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Recently, Yao et al. (2011) introduced two algorithms for solving a system of nonlinear variational
inequalities. In this paper, we consider two general algorithms and obtain the extension results for

computing fixed points of nonexpansive mappings in Banach spaces. Moreover, the fixed points
solve the same system of nonlinear variational inequalities.

1. Introduction

Let X be a real Banach space and let C be a nonempty closed convex subset of X. Recall that
amapping T : C — Cis said to be nonexpansive if |[Tx - Ty| < |lx — y||, forall x,y € C. We
denote by Fix(T) the set of fixed points of T.

Recently, Yao et al. [1] considered the following algorithms:

x¢ = e (I = tF)c(I — AA)c (I - puB)xy, (1.1)
and for an arbitrary point xg € C,
X1 = Pnxn + (1= pu)c(I — ay F)IIc(I = AA) (I — uB)x,, n >0, (1.2)

where Ilc : X — C is a sunny nonexpansive retraction, F : C — X is a strongly positive
bounded linear operator and A,B : C — X are a-inverse-strongly accretive and p-inverse-
strongly accretive operators, respectively. They proved that the {x;} defined by (1.1) and
{x,} defined by (1.2) converge strongly to a unique solution x of the variational inequality
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(F(x),j(x-z)) < 0. Furthermore, they proved that the above algorithms converge strongly to
some solutions of a system of nonlinear inequalities, which involves finding (x*,y*) € C x C
such that

(My* +x* -y, j(x —x")) >0, VxeC,
(1.3)
(uBx* +y* —x*,j(x-y*)) 20, VxeC.

For related works, please see [2-5] and the references therein.

In this paper, we introduce two general algorithms (3.3) and (3.22) (defined below)
and prove that the proposed algorithms strongly converge to x* € Fix(T) which solves the
variational inequality (Fx*, j(x* —u)) <0, u € Fix(T), where F : C — X is a p-Lipschitzian
and #7-strongly accretive operator. It is worth pointing out that our proofs contain some new
techniques.

2. Preliminaries

Let X be a real Banach space with norm || - || and let X* be its dual space. The value of f € X*
and x € X will be denoted by (x, f). For the sequence {x,} in X, we write x,, — x to indicate
that the sequence {x,} converges weakly to x. x, — x means that {x,} converges strongly
to x.

Let 7 > 0, a mapping F of C into X is said to be 7-strongly accretive if there exists
j(x—y) € J(x - y) such that

(Fx-Fy,j(x-y)) 2 nllx-yl’, 2.1)
for all x,y € C. A mapping F from C into X is said to be p-Lipschitzian if, for g > 0,
[Fx - Fy]| < pllx- vl 22)

for all x,y € C. From the definition of F (see [1]), we note that a strongly positive bounded
linear operator F is a ||F||-Lipschitzian and y-strongly accretive operator.

LetU = {x € X : ||x|| = 1}. A Banach space X is said to be uniformly convex if for each
€ € (0,2], there exists 6 > 0 such that for any x,y € U,

|x-vy||>e implies

% “ <1-6. 2.3)

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space X is said to be smooth if the limit

tim 12+ 1= el (2.4)
t—0 t
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exists for all x, y € U. It is said to be uniformly smooth if the limit (2.4) is attained uniformly
for x,y € U. Also, we define a function p : [0, 0) — [0, o) called the modulus of smoothness
of X as follows:

1
p(t) = sup{§(||x+y|| +x-y|)-1:xyeX lxl=1, ||ly| = T}. (2.5)

It is known that X is uniformly smooth if and only if lim, _,0p(7) /T = 0. Let g be a fixed real
number with 1 < g < 2. Then a Banach space X is said to be g-uniformly smooth if there exists
a constant ¢ > 0 such that p(7) < c7 for all 7 > 0.

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (see [6]). Let q be a given real number with 1 < q <2 and let X be a g-uniformly smooth
Banach space. Then

. (2.6)

|+ y||” < lIx11 + q{y, Jo(x)) +2||Ky

for all x,y € X, where K is the g-uniformly smooth constant of X and ], is the generalized duality
mapping from X into 2X" defined by

JoGo) = { £ € X" (x ) = %l [I£1] = %17, (27)

forall x € X.
Lemma 2.2 (see [7]). Let C be a closed convex subset of a smooth Banach space X, let D be a

nonempty subset of C and I1 be a retraction from C onto D. Then I1 is sunny and nonexpansive
if and only if

(u—TI(w),j(y - TI(w))) <0, (2.8)

forallu e Candy € D.

Lemma 2.3 (see [8]). Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X and let T be a nonexpansive mapping of C into itself. If {x,} is a sequence of C such
that x, — x and x, — Tx, — 0, then x is a fixed point of T.

Lemma 2.4 (see [9, 10]). Let {s,} be a sequence of nonnegative real numbers satisfying

Sne1 S (L= Ap)sn + X6+, n2>0, (2.9)

where {A,}, {6} and {y,} satisfy the following conditions: (i) {\,} C [0,1] and 377 Ay = oo, (ii)
limsup, , 6, <00r 3720 1ubp < 00, and (iii) y, >0 (n>0), 3,72 ¥ < o0. Then lim,,_, s, = 0.
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Lemma 2.5 (see [11]). Let {x,} and {z,} be bounded sequences in Banach space E and {y,} be a
sequence in [0, 1] which satisfies the following condition:

0 <lim infy, <limsupy, < 1. (2.10)

n—oo

Suppose that x,.1 = YnXn+(1=Y4)zn, 1 20, and limsup,, _, _ (|zns1 = Zull = [|Xne1 = Xn||) < 0. Then
lim,, _, oo ||z — x4]| = 0.

In addition, we need the following extension of Lemma 2.5 in Wang and Hu [2] in a
2-uniformly smooth Banach space.

Lemma 2.6. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space
X. Let F : C — X be a p-Lipschitzian and n-strongly accretive operator with 0 < n < v/2pK
and 0 < t < 17/2p*K% Then S = (I - tF) : C — X is a contraction with contraction coefficient

7 = \/1-2( - t2K2).

Proof. By Lemma 2.1, we have

I5x - Syll* = || (x ) - (Fx - Fy) ||

= |lx-y|* - 2t<?x ~Fy,j(x- y)> + 2t2K2||fx —fy“z

@2.11)
< llx=yl” - 2tml|x ~y||* + 2K |2~y
= [1 —2t<11—tﬂ2K2>]||x—y 2
forall x,iy € C. From 0 < 7 < v/2fK and 0 < t < 11/2f*K?, we have
|Sx = Sy|| < =||x -y, (2.12)

where 7; = \/ 1-2t(n - tp?K?) € (0,1). Hence S is a contraction with contraction coefficient
Tt. O

3. Main Results

Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth
Banach space X. Let T : C — C be a nonexpansive mapping with Fix(T) #0. Let F : C — X
be a p-Lipschitzian and 7-strongly accretive operator with 0 < 77 < v/2pK. Let t € (0,7/2p*K?)

and 7 = \/ 1-2t(n - tp?K?), consider a mapping S; on C defined by

Six = Tlc (I - tf)Tx, xeC, (3.1)
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where Ilc is a sunny nonexpansive retraction from X onto C. It is easy to see that S; is a
contraction. Indeed, from Lemma 2.6, we have

11 = Syl < ||T1e (1 - £F) Tx = T (1 - £F) Ty |

< || (1-F)Tx - (1- tf)Ty”

(3.2)
<n||Tx-Ty]
<7llx -yl
for all x, y € C. Therefore, the following implicit method is well defined:
x; = Tlc <I - t?):rxt, x €C. (3.3)

Theorem 3.1. The net {x;} generated by the implicit method (3.3) converges in norm, ast — 0% to
the unique solution x* € Fix(T') of the variational inequality:

<?x*, j(x - u)> <0, ueFix(T). (3.4)

Proof. We first show that the solution set of (3.4) is singleton. As a matter of fact, we assume
that x* € Fix(T) and X € Fix(T) both are solutions to (3.4), then

<fx*, jx - i)> <0, (3.5)
(F%,j(@-x")) <0. (3.6)

Adding (3.5) to (3.6), we get
<Fx* ~F%, j(x" - 3?)> <0. 3.7)

The strong accretive of F implies that x* = ¥, and the uniqueness is proved. Below we use
x* € Fix(T) to denote the unique solution of (3.4).

Next, we prove that {x;} is bounded. Taking u € Fix(T), from (3.3) and using
Lemma 2.6, we have

[[ocr — u|| = “Hc (I - t?)Txt - ch”
< n (1 - t?)Txt - (I - tF)Tu - t?Tu”
(3.8)
|| (1 )= (1) o] 38

< Tllx — ul| + t||fu||,
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that is,
o = ) < —— || (3.9)
- 1- T
Observe that
t 1
lim =, (3.10)
t—=0rl-7 7

From t — 0%, we may assume, without loss of generality, that t < 1/26°K? — ¢, where €
is an arbitrarily small positive number. Thus, we have t/(1 — 7;) to be continuous, for all
t € [0,1/2p*K? — €]. Therefore, we obtain

£ n
M1=Sup{l_Tt.tE<O,2'327—€ }<+OO. (311)

From (3.9) and (3.11), we have {x;} bounded and so is { FTx;}.
On the other hand, from (3.3), we obtain

ot — Toxe|| = “HC (1-F)Tx - HCTxt“ < || (1 - tf)Txt - Txt” = t”fot” —0 (t— 0.
(3.12)

Next, we show that {x;} is relatively norm-compact as t — 0*. Assume that {t,} €
(0,1/2p*K?) such thatt, — 0" asn — oo. Put x,, := x4, It follows from (3.12) that

X0 =Txul| — 0 (n — o0). (3.13)
For a given u € Fix(T), by (3.3) and using Lemma 2.2, we have
<xt - (1 - tf)Txt, j(x - u)> <0. (3.14)
By (3.14) and using Lemma 2.6, we have

e = 2ll? = (3 = 4, j (3 — )
= (3= (1= tF) T, jar - w) )+ { (1= £F) Toxi — 1, j (o - w) )
< ((1-tF) T, j(xi - ) (3.15)
< {(1=F)Tx, — (1= F)Tu jixe ) ) + £{Fu, j (- x,) )

< millx - ull? + t(Fu, j(u-x1) ),
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that is,

llxce — ul)* < %ﬂ<fu,j(u - xt)> <M, <fu,j(u - xt)>. (3.16)

In particular,
s — ull* < My <Fu,j(u—xn)>. (3.17)

Since {x;} is bounded, without loss of generality, we may assume that {x,} converges
weakly to a point X. Noticing (3.13) we can use Lemma 2.3 to get X € Fix(T). Therefore we
can substitute X for u in (3.17) to get

It = &l < M (F, (% - x2) ). (3.18)

Consequently, the weak convergence of {x,} to X actually implies that x, — X. This has
proved the relative norm compactness of the net {x;} ast — 0*.
We next show that X solves the variational inequality (3.4). Observe that

x; = Tl¢ <I - tf)Txt - (I - tf) Tx; - <I - t?)xt + <I - tf)Txt +x; — tF (xy)

B . 3 B B 3 (3.19)
= F(x) =1 [HC (I - tF)Txt - (I - tF)Txt - <I - tF)xt + (I - tF)Txt].
For any u € Fix(T), we have
= . 1 = = .
(Fxy, j(x¢ —u)) = ?<HC<I— tF)Txt - (I - tF)Txt,](xt - u)>
1 — N
- ?<<I— tF>xt - (I - tF)Txt,](xt - u)>
1 . = = ;
< —;(xt =Ty, j(xe—u)) + <Fxt — FTxy, j(x: - u)> (3.20)
1 .
< —;((I =T)xe = (I =T)u, j(oxr —u)) + Bllxe = Txell|x — ull
< PMo||x; = Txel|,
where My = sup{||x; — ul|,t € (0,1/2f°K?)}.
Now replacing t in (3.20) with f,, and letting n — oo, we have
<F§, (% - u)> <0. (3.21)

That is, X € Fix(T) is a solution of (3.4), hence X = x* by uniqueness. In summary, we have
shown that each cluster point of {x;} (att — 0) equals x*. Therefore, x;y — x*ast — 0. O
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Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space X with a weakly sequentially continuous duality mapping j. Let F : C — X be
a B-Lipschitzian and n-strongly accretive operator with 0 < 1 < v/2BK. Suppose that T : C — C is
a nonexpansive mapping with Fix(T) # (. Let T1c be a sunny nonexpansive retraction from X onto C.
Let {a,} and {B,} be two real sequences in (0, 1) and satisfy the conditions:

(A1) limy, , a, =0and 3.7 a, = oo,

(A2) 0 <liminf, ., ,f, <limsup, ,_f, <1

For given x1 € C arbitrarily, let the sequence {x,} be generated by

yn =1Ilc <I - anl?> Tx,,

(3.22)
Xn+1 = ﬁnxn + (l - pn)yn, n> 0.

Then the sequence {x,} strongly converges to x* € Fix(T) which solves the variational inequality
(3.4).

Proof. We proceed with the following steps.

Step 1. We claim that {x,} is bounded. From lim, _, @, = 0, we may assume, without loss of
generality, that 0 < a, < 17/2p*K? — € for all n. In fact, let u € Fix(T), from (3.22) and using
Lemma 2.6, we have
lyn —u| = ”HC <I - a,f)Txn - ch”
< || (1 - anf) Tx, - (1 - anf) Tu - a,fu” (3.23)

< Ty, 1% — ul| + an

Ful,

where 7, = \/1 —2a,(n - a,f?K?) € (0,1). Then from (3.22) and (3.23), we obtain

beer = 1l < Bulln =l + (1= Bu) [y — ]
< Pulln =l + (1= Bu) (7, = ] + o[ Fue]|)
< [1= (1= ) (1= 7]l = 2l + (1= oo | Fia (3.24)

[
< max Xy —U||, —/mm .
< max e =l 7 -

By induction, we have

e = el < max{ les ~ ul, M5 [ Fu

L (3.25)

where M3 = sup{a,/(1-174,) : 0 < a, <1/2f°K? — €} < +o0. Therefore, {x,} is bounded. We
also obtain that {y,} and {FTx,} are bounded.
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Step 2. We claim that lim,, _, o, ||x,, — Y| = 0. Observe that

91 = yull = |[Te (1 = @i F) Tts =Tl (1 - @ F) T,
< || <I - an+1f> TxXps1 — (1 - an?> Tx,
FTan

(3.26)

ST xpe1 = Txnl| + apa FTxn

+ay

< ||xn+1 - xn” + ani1 ?Txn-#l +an FTxn

Therefore, we have

limsup(||yn+1 - yn" - ”xn+1 - xn”) <0. (3-27)

From (3.22), (3.27), and using Lemma 2.5, we have lim,,_, . ||x, — yx|| = 0.

Step 3. We claim that lim,, _, o ||iy» — Tyx|| = 0. Observe that

lyn = Tyall = ||Tic (1 - @uF ) T, ~ e Ty
I?Txn

S| Txn = Tya| + an

(3.28)

<[l = yull + | FT,

Hence, from Step 2 and lim,, _, ., = 0, we have

lim ||y, — Ty | =0. (329)

Step 4. We claim that limsup, _, (l_fx*, j(x* —y,)) <0, where x* = lim;_, ox; and x; is defined
by (3.3). Since y, is bounded, there exists a subsequence {y,.} of {y,} which converges
weakly to w. From Step 3, we obtain Ty,, — w. From Lemma 2.3, we have w € Fix(T).
Hence, using Theorem 3.1, we have x* € Fix(T) and

lim sup<fx*,j(x* - y,,)> = kliir:o<fx*,j(x* - ynk)> = <fx*,j(x* - w)> <0. (3.30)

n—oo

Step 5. We claim that {x,} converges strongly to x* € Fix(T). From (3.22) and using
Lemma 2.2, we have

<HC <I - tx,f)Txn - <I - ac,f)Txn,j(yn - x*)> <0. (3.31)
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Observe that
||yn—x | = <HC<I Ay )Txn_x r](]/n_x )>
= (Te (1 - a4 F) Ty~ (1 = aF) T, j(yu — x°) )
+ <<I ay )Txn—x J(Yn —x" )>
<<I )Txn_x/](yn_x)>
_ . _ (3.32)
< <<1 zan>Txn (1 - anF>Tx*,](yn - x*)> + an<Fx*,](x* - yn)>
< || (I - anF>Txn - (1 - a,f)Tx*” llyn - x*|| + an <fx*,j(x* - Yn) >
< Tt = x Wy = | + aa{(Fx', (5" = ) )
e a2 4 2 - 4 (B 57 - ) )
that is,
llyn — x*||2 < Ty |20, — X*|* + 2at,, <fx*,j(x* ~Yn) > (3.33)

By (3.22) and (3.33), we have

Penst = 211 < Bullacn = x* 17 + (1= B) [lyn - x|
< Pl = %I + (1= Bu) i e = %I + 20 (Fx' (5" = ya) )|
< [1= (1= ) (1 = 7o) ln = 1P+ 2M (1 = ) (1 = 7,) (F", j(x" = ) )

= (1= A)||xn — X*|1> + MBSy,
(3.34)

where A, = (1 - Bu)(A = Ta,), 60 = ZMg(fx*,j(x* — Yn)). It is easy to see that A, — 0,
Se1An = oo and limsup, , 6, < 0. Hence, by Lemma 2.4, the sequence {x,} converges
strongly to x* € Fix(T). From x* = lim;_,ox; and Theorem 3.1, we have x* to be the unique
solution of the variational inequality (3.4). O

Taking T = ITc(I = MA)[Tc(I — uB) and F = F, where 0 < A < a/K?and 0 < u < 11/ K2,
we obtain the following theorems immediately.

Corollary 3.3 (see [1, Theorem 3.5]). The net {x;} generated by the implicit method (1.1) converges
in norm, as t — 0%, to the unique solution X of variational inequality

¥eQ, (F(X),j(x-2))<0, z€Q. (3.35)
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Corollary 3.4 (see [1, Theorem 3.7]). Let C be a nonempty closed convex subset of a uniformly
convex and 2-uniformly smooth Banach space X and let Ilc be a sunny nonexpansive retraction from
X onto C. Let the mappings A,B : C — X be a-inverse-strongly accretive and p-inverse-strongly
accretive operators, respectively. Let F : C — H be a strongly positive linear bounded operator with
coefficient y > 0. For given xy € C, let the sequence {x,} be generated iteratively by (1.2). Suppose
that the sequences {a,} and {B,} satisfy the conditions (A1) and (A2), then {x,} converges strongly
to X € Q which solves the variational inequality (3.35).
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