell singular

mfr 4 9.9827e − 007 4122 10578 0.6870
prp 4 — — — —
mprp 4 9.6909e − 007 13565 218964 5.2660
msprp 4 9.8512e − 007 11893 169537 7.2500

Wood

mfr 4 7.7937e − 007 263 5787 0.2660
prp 4 9.9841e − 007 1284 69501 2.3440
mprp 4 9.6484e − 007 280 6432 0.1720
msprp 4 7.9229e − 007 404 9643 0.4070

Extended
Powell singular

mfr 4 9.9827e − 007 4122 10578 0.6800
prp 4 — — — —
mprp 4 9.6909e − 007 13565 218964 5.5310
msprp 4 9.8512e − 007 11893 169537 7.4070

Broyden
tridiagonal

mfr 4 4.8451e − 007 53 784 0.0630
prp 4 6.6626e − 007 87 4460 0.1180
mprp 4 5.8166e − 007 39 430 0.0320
msprp 4 9.7196e − 007 52 785 0.0780

msprp: the modified PRP conjugate gradient method in [17];

mprp: the new algorithm developed in this paper.

From the above numerical experiments, it is shown that the proposed algorithm in this
paper is promising.

5. Conclusion

In this paper, a new spectral PRP conjugate gradient algorithm has been developed for
solving unconstrained minimization problems. Under some mild conditions, the global
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Table 2: Comparison of efficiency with the other methods.

Function Algorithm Dim GV NI NF CT(s)

Kowalik and
Osborne

mfr 4 — — — —

prp 4 8.9521e − 007 833 26191 1.2970

mprp 4 9.9698e − 007 6235 35425 3.5940

msprp 4 9.9560e − 007 7059 37976 4.9850

Broyden banded

mfr 6 8.9469e − 007 40 505 0.0780

prp 6 8.4684e − 007 268 9640 0.4840

mprp 6 8.9029e − 007 102 1319 0.0940

msprp 6 9.3276e − 007 44 556 0.0940

Discrete
boundary

mfr 6 9.1531e − 007 107 509 0.0780

prp 6 7.8970e − 007 269 11449 0.4690

mprp 6 8.28079e − 007 157 1473 0.0930

msprp 6 9.9436e − 007 165 1471 0.1410

Variably
dimensioned

mfr 8 7.3411e − 007 57 1233 0.1250

prp 8 7.3411e − 007 113 7403 0.3290

mprp 8 9.0900e − 007 69 1544 0.0780

msprp 8 7.3411e − 007 57 1233 0.1100

Broyden
tridiagonal

mfr 9 9.1815e − 007 129 2173 0.1250

prp 9 6.4584e − 007 113 5915 0.2500

mprp 9 7.3529e − 007 187 2967 0.1250

msprp 9 9.2363e − 007 82 1304 0.1100

Linear-rank1

mfr 10 9.7462e − 007 84 3762 0.1720

prp 10 4.5647e − 007 98 6765 0.2810

mprp 10 6.9140e − 007 51 2216 0.0780

msprp 10 6.6630e − 007 50 2162 0.1250

Linear-full rank

mfr 12 7.6919e − 007 9 36 0.0160

prp 12 8.2507e − 007 47 1904 0.1090

mprp 12 7.6919e − 007 9 36 0.0630

msprp 12 7.6919e − 007 9 36 0.0150

convergence has been proved with an Armijo-type line search rule. Compared with the other
similar algorithms, the numerical performance of the developed algorithm is promising.
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