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Scheduled production system leads to avoiding stock accumulations, losses reduction, decreasing
or even eliminating idol machines, and effort to better benefitting from machines for on time
responding customer orders and supplying requested materials in suitable time. In flexible job-
shop scheduling production systems, we could reduce time and costs by transferring and deliver-
ing operations on existing machines, that is, among NP-hard problems. The scheduling objective
minimizes the maximal completion time of all the operations, which is denoted by Makespan.
Different methods and algorithms have been presented for solving this problem. Having a
reasonable scheduled production system has significant influence on improving effectiveness
and attaining to organization goals. In this paper, new algorithm were proposed for flexible job-
shop scheduling problem systems (FJSSP-GSPN) that is based on gravitational search algorithm
(GSA). In the proposed method, the flexible job-shop scheduling problem systems was modeled
by color Petri net and CPN tool and then a scheduled job was programmed by GSA algorithm. The
experimental results showed that the proposedmethod has reasonable performance in comparison
with other algorithms.

1. Introduction

Classic job-shop scheduling problem systems contain N independent job on M machines.
Each job includes one or more operations that must be implemented sequentially. Each
operation needs specific process time. Flexible job-shop scheduling problem system is specific
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type of classic job-shop scheduling production systems, in which one job could be
implemented on a set of machines.

Purpose of scheduling this problem is determining operation sequence for each
machine, such that sequence order is kept and total time of operation (during implementing
one job) be minimized.

In this paper, FJSSP-GSPN algorithm based on gravitational local search and time
Petri net is proposed for scheduling time optimization in FJSSP. The proposed algorithm
comprised two stages: in the first stage, the system was modeled by timed Petri net and the
simulation of results was done with Petri net method. In the second stage, a new algorithm
based on gravitational local search algorithm was proposed which is called FJSSP-GSPN.

In the simulation stage, in order to determine performance of the system, one job
has been simulated by CPN tool with several suboperations. Also, in the second stage,
gravitational searching algorithm and proposed solution have been presented to make
suitable time for implementing several operations on one job, which in fact is assigning
proper the machine to the related operation.

The rest of the paper is as follows: In Section 3, problem analyzing and in Section 4,
its disjunctive graph model are presented. In Section 5, colored Petri Net and in Section 6
simulating phase with CPN tool is described. In Section 7, gravitational searching algorithm
is explained and finally in section eight, we explain the proposed solution by using the
gravitational searching algorithm.

2. Related Work

Flexible job-shop scheduling problem system is one of the most important combined optimi-
zation problems, and is kind of NP-hard problem.

The job-shop scheduling problem (JSSP) has been studied for more than 50 years in
both academic and industrial environments and also recently, many researchers have been
done for the flexible job-shop scheduling problem system (FJSSP).

Brucker and Schlie [1] who first considered Job-shop scheduling with multipurpose
Multipurpose computing machines, offered a multilateral algorithm for solving flexible job-
shop problem with two jobs. In real world, for solving a problem with more than two jobs,
two perceptions have been used: hierarchical perception and integrated perception.

In hierarchical perception, assigning any operation to the machines and determining
operation sequences are performed individually. In other words, assignment and sequence
determination are independent. But in integrated perception, sequence determination is
based on this idea that in order to decrease complexity, the main problem should be
decomposed into two problems called assignment and sequence determination. Frequent
usage of this perception is due to decomposition it into two assignment problem and
sequence determination problem. Brandimarte [2]was the first one who used this perception
for FJSSP. He specified path determination with distribution rules and then focused on
solving scheduling problem with tabu search algorithm.

Jain and Meeran [3] provided a concise overview of JSPs over the last few decades
and highlighted the main techniques. The JSP is the most difficult class of combinational
optimization. Garey et al. [4] demonstrated that JSPs are nondeterministic polynomial-time
hard (NP-hard), hence we cannot find an exact solution in a reasonable computation time.
The single objective JSP has attracted wide research attention. Most studies of single-objective
JSPs result in a schedule to minimize the time required to complete all jobs, that is, to
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minimize the makespan. Many approximate methods have been developed to overcome the
limitations of exact enumeration techniques.

These approximate approaches include simulated annealing (SA) (Lourenço [5]), tabu
search (Sun et al. [6]; Nowicki and Smutnicki [7]; Pezzella and Merelli [8]), and genetic
algorithms (GA) (Bean [9]; Kobayashi et al. [10]; Gonçalves et al. [11]; Wang and Zheng
[12]).

Fattahi et al. [13] have considered hierarchical and integrated perceptions in relation
to scheduling job-shop production systems. They based on these perceptions two SA and TA
heuristics, offered six combined algorithms and compared them.

The concluded that combined algorithms from SA and TA along with hierarchical
perception would provide better solutions than other algorithms. TE also offered in their
article a new technique for introducing structure of solution in scheduling flexible job-shop
production problems.

I. C. Choi andD. S. Choi [14] have presented a local searching algorithm for scheduling
job-shop production problems. They regarded that there is a possibility of a substitute
operation for any operation. In this mode, a machine and a process time are assigned for
all operations, and then for some other operations, alternative machines and process time are
dedicated. Moreover, a run time has been considered for any operations, which is depended
of the last operation.

Xia and Wu [15] have presented a hybrid optimizing perception for scheduling
multiobject flexible job-shop production system problems. In their study, combination of two
methods SA and particle swarm optimization have been used for optimizing flexible job-shop
production system problem. Dedicated PSO algorithm for either assignment problem or
determining operations uses designated machine. Value of object function is calculated by
SA algorithm and implemented for each particle in PSO algorithm once.

Mastrolilli and Gambardella [16] proposed a tabu search procedure with effective
neighborhood functions for the flexible job-shop problem. Many authors have proposed a
method of assigning operations to machines and then determining sequence of operations on
eachmachine. Pezzella et al. [17] and Gao et al. [18] proposed the hybrid genetic and variable
neighborhood descent algorithm for this problem. There are only a few papers considering
parallel algorithms for the FJSP. Yazdani et al. [19] propose a parallel variable neighborhood
search (VNS) algorithm for the FJSP based on independent VNS runs. Defersha and Chen
[20] describe a coarse grain version of the parallel genetic algorithm for the considered.
FJSP basing on island model of parallelization focusing on genetic operators used and
scalability of the parallel algorithm. Both papers are focused on the parallelization side of
the programming methodology and they do not use any special properties of the FJSP.

In this study, we first considered the problem with primary process and ignored
substitute process; regarded flexibility and obtained construction duration have been used
as upper boundary. Then, local searching procedure is looking for better a solution by using
distribution rules. In this study, different distribution rules in local searching procedure have
been considered.

3. Flexible Job-Shop Scheduling Problem Systems’ Analysis

In this section, mathematical model (combined of integer and linear programming) is
presented for better understanding the problem and also applying it for solving small
problems optimally.
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Flexible job-shop scheduling production system contains N job on M machines. Each
job includes some operations and for each operation there is an opportunity to use a set of
operational machines. As flexible job-shop scheduling systems have considerable importance
in production centers, they have attracted attention of production unit managers.

Furthermore, specific mathematical characteristics of this problem that have offered
effective strategies for solving this problem are interested for researchers of this area of
mathematics field. Simple form of flexible job-shop scheduling production systems is classic
job-shop scheduling production system which schedules n job of J1, J2, . . . , Jn on set of M
machines of M1,M2, . . . ,Mm.

Each job has hj operation that must be implemented serially. Subscript j indicates
job, subscript h indicates operation, and subscript i presents machines. The Purpose of
scheduling this problem is determining the sequence of operations for each machine, such
that a predefined object function like construction duration gets optimized.

Each job has one sequence of Oj,h operations; h = 1, . . . , hj , where Oj,h presents hth
operation of jth job, and hj presents number of required operations for j th job. Machines
set is presented by M = {M1,M2, . . . ,Mm}. Subscript i presents machine and subscript j
presents job and subscript h is applied for operation.

To implement each h operation on j job (presented as Oj,h), a set of jobs are assigned,
which have the capacity of performing that operation. This set is presented as Mj,h ⊂ M.
Each machine would have a specific process time for implementing operation. This specific
process time for implementing each operation is presented with Pi,j,h.

In this study, we defineMj,h set with variable ai,j,h with value one and zero. If variable
ai,j,h has value 1, it means that machine j has capacity for implementing operation Oj,h.
For assignment, we use variable yi,j,h with value one or zero. This variable is determined
by model. If value of this variable be 1, then it means that machine j is selected among
operational machines for implementing Oi,j operation.

Eventually, the result solution from variable yi,j,h gives assignment-problem solution
(i.e., each operation among the assignable machine is performed by which machine).

For solving the sequence problem, we consider initial time tk,l and final time ftk,l for
each operation. Value of those variables is determined by a model. Moreover, an assumed the
job which the number of its operations is equal to number of machines is considered as the
initial job.

In this model, we use variable xi,j,h,k,l with value one or zero. If this variable has value
1, it means that operationOk,l on machine j is implemented immediately after operationOj,h.
Also, sei,f,k presents the startup time of job k after a job from family f on machine i.

Ff,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if k ∈ f

0 otherwise

ai,j,h =

⎧
⎪⎪⎨

⎪⎪⎩

1 if Oj,h can be performed on machine i

0 otherwise.

(3.1)
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Variables of this model include:

yi,j,h =

⎧
⎨

⎩

1 if machine i seclect for operation Oj,h

0 otherwise

xi,j,h,k,l =

⎧
⎨

⎩

1 if Oj,h proceceds Ok,l immediately on machine i

0 otherwise.

(3.2)

Cmax: maximum time of constructing duration, m: a large number, tk,l: initial time for
operation Ok,l, ftk,l: final time for operation Ok,l, Pi,k,l: process time for operation Ok,l on
machine i, and Si,j,k: start up time for job k on machine j if the previous job is job j.

By having parameters Si,f,k, Pi,j,h, ai,j,h, fa, m, and n problem FJSP is modeled as
follows:

(1) min Cmax;

(2) tk,l + yi,k,l · pi,k,l ≤ fik,l for i = 1, . . . , m, k = 1, . . . , n, l = 1, . . . , hk;

(3) si,j,k =
∑

Ff,j · sei,f,k for i = 1, . . . , m, k = 1, . . . , n, j = 1, . . . , n, f = 1, . . ., fa;

(4) fik,l ≤ tk,l+1 for k = 1, . . . , n, l = 1, . . . , hk − 1;

(5) fik,l ≤ Cmax for k = 1, . . . , n, l = 1, . . . , hk;

(6) yi,k,l ≤ ai,k,l for i = 1, . . . , m, k = 1, . . . , n, l = 1, . . . , hk;

(7) tj,h + pi,j,h + si,j,k ≤ tk,j + (1 − xi,j,h,k,l)M for j = 0, . . . , n, k = 1, . . . , n, h = 1, . . . , hj , l =
1, . . . , hk, i = 1, . . . , m;

(8) fj,h + si,j,k ≤ tj,h+1 + (1 − xi,k,l,j,h+1)M for j = 1, . . . , n, k = 0, . . . , n, h = 1, . . . , hj − 1, l =
1, . . . , hk, i = 1, . . . , m;

(9)
∑

yi,j,h = 1 for j = 0, . . . , n, h = 1, . . . , hj , i = 1, . . . , m;

(10)
∑∑

xi,j,h,k,l = yi,k,l for i = 1, . . . , m, k = 1, . . . , n, l = 1, . . . , hk;

(11)
∑∑

xi,j,h,k,l = yi,k,l for i = 1, . . . , m, j = 1, . . . , n, h = 1, . . . , hj ;

(12) xi,j,h,k,l ≤ yi,k,l for j = 1, . . . , n, k = 1, . . . , n, h = 1, . . . , hj , l = 1, . . . , hk, i = 1, . . . , m;

(13) xi,j,h,k,l ≤ yi,k,l for j = 1, . . . , n, k = 1, . . . , n, h = 1, . . . , hj , l = 1, . . . , hk, i = 1, . . . , m;

(14) xi,k,l,k,l = 0 for i = 1, . . . , m, k = 1, . . . , n, l = 1, . . . , hk;

(15) si,k,k, = 0 for i = 1, . . . , m, k = 1, . . . , n;

(16) xi,j,h,k,l, yi,j,h ∈ {0, 1}.
Constraint 1 is the object function of a problem which minimizes maximum

completion time. Constraint 2 presents startup time and finishing time of each operation.
Constraint 3 introduces run time for each job. Constraints 4 and 8 cause that prerequirement
limitations are respected. Constraint 5 defines Cmax. Constraint 6 causes that required
machines for each operation is selected among assignable machines for that operation.
Constraint 7 guarantees that if operation l from job k is performed after operation h from
job j on machine i, its startup time is after finishing operation h from job j and also after the
process time of preparing machine i. Constraint 9 causes that among all assignable machines
for a specific operation just one machine selected. Constraints 10 and 11 imply that only one
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0 2 4 6 8 10 12
Time

J1 J2 J3M1

M2

M3

J3 J1

J2

J2

J1 J3

Figure 1: A Gantt chart representation of a solution for a 3 ∗ 3 problem.

Table 1: Illustration of an example of 3 ∗ 3 problem.

job Operations routing (processing time)

1 1 (3) 1 1 (3)
2 1 (2) 2 1 (2)
3 2 (3) 3 2 (3)

operation is performed on machine i after and before other operations. Constraints 12 and 12
imply that each operation is just performed on its assignable machine after and before other
operations. Constraint 14 guarantees that any operation is processed once.

4. The Disjunctive Graph Model

The JSSP can be described as a disjunctive graph G = (V ;C U D), where (1) V is a set of
nodes representing operations of the jobs together with two special nodes, a source (0) and a
sink, representing the beginning and end of the schedule, respectively.

(2) C is a set of conjunctive arcs representing technological sequences of the
operations. (3) D is a set of disjunctive arcs representing pairs of operations that must be
performed on the same machines. The processing time for each operation is the weighted
value attached to the corresponding nodes.

Figure 2 shows this in a graph representation for the problem given in Table 1. The
Gantt-Chart is a convenient way of visually representing a solution of the FJSSP. An example
of a solution for the 3 ∗ 3 problem in Table 1 is given in Figure 1.

Job-shop scheduling can also be viewed as defining the ordering between all
operations that must be processed on the same machine, that is, to fix precedences between
these operations. In the disjunctive graph model, this is done by turning all undirected
(disjunctive) arcs into directed ones. A selection is a set of directed arcs selected from
disjunctive arcs. By definition, a selection is complete if all the disjunctions are selected. It
is consistent if the resulting directed graph is acyclic.

5. Colored Petri Nets

The Petri Nets theory was born from the thesis defended by Carl Adam Petri in the Faculty
of Mathematics and Physics of the Technical University of Darmstadt (Germany) in 1962,
entitled “Communication with autonomata.” At the end of the 60s and beginning of the 70s,
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Source

P11 = 3 P12 = 3 P13 = 3

O11 O12 O13

0 O21 O23 O22

P21 = 4 P23 = 3 P22 = 3

O32 O31 O33

P32 = 3 P31 = 2 P33 = 1

Sink

Oij : An operation of job i on machine j

Pij : Processing time of Oij

Conjunctive arc (technological sequences)
Disjunctive arc (pair of operations on the same machine)

•

Figure 2: A disjunctive graph of a 3 ∗ 3 problem.

researchers from MIT in the USA developed the foundations of the concept of the Petri nets
as we know today.

According to Murata [21], Petri nets are a type of bipartite, directed, and weighted
graph, which can capture the dynamics of a discrete-event system. The Petri nets provide a
compact representation of a system because they do not represent explicitly all the space of
states from the modeled system.

An ordinary Petri net is a 4-tuple PN = (P, T, Pre post), formed by a finite set of places P
of dimension n, a finite set of transitions T of dimensionm, an input condition Pre: P×T → N,
and an output condition Post: P × T → N. To each place an integer nonnegative number
denominated token is associated.

Models with time restrictions can be developed via Petri nets, as shown for example,
in [22]. Manufacturing, transportation, and telecommunication systems are some of the
examples of application of that methodology.

A limitation of the ordinary Petri nets, also called place/transition Petri nets, is the fact
that they demand a large quantity of places and transitions to represent complex systems (as
most real systems are). As the net expands, the general view of the modeled system starts to
get compromised, and the analysis of the modeled system becomes difficult to do.

Real systems often present similar processes which occur in parallel or concurrently,
and they differ from each other only by their inputs and outputs. In the colored Petri nets,
the quantity of places, transitions, and arcs is, generally, sensibly reduced via the addition of
data to the structure of the net.

According to Jensen [23] a more compact representation of a Petri net is obtained via
the association of a data set (denominated token colors) to each token. The concept of color
is analogous to the concept of type, common among the programming languages.

Colored Petri net (CPN) is a tool by which validation of discrete-event systems
are studied and modeled. CPNs are used to analyze and obtain significant and useful
information from the structure and dynamic performance of the modeled system. Colored
Petri nets mainly focus on synchronization, concurrency, and asynchronous events. The
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graphic features of CPNs specify the applicability and visualization of the modeled system.
Furthermore, synchronous and asynchronous events present their prioritized relations and
structural adaptive effects. The main difference between CPNs and Petri nets (PN) is
that in CPNs the elements are separable but in PNs they are not. Colored indicates the
elements specific feature. The relation between CPNs and ordinary PNs is analogous to
high-level programming languages to an assembly code (Low-level programming language).
Theoretically, CPNs have precise computational power but practically since high-level
programming languages have better structural specifications, they have greater modeling
power.

CPN’s drawback is its nonadaptivity therefore it is not possible to access the previous
information available in CPNs. If there is more than one transition activated then each
transition can be considered as the next shot. This colored Petri net’s characteristic indicates
that since several events occur concurrently and event incidences are not similar, then when
events occur they do not change by time and this phenomenon is in contrast with the real and
dynamic world. Simulation would be similar to execution of the main program. Our Purpose
is to use the simulated model for analyzing the performance of the systems, as a result here
the system problems and the weak points would be identified. However, classic CPN tools
can do nothing to improve and solve problems and also it would not be possible to predict
the next optimized situation.

According to Jensen [23], a colored Petri net is a 9 tuple:

CPN = (Γ, P, T,A,N,C,G, E, I), (5.1)

where Γ is a finite, nonempty set of types, denominated colors set; P is a finite set of places
of dimension n; T is a finite set of transitions of dimension m; A is a finite set of arcs so that
P ∩ T = P ∩ A = T ∩ A = ∅; N is a node function, defined from A by P × T ∪ T × P ; C is a
color function, defined from P on Γ; G is a guard function, defined from T ; E is a function of
expression of arcs, defined from A; I is an initiation function, defined from P .

The colors set determines the types, operations and functions which can be associated
to the expressions utilized on the net (arc functions, guards, colors, etc.) The sets P, T, A
and N have analogous significance to the vertexes and precedence functions sets defined
for the ordinary Petri nets. Color functions map every place on the net, including them in a
color set. Guard functions map all the transitions on the net, moderating the stream of tokens
according to Boolean expressions. Arc functions map each arc on the net, associating them to
a compatible expression with the possible color sets. Finally, initialization functions map the
places on the net associating them to the existent multisets.

There are four main components in Petri net.

(1) (•) Token: specify existence in system.

(2) ( ) Place: temporary place for maintenance of Tokens.

(3) (→ ) Arc: show Token directions.

(4) ( ) Transition: specify main operation in system. A system can be modeled just by
using these four simple elements.
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Figure 3: Example model for one job with one operation on five machines.

5.1. CPN Tool

CPN Tools is an industrial-strength computer tool for constructing and analysing CPN
models. Using CPN Tools, it is possible to investigate the behaviour of the modelled system
using simulation, to verify properties by means of state space methods and model checking,
and to conduct simulation-based performance analysis. User interaction with CPN Tools
is based on direct manipulation of the graphical representation of the CPN model using
interaction techniques, such as tool palettes and marking menus. The functionality of the
tool can be extended with user-defined Standard ML functions [24].

6. The First Stage (Simulating Problem with CPN Tool)

Regarding problem analyzing and offered comments, performance of scheduling operation
system in a flexible production job-shop is simulated with CPN tool. This simulation which
could be contains one or more operations for one job, is implemented on one machine.
Also, this simulation is extension able on more operations or even more jobs. First, suppose
(Figure 3) that you have one job with one operation and a job-shop with several machines
(up to 5 machines).

Next to each place, there is an inscription which determines the set of token colors
(data values) that the tokens on the place are allowed to have. The set of possible token colors
is specified by means of a type (as known from programming languages), and it is called the
color set of the place. By convention the color set is written below the place. The places have
the color set INT and STRING, color sets are defined using the CPN ML keyword colset.

The color sets are defined as:

colset STRING = string;

colset INT = int;



10 Journal of Applied Mathematics

Output

st

st

st

st

st

st

st

st

st

st

st

st

st

st

st

Job

INT

1 INT

INT

st

st
1′1

i
i > 0

String

String

String

String

String

String String

String

String

String

String

Distribute1

M1

M2

M3

M4

M5

m1
m1 > 0

m1””

m1””

m1””

m1””

m1””

m2””

m2””

m2””

m2””

m2””

m2 > 0
m2 Distribute2

Fe-back

Figure 4: Example model for two jobs with one operation on five machines.

The arc expressions are written in the CPN ML programming language and are built
from typed variables, constants, operators, and functions. When all variables in an expression
are bound to values (of the correct type) the expression can be evaluated. An arc expression
evaluates to a multiset of token colors. As an example, consider the two arc expressions i and
st on the three arcs connected to the transition. They contain the variables i and st declared
as follows:

var i : INT;

var st : STRING.

According to problem analysis, this job could be implemented on each machine,
but the ideal machine is the one that performs this job in less time, so each machine
sends operational time for the related job to the comprising section. The comprising section
recognizes minimum time among input values and displays it with the name of the related
machine.

Now suppose that we have one job with two operations, and according to problem
definition, this operation should be implemented serially (Figure 4). Thus, after that first
operation is implemented, second operation would be allowed by sending a return signal.

As you can see, this simulation for one job that has up to 5 operations has been
implemented on five machines (Figure 5), but this simulation could be modeled on j job
withN operation and M machines, too.

7. Gravitational Search Algorithm

In GSA, optimization is done by using gravitational rules and movement rules in an artificial
discrete-time system.
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System area is the same as problem definition area. According to the gravitational rule,
act, and state of other masses are recognized through gravitational forces. So, this force could
be used as a tool for transferring information. We can also use the proposed solution for
solving any optimization problem which within it any answers of problem is definable as a
state in space, and its degree of similarity with other answers of problem is mentioned as a
distance. Value of masses in each problem is also mentioned in regards to purpose function.
In the first step, system space is determined. Area includes a multidimensional coordinated
system in problem definition space.

Each point in space is one of the answers of a problem and search factors are also the
series of masses.

Each mass has three properties:
(a)mass state, (b) gravitational mass, (c) inertia mass.
Above mentioned masses are resulted from active gravitational mass and inertia mass

concepts in physics.

In physics, active gravitational mass is a criteria of degree of gravitational force
around a body, and inertia mass is a criteria of body resistance against movement. These
two properties could be not equal, and their amounts are determined based on suitability of
each mass. Mass state is a point in space which is one of the problem answers. After forming
a system, its rules are determined.

We suppose that there is only the gravity rule and movement rule. Their general forms
are similar to nature rules and have been defined as follows.

Gravity Rule: Any mass in an artificial system attracts all other masses toward itself.
The value of this force is proportional with the gravitational mass of the related mass and
distance between two masses.

Movement Rule: Recent speed of each mass is equal to the sum of the coefficient of the
last speed of that mass and its variable speed. Also, acceleration or variable speed is equal to
delivered force on mass, divide by the amount mass.
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In the following, we explain principals of this algorithm. Suppose that there is a system
with S masses and within it, state of mass ith is defined as relation (7.1), where x denotes
position of mass ith in dimension d, and n denotes number of dimensions in the search space.

Xi =
(
x1
i , . . . , x

d
i , . . . , x

D
i

)
(7.1)

Worst(t) and Best(t) are for the minimization problems and are calculated as follows.
(for maximization problems it is just enough to consider the inverse of these two relations).

Best(t) = max
j∈{1,...,m}

fitj(t)

worst(t) = min
j∈{1,...,m}

fitj(t).
(7.2)

We can account fitness of recent population with relation (7.3), and obtain mass of
factor ith in time t (i.e., with relation (7.4)), where M and fit are denoted mass and fitness of
factor ith in time t, respectively.

qi(t) =
fiti −worst(t)

Best(t) −worst(t)
, (7.3)

M(t) =
qi(t)

∑s
j=1(t)

. (7.4)

In this system, force F is delivered on mass ith from mass jth in time t in the direction
of dimension d, the value of this force is obtained based on the following; G(t) is gravity
constant in time t which is regulated in the beginning of the operating algorithm, and it is
decreased by the time.

Fd
ij(t) =

G(t) ×Mj(t)
Rij(t) + ε

(
xd
j (t) − xd

i (t)
)
. (7.5)

R is the ECLIDIAN distance between factor ith and factor jth that are defined as, “ε”
is also a small value for avoiding denominator from becoming zero.

ij =
√

(x2 − x1)2 +
(
y2 − y1

)2 + (z2 − z1)2 + · · · + (n2 − n1)2. (7.6)

The force delivered on mass ith in direction d at time t is equal to resultant of total
force from k superior mass in population (k is better factor than recent factor). Kbest denote
series of k superior masses in population. K value is not constant and is defined as a time-
dependant value, such that all masses at the beginning influence on each other and deliver
force, but by passing time, number of effective members in population is decreased linearly.
And for accounting sum of delivered forces on mass ith in dimension d, we could write the
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Table 2: Semi-code of gravitational algorithm.

(1) Determining system area and initial valuing
(2) Initial positioning OF the masses
(3) Evaluating THE masses
(4) Updating parameters G, best, worst, andM

(5) Calculating delivered force on each mass
(6) Accounting acceleration and speed of each mass
(7) Updating position of masses
(8) If stop condition does not meet, go to phase 3

following. In this relation, rand is a random number with normal distribution in the interval
[0, 1].

Fd
i (t) =

∑

j∈Kbest,j /= i

randj ×G(t)
Mj(t) ×Mi(t)

Rii(t) + ε

(
xd
j (t) − xd

i (t)
)
. (7.7)

According to Newton’s second movement rule, each mass takes acceleration in the
direction of dimension d, which is proportional with delivered force on that mass.

ad
i (t) =

Fd
i (t)

Mi(t)
=⇒

ad
i (t) =

∑

j∈Kbest,j /= i

randj ×G(t)
Mj(t)

Rii(t) + ε

(
xd
j (t) − xd

i (t)
)
.

(7.8)

Speed of each mass is equal to sum of coefficient of the mass’ recent speed and
acceleration, and is explained as follows. In this relation, rand is a random number with
normal distribution in the interval [0, 1], and its random property is resultant of keeping
search in random mood.

V d
i (t + 1) = randi × V d

i (t) + ad
i (t). (7.9)

Now, mass should move. It is obvious that more speed of the mass, causes more
movement in that dimension. New state of factor ith is mentioned by relation (7.10).

xd
i (t + 1) = xd

i (t) + V d
i (t + 1). (7.10)

At the beginning of the forming system, each mass (factor) is randomly positioned in
one point of space that is an answer of problem. In each moment, masses are evaluated and
then changing in the position of each mass is calculated after solving relations 8 to 11. System
parameters are updated in each stage (G,M).

Stop condition could be determined after passing specified time. In Table 2, semicode
of this algorithm has been presented.
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2 3 1 4

Figure 6: Example of state array.

Table 3: Example of a job with 4 actions on 4 machines.

A1 A2 A3 A4

M1

M2

M3

M4

8. Proposed Method Based on Gravitational
Search Algorithm (FJSSP-GSPN)

In regards to gravitational searching algorithm, each searching factor should contain
information for solving problems. This information says that for example each factor
in any time might be aware that in each point of searching space, which operation is
implementing on which machine. According to problem definition (see Table 3), each
operation is implementable on set of machines. But in any time, only one job is implemented
on each machine, and then next operation should be implemented.

You could see with some attention that Table 3 is similar to N-minister problem table
that in each column is placed just oneminister (one job for eachmachine). The only difference
is that in the new table maybe several jobs are implemented on each machine. To brief this
table we use one-dimensional array and we assign to each factor in the searching space one
sample of it (Figure 6).

It is obvious that each house of this array is assigned to one column of the table, and
value of that house states the number of machines that the related job would be implemented
by. For example, second house of array indicates that the second job (in second column)
would be implemented on third machine.

In gravitational searching algorithm, each factor in searching space includes a one-
dimensional array which keeps summary of recent state of implemented operations on
related machines. So, with having five masses, in fact five searching factors are applied for
finding the purpose state (minimum time for performing operation).

To indicate that bigger mass has better state, we should subtract total time of
implementing an operation from a constant value (this value could be maximum required
time for implementing a job which counts as a constraint). Result answer of this subtraction
is qi, conforming with formula (7.3). Now if based on formula (7.4), we divide fitness of one
factor on sum of factors fitness, mass factor is attained.

Accounting delivered force, acceleration, speed, and position of each mass are
depended on dimension of each mass, and they are independent of each other.

Consider a two-dimensional space. If there are two masses in one column during the
application calculations on dimension X, calculations should be stopped, since second mass
does not deliver force on first mass in direction of dimension X.
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AC

B

D

Figure 7: Two-dimensional space with 4 masses.

For (byte j = 0; j < j num −1 ; j + +)
K best [j] = −1;

for (byte i = 0; i <= mass num − 1; i++)
{

if (Loc arr [0, i] >= n)
Loc arr [0, i] = n − 1;

if (Loc arr [1, i] >= n)
Loc arr [1, i] = n − 1;

if (Loc arr [0, k] != Loc arr [0, i])
{
for (byte j = 0; j < mass num − 1; j++ )

if (K best [j] == −1)
{
K best[j] = arr[Loc arr [0, i], Loc arr [1, i]];
break;
}

}
}

Algorithm 1: First condition: unparallelism of two masses.

For example, in Figure 7, you see that two masses (A and B) are placed in one column,
so they do not deliver force in direction of dimension X on each other.

And similarly, two masses C and D are placed in one line, and so do not deliver force
on each other in direction of dimension Y . But pair masses (B, C), (B, D), (C, D), and (A, D)
are delivered force on each other in both directions of dimensionsX andY, and so calculations
are applied on them completely.

Therefore, in first condition, we investigate unparallelism of two masses in interested
dimension. Then in order to account sum of delivered forces on related mass, we need to
determine forces delivered from those masses which are placed inKbest series (Algorithm 2).

Kbest array is filled with initial value of (−1). According to gravitational algorithm,
at the first moment of operating algorithm, all masses deliver force on each other. After
assessing first condition, we add number of masses to Kbest series as it has shown in
Algorithm 1.

It is obvious that according to gravitational algorithm, in the next moment, we should
add the condition of “being heavier masses” to the first condition, that is, in addition to



16 Journal of Applied Mathematics

while ((K best[l] >= 0) && (number <= mass num))
{
R = Math.Sqrt((Math.Pow((Loc arr[0, k best T] −
Loc arr [0, k]), 2) + Math.Pow((Loc arr[1, k best T] −
Loc arr [1, k]), 2)));
F arr [0, k] = F arr [0, k] + ((rand obj.Next(100)/100.0) ∗ G ∗
(Math.Abs((hiu mass[k best T] − hiu mass[k])) /
(R + E))∗Math.Abs(Loc arr[0,k best T] − Loc arr [0, k]));
}
A mass = F arr [0, k]/hiu mass[k];
V arr [0, k] = ((rand obj.Next(100)/100.0)∗V arr [0, k]) + A mass;
x temp = (Loc arr [0, k] + Math.Round(V arr [0, k]));

Algorithm 2: Calculating for each mass.

l = 0;
while (k Best[l] != −1)
{

if (k Best[l] > 0)
k Best Temp = k Best[l] − 1;

else
k Best Temp = 0;

R = (Math.Sqrt((Math.Pow((gls Loc Arr[k Best Temp] –
gls Loc Arr[k]),2) +
Math.Pow((gls Loc Arr[k Best Temp] − gls Loc Arr[k]),
2))));
f Arr[k] = f Arr[k] + ((rand obj.Next(100)/100.0) ∗ G ∗

(Math.Abs((gls Hiu[k Best Temp] – gls Hiu[k])) /
(R+E))∗Math.Abs(gls Loc Arr[ k Best Temp] −

gls Loc Arr[k]));
}

Algorithm 3: Calculating R and force.

condition of unparallelism of masses, those masses which are heavier than recent masses,
should be added to Kbest series.

Now, we could write calculations based on Algorithm 2.
Based on applied force by each factor on respected mass, GSA should be calculated

(sum of force and distance).
We could use following pseudocode for these calculations (Algorithm 3).
New positions of mass have been specified. And it is obvious that the researcher factor

should have a new state and finally a new mass in a new position of search space. But how
should these changes in state and mass be created?

In proposed solution, we divide state array on N-dimensions of search space, that is,
for each dimension, we assign some houses to state array.

For example, we would have a state array with six houses and a three-dimensional
search space, where we assign two houses for dimension X and two houses for dimension Y
and two houses for dimension Z (Figure 8).
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2 3 1 7 8 6

Dimension X Dimension Y Dimension Z

Figure 8: State array and dimensions.

3 5 4 1

20+32+40+17=109 s

Figure 9: Result array.

Attention that order of assigned dimensions to the houses are arbitrary, but with
change in position of factor in search space, movement is determined in direction of the
related dimension, and only corresponding cells with that dimension may be changed in
state array, and other values remain constant. So factors could move in direction of their
corresponding dimensions.

Way of changing values is important, and is explained as follow.
When a factor starts to move in one direction, we divide each corresponding value

with related dimension on distance, then by calling neighborhood function, we specify
that by replacing which value in state array total spent time would be decreased and
corresponding mass found better state.

If in searching space just one mass is remained, search would be finished, and by
considering number of remained mass in array (best mass), list of machines is presented for
processing remained operation of respected job, so that production timewould beminimized.

For instance, array (Figure 9) shows that if the first job is implemented by the third
machine, the second job is implemented by the fifth machine and so on, then we would have
ideal time for producing or performing related job, such that required time for performing
one job on specified machines with above mentioned operations and ignoring other times
(such as supplying materials, path stops, delivering times).

9. Experimental Results

To illustrate the effectiveness and performance of the proposed algorithm in this paper,
we consider 43 instances from two classes of standard JSP test problems: instances FT06,
FT10, and FT20 designed by Fisher and Thompson and instances LA01–LA40 designed
by Lawrence. All the test problems are taken from web ftp://mscmga.ms.ic.ac.uk/pub/
jobshop1.txt [30].

All the runs were carried out on a Intel Pentium Core i5 Duo 2.4GHz Processor
and 4GB RAM configuration system. The algorithm was coded in C# language under the
operation system Windows XP. Numerical results are compared with those reported in
some existing literature works using other approaches [25–30], including some heuristic and
metaheuristic algorithms. Take the benchmark problem FT10 for instance.
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Table 4: Experimental results.

Problem Size
(n,m) C∗ Nowicki

[25]
TSSB
[26]

Sabuncuoglu
[27]

HIA
[28]

F&F
[29]

HPSO
[30]

Obtained Values from the
proposed algorithm (GSPN)

FT06 6,6 55 55 55 — 55 55 55 55
FT10 10,10 930 930 930 1016 930 930 930 930
FT20 20,5 1160 1165 1165 — 1165 1165 1165 1160
LA01 10,5 666 666 666 666 666 666 666 666
LA02 10,5 653 655 655 704 655 655 655 653
LA03 10,5 590 597 597 650 597 597 597 590
LA04 10,5 590 590 590 620 590 590 590 590
LA05 10,5 593 593 593 593 593 593 593 594
LA06 15,5 919 926 926 926 926 926 926 919
LA07 15,5 890 890 890 890 890 890 890 890
LA08 15,5 862 863 863 863 863 863 863 862
LA09 15,5 951 951 951 951 951 951 951 951
LA10 15,5 958 958 958 958 958 958 958 958
LA11 20,5 1222 1222 1222 1222 1222 1222 1222 1222
LA12 20,5 1030 1039 1039 1039 1039 1039 1039 1030
LA13 20,5 1145 1150 1150 1150 1150 1150 1150 1145
LA14 20,5 1292 1292 1292 1292 1292 1292 1292 1292
LA15 20,5 1207 1207 1207 1207 1207 1207 1207 1207
LA16 10,10 936 945 945 988 945 945 946 936
LA17 10,10 784 784 784 827 784 784 784 790
LA18 10,10 845 848 848 881 848 848 848 845
LA19 10,10 842 842 842 882 842 842 842 842
LA20 10,10 897 902 902 948 902 907 902 897
LA21 15,10 1023 1046 1047 1154 1046 1052 1057 1023
LA22 15,10 927 927 927 985 927 927 927 927
LA23 15,10 1032 1032 1032 1051 1032 1032 1032 1043
LA24 15,10 935 935 935 992 938 941 938 938
LA25 15,10 964 977 977 1073 979 982 979 964
LA26 20,10 1203 1218 1218 1269 1218 1218 1218 1203
LA27 20,10 1228 1235 1236 1316 1235 1242 1236 1228
LA28 20,10 1203 1216 1216 1373 1216 1225 1225 1203
LA29 20,10 1140 1152 1160 1152 1168 1176 1168 1140
LA30 20,10 1355 1355 1355 1435 1355 1355 1355 1355
LA31 30,10 1784 1784 1784 1784 1784 1784 1784 1784
LA32 30,10 1850 1850 1850 1850 1850 1850 1850 1850
LA33 30,10 1719 1719 1719 1719 1719 1719 1719 1725
LA34 30,10 1721 1721 1721 1780 1721 1721 1721 1721
LA35 30,10 1888 1888 1888 1888 1888 1888 1888 1888
LA36 15,15 1268 1268 1268 1401 1268 1281 1279 1275
LA37 15,15 1391 1397 1407 1503 1411 1418 1423 1391
LA38 15,15 1196 1196 1196 1297 1201 1213 1196 1200
LA39 15,15 1230 1233 1233 1369 1240 1250 1247 1230
LA40 15,15 1212 1222 1229 1347 1233 1228 1236 1212
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Table 4 summarizes the results of the experiments on the 43 instances. The contents of
the table include the name of each problem, the scale of the problem (size n×m), the value of
the best-known solution for each problem (C∗), the value of the best solution found by using
the proposed algorithm (GSPN). From the table, it can be seen that the proposed algorithm
is able to find the best known solution for 37 instances, and the deviation of the minimum
found makespan from the best known solution is also very small. The proposed algorithm
can yields good solution with respect to almost all other algorithms, The superior results
indicate the successful incorporation of PSO and SA, which facilitates the escape from local
minimum points and increases the possibility of finding a better solution. Therefore, it can
conclude that the proposed GSPN solves the JSP efficiently.

10. Conclusion

In this paper, gravitational search algorithm for solving the flexible job-shop scheduling
problem is presented. Due to their special structure, our Gravitational search-based algorithm
works faster and more efficiently than other known algorithms. Our primary objective is
to show that the proposed exploiting gravity leads to an efficient heuristic for the FJSSP.
We presented computational results derived by testing the algorithms which have been
developed in this paper on a number of benchmark problems. The gravitational search
algorithms yield excellent results for almost all problems. Finally, we believe that the
methodology used in this paper can be extended to solve other scheduling problems.
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