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This paper investigates the presence of limit oscillations in an adaptive sampling system. The
basic sampling criterion operates in the sense that each next sampling occurs when the absolute
difference of the signal amplitude with respect to its currently sampled signal equalizes a
prescribed threshold amplitude. The sampling criterion is extended involving a prescribed set of
amplitudes. The limit oscillations might be interpreted through the equivalence of the adaptive
sampling and hold device with a nonlinear one consisting of a relay with multiple hysteresis whose
parameterization is, in general, dependent on the initial conditions of the dynamic system. The
performed study is performed on the time domain.

1. Introduction

Nonperiodic sampling theory opens a set of new technical possibilities compared with the
classical sampling with periodic sampling period [1–17]. Those possibilities are as follows:

(1) to adapt the sampled signals to get better performances [1–3, 6, 8, 9, 16]: for
instance, if that signal varies rapidly, then the sampling period is made smaller and
vice versa. In general, some constraints in terms of bandwidth, stability, and
technical requirements related to circuitry or computing should be respected so that
the sampling rate has to belong to some appropriate admissibility domain;

(2) transmission errors from data to results in algebraic problems like controllability,
and observability, might be reduced by a judicious selection of the sampling
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instants when choosing a fixed sampling period. The reason is that the condition
number of the matrix defining the problem depends on such a choice and one can
convert a one-parameter optimization problem (a fixed sampling period) into a
multiple one (the whole set of distinct sampling periods). In particular, the smaller
the condition number of the coefficient matrix is, the smaller are the relative trans-
mission errors from the data to the results depending on each particular problem
dealt with [13, 14, 16]. The technique might be used by its “ad-hoc” implementation
in a great variety of problems like biology measurements, economics, control theory
and engineering, [16], statistics, random sampling [18–22];

(3) to improve the adaptation transients in recursive identification or adaptive control
of both classical or hybrid systems by combining the estimation algorithm with the
signal adaptation, [2, 3, 9, 16]. Related adaptive sampling techniques can be used in
the context of expert systems to improve the performances under supervisory rules
(see, e.g., [17] and references therein).

Nonperiodic sampling being updated under certain adaptive sampling laws can
often be interpreted as event-driven [23, 24], since, although sampling occurs through
time, most of sampling rules involve signal comparison rules related to their immediate
previous sampled values or involve certain performance tests. There are a set of background
interesting papers, available in the literature, in which sampling is considered either state-
dependent, random, or based in stochastic considerations, in general, and used in a number of
applications. See, for instance, [19–22, 25–27] and references therein. The constant difference
of amplitudes sampling criterion consists of keeping constant the absolute increment of
the signal being sampled inbetween each two consecutive sampling instants. The sampling
criterion together with its associate sampling and zero-order-hold device is equivalent to
a separate nonlinearity which is fully equivalent to a multiple relay with hysteresis (i.e.,
a multiple bang-bang device with hysteresis). See [1, 15, 18, 28–32] and some references
there in. In particular, the sampling criterion based on constant difference of amplitudes was
generalized in [1] to the use of several threshold amplitudes the initial sampling criterion
proposal of [30] based on a single constant difference of amplitudes. This equivalence
motivates that the discretized system exhibits some properties being commonly associated
with certain nonlinear systems, like for instance, the potential existence of limit oscillations.
A close nonlinear model was proposed in [21] for feedback-based stabilization by triggering
the plant output samples through the crossings, with hysteresis, of the signal through its
quantization levels. In [22], a close problem related to saturating quantized measurements
is focused on. It is well known that limit cycles are highly unsuitable in applications where
the objective is to get a zero asymptotic tracking errors. However, they are pursued as an
objective for the design of oscillators is some applications as in the design of tank circuits for
tuning a suited frequency in radio or TV. There are unified sampling formulations available
in the background literature including the presence of sampling constraints in [33, 34] and
references there in, and work is also in progress to extend results to the presence of internal
delays [35].

This paper characterizes and formalizes mathematically in the time domain the above
sampling criterion by extending some previous background results in [1, 18], where the study
of oscillations was only approximate and made in a first-harmonic approximation in the
frequency domain by using the describing function approach, while the stability properties
were not investigated. The results are obtained in the time domain rather than in the
frequency one. This allows not to necessarily assume in the problem statement that the linear
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dynamics exhibits low-pass filtering properties so as to justify the use of a first-harmonic
approximation method, as it was done in [1, 15, 18] which was an important limitation in
those papers. In this way, such an assumption is no longer needed in the subsequent study
which is performed with an exact analytic treatment rather than involving an approximate
one. Also, a set of difference amplitudes, rather than a constant fixed one, are allowed in
a generalized version of that sampling criterion in order to generalize the problem and to
improve its potential applicability. If there is just a single amplitude available to be used as
adaptive sampling threshold, then the sampling criterion is referred to as constant amplitude
difference sampling criterion (CADSC). If several amplitudes are used, then the sampling
criterion is referred to as sampling-dependent amplitude difference sampling criterion (SDADSC).
Note that the model obtained in [4] for nonperiodically sampled systems is basically a linear
time-varying difference equation. This model is useful to describe discretized systems under
varying sampling periods. The time-varying coefficients of the discrete equation depend on
both the sequence of sampling periods and the continuous-time parameters. Thus, it may be
applied also to the criterion of constant difference of amplitudes. However, some properties
like, for instance, the ability of generating limit oscillations are not easily discovered from an
earlier inspection when using such a time- varying linear equation. The analysis method for
stability and limit oscillations consists basically of the following steps:

(a) describe the linear uncontrolled continuous-timer system by an ordinary differen-
tial equation of nth order submitted to a piecewise constant control input which
varies at a set of sampling instants with, in general, time-varying sampling periods.
The “ad hoc” control device for this purpose is referred to as a sampling and hold
device. The solution of such a differential system is referred to as the “output” of
the system;

(b) discretize the equivalent differential system of nth order at generic sampling
instants. Since the input is piecewise constant with discontinuities at such time
instants, the solution of the differential equation for any given initial conditions
coincides with that of the discretized system at sampling instants. The feedback
law for a regulator with unity feedback is introduced so that the piecewise constant
feedback control takes the minus values of the output at sampling instants;

(c) define the generic sampling instants as those generated by the event-driven law
of constant absolute difference of amplitudes of the feedback error inbetween each
two consecutive sampling instants. This is generalized for a set of prescribed ampli-
tudes in a more general sampling criterion. The amplitude, or the set of amplitudes,
parameterize the solution together with the parameters of the continuous-time
differential equation. It is seen that the zero-order and hold device together with the
sampling criterion is equivalent to a relay with a multiple hysteresis. This suggests
that limit cycles of the solution can potentially exist;

(d) limit cycles are found by investigating double points of the solution in the time
domain.

The dynamic system studied in this paper is complex in the sense that a continuous-
time dynamic system is controlled by a feedback law consisting of an adaptive sampling
criterion which is based on the use of a set of threshold amplitudes to calculate the sequence
of sampling instants. For a second-order case study given in Section 5, it is shown that
the zero-order hold used for discretization plus the adaptive sampling criterion itself are
jointly equivalent to a relay device with multiple hysteresis. The whole feedback type is
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hybrid since it consist of a continuous-time system under nonlinear feedback and, in this
sense, the whole system is a complex dynamic system. The equivalent multiple relay with
hysteresis nonlinearity in the feedback-loop allows to interpret the presence of sustained limit
oscillations as an asymptotic solution of the state-space trajectory of the closed-loop system.

2. Some Preliminary Framework and Basic Results

Notation. R is the set of real numbers, R0+ := {R � z ≥ 0} and R+ := {R � z > 0} ≡ R0+ \ {0}:

(i) N the set of natural numbers, N0 = N ∪ {0} and k := {1, 2, . . . , k} ⊂ N is the set of
natural numbers ranging from 1 to k;

(ii) PC(R0+,R) is the set of piecewise continuous functions on R0+;

(iii) PC(n−1)([0, Tper];R) is the set of real almost everywhere piecewise (n − 1)th
continuous-time differentiable functions on the definition domain [0, Tper];

(iv) In is the nth order identity matrix;

(v) the disjunction logic rule (spelled “or”) and the conjunction logic rule (spelled
“and”) are denoted by the symbols ∨ and ∧, respectively;

(vi) the �2 (or spectral) vector norm of z ∈ Rq is defined as ‖z‖2 =
√
zTz (with the

superscript “T” standing for transposition. The �2-vector norm coincides with the
Froebenius or Euclidean vector norm;

(vii) for a real matrix M ∈ Rp×q, its �2-induced matrix norm is

‖M‖2 := max

(‖Mz‖
2

‖z‖2
: 0 < ‖z‖2 ≤ 1

)
= max

(√
zTz : ‖z‖2 = 1

)

= max
(∣∣∣λi(MTM

)∣∣∣1/2
: λi ∈ σ

(
MTM

)
; ∀i ∈ nσ

)
,

(2.1)

where σ(MTM) is the spectrum of the square matrix MTM consisting of 1 ≤ nσ ≤ q
distinct real eigenvalues λi; i ∈ nσ . The above positive real maximum defining the
spectral ‖M‖2 will be denoted by λmax(MTM). If q = p, then ‖M‖2

2 = ‖MTM‖2 =
λmax(MTM) = |λmax(M)|2;

(viii) f ∈ CT ( Rp × [tk, tk+1); Rq) is a testing real vector function f : Rp × [tk, tk+1) → Rq

within a testing class CT being of the form f(xτ , τ), where “s” stands for cartesian
product of sets, with xτ being a real p-dimensional strip on [tk, tk+1) where tk and
tk+1 are two consecutive sampling instants from some sampling criterion SC. Thus,
f is a piecewise real vector function from Rp to Rq on [tk, tk+ 1) valued at some
argument vector function x : Rp × [tk, tk+1) → Rq.

Consider the ordinary linear time-invariant differential equation:

A(D)y(t) = B(D)u(t), Diy(0) = y(i)(0) ∈ R, (2.2)

under a piecewise continuous control input u ∈ PC(R0+,R) to be specified later on, where
R0+ := {R � z ≥ 0} and the polynomials A(D) and B(D) of real coefficients in the time-
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derivative operator D := d/dt (subject to D0 = 1 and Di = DDi−1; for all i ∈ N), which is
formally equivalent to the Laplace transform argument “s,” are

A(D) =
n∑
i=0

aiD
n−i, B(D) =

m∑
i=0

biD
m−i, (2.3)

where a0 /= 0, b0 /= 0 and n := deg(A(D)) ≥ m := deg(B(D)) so that the transfer function
G(s) = B(s)/A(s) is realizable, where the Laplace argument “s” is formally equivalent to
the time derivative operator “D = d/dt.” It is assumed with no loss in generality that the
polynomial A(D) is monic, that is, a0 = 1, since any other nonzero value a0 /= 1 can also lead
to the differential equation (2.2) after normalization by a0 of all the remaining coefficients of
A(D) and B(D). It is also assumed that any potential zero cancellations in those polynomials,
if any, are stable. This guarantees that the state-space realization is either minimal (i.e., no
such cancellations exist) or, otherwise, any existing uncontrollable/unobservable mode is
stable so that it does not contribute to the asymptotic solution as time tends to infinity. It is
well known that the differential equation (2.2) can be described by a nth order differential
system of first-order differential equations. Through the paper, it will be assumed that the
differential system (2.2)-(2.3) will be controlled by a unity feedback control using, in general,
nonperiodically samples y(ti); i ∈ N0 of the solution y(t). The unity feedback control law is
from a zero-order sampling and hold device by

u(t) = e(tk) := y(tk) − r(tk); ∀t ∈ [tk, tk+1), (2.4)

where r ∈ PC(R0+,R) and e ∈ PC(R0+,R) are, the reference function and the error feedback
respectively, and

SI :=
{
tk ∈ R0+ : t0 ∈ R0+, ∞ ≥ t ≥ tk+1 > tk, ∀k ∈ ID ⊂ N0

}
,

SP :=
{
Tk ∈ R+ : Tk := tk+1 − tk ≤ T ≤ ∞, ∀k ∈ ID ⊂ N0

}
,

(2.5)

are, the totally ordered set of sampling instants of indicator set ID ⊂ N0 and the associated set
of sampling periods with the same indicator set, respectively. Note that u ∈ PC(R0+,R) and
it is, in particular, piecewise constant. The following simple sampling process consistency
result holds directly from (2.5).

Lemma 2.1. Assume by convention, and with no loss in generality, that the first sampling instant
t0 = 0 and that k ∈ N ∩ ID ⇒ (k − 1) ∈ ID. Then,

t < ∞ ⇐⇒
[
(Card(ID) = Card(SI) = Card(SP) = k + 1 < ∞)

∧
(
∃tk := max

j∈ID

(
tj
) ≤ t < ∞

)
∧
(
T = lim sup

j→∞
Tj = Tk = ∞

)]
,

t = ∞ ⇐⇒
[
(Card(ID) = Card(SI) = Card(SP) = ℵ0) ∧

(
¬∃tk := max

j ∈ ID

(
tj
)
< ∞

)
∧
(
T < ∞

)]
.

(2.6)
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The convention t0 = 0 does not imply loss in generality and it is adopted to simplify the
exposition. The convention k ∈ N∩ID ⇒ (k−1) ∈ ID means that no natural number is missed
inbetween any two consecutive ones in the enumeration of the members of SI and SP. The first
part of Lemma 2.1 related to t < ∞ means that the sampling process stops in finite time so that
there is a maximum and last finite sampling instant and a last unbounded sampling period
(therefore, the sequence of sampling periods is unbounded with infinite superior limit), and
also that the number of sampling instants and periods is finite. The part of Lemma 2.1 for
t = ∞ states that the sampling process never ends so that there are infinitely many sampling
instants and periods belonging to their respective numerable sets. Therefore, the cardinal of
those sets is denoted by ℵ0 related to infinite cardinals of numerable sets while the ∞ symbol
is usually applied to cardinals of nonnumerable sets of infinitely many elements.

2.1. General Sampling Criterion and a Particular Sampling
Criterion of Interest

A general sampling criterion SC is defined as an iterative procedure for some given testing
function of the error and/or some of its time derivatives on a next tentative sampling period:

tk+1 ∈ SI = SI(SC) is generated by the sampling criterion SC; ∀k ∈ N0 if

tk+1 := Arg min
(
R0+� t > tk : f ∈ CT

(
Die×[tk, t)⊂RJ×[tk, t), some i∈J ⊆n−1 ∪ {0};R

)

satisfies SC; tk ∈ SI
)
∈ SI,

(2.7)

where t0 ∈ SI. Therefore, given a set of sampling instants tj ∈ SI for all j ∈ k∪{0}, then tk+1 ∈ SI
or Tk = ∞ if the sampling criterion ends such that Card(SI) = k + 1 < ∞. Sampling criteria
through testing functions have been obtained in [1–3, 9, 14]. Some of them generate sampling
periods in-between consecutive sampling instants as being inversely proportional to the time
derivative of the sampled function, or to a combination of consecutive time derivatives,
between a maximum admissibility interval (chosen from engineering requirements a such
a stability or suited bandwidth). Other types of sampling criteria are chosen through integral
criteria over the current sampling period of a quadratic, or some higher even power, of the
error time integral between the sampled function and its previous sampled value. A very
important one is the so-called criterion of constant difference of amplitudes, firstly proposed
in [30], and then generalized formally in [1], and intuitively focused on in [18], to the use of
a set of amplitudes which are thresholds of the variation of the sampled signal for each next
sampling process. The whole element consisting of the sampling and hold device plus the
CADSC (or the more general SDADSC) is, equivalently, modelled with a multiple-hysteresis
relay, [1, 15, 18]. This curious nonlinearity in the control law allows an easy interpretation
about why sustained oscillations can appear even when the main forward dynamics is
linear. If a tracker is being designed, then the use of multiple amplitudes as signal sampling
thresholds allows to decrease the amplitude of eventual sustained oscillations and then to
improve the tracking servo from a control engineering point of view. Those sampling criteria
have the important property, that they are able to generate sustained oscillations of great
interest in oscillator design but unsuitable in tracking control problems since a permanent
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error between the tracked reference and the governed output signals always exists (see
also [16, 17, 23]). In particular, some more general sampling criteria are obtained in [17]
which include as particular cases many of those ones existing by that date in the background
literature. Some of the results in this paper apply to generic sampling criteria (2.7) irrespective
of each particular SC. Other specific results are mainly concerned with a particular sampling
criterion, the so-called, SDADSC [1], which is defined implicitly as follows:

tk+1 = Arg min(R0+ � t > tk : |e(t) − e(tk)| = δk ∈ R+, tk ∈ SI) ∈ SI, (2.8)

for some given sampling set STδ := {δk ∈ R+ : 0 < δ ≤ δk ≤ δ < ∞, for all k ∈ ID}
of amplitude thresholds of the SC. Note from (2.2)–(2.4) that the solution of (2.2) is unique
for each set of initial conditions from Picard-Lindelöff theorem for existence and uniqueness
of systems of differential equations from continuity and complete induction arguments
as follows. Provided that a unique solution exists on [t0, tk) for given initial conditions
Diy(0) = y(i)(0) ∈ R, a continuous and time-differentiable solution also exists and it is
unique on [t0, tk], and since the input is piecewise constant on [tk, tk+1), it is also continuous
and time-differentiable on [tk, tk+1) for all tk ∈ SI. Furthermore, the solution is everywhere
continuously time-differentiable if n−m ≥ 2. This follows from the uniqueness of the solutions
of ordinary differential equations (ODE) for each given set of initial conditions. The following
consistency lemma follows. If δk = δ ∈ R+ for all k ∈ N0 in (2.8), then the sampling criterion
becomes, in particular, the CADSC [1].

Lemma 2.2. t0 ∈ SI ⇒ tk ∈ SI for all k ∈ N, via the sampling rule (2.7), irrespective of the sampling
set of amplitudes STδ.

Proof. Proceed by complete induction by assuming that tj ∈ SI for all j ∈ k so that from (2.8):

tj+1 = Arg
(
t > tj :

∣∣e(t) − e
(
tj
)∣∣ = δj ∈ R+, tj ∈ SI

) ∈ SI, ∀j ∈ k − 1 ∪ {0} ⊂ ID

⇐⇒ [(
tj+1 = Arg

(
t > tj :

∣∣e(t) − e
(
tj
)∣∣

= δj ∈ R+, ∀tj(≤ tk−1) ∈ SI
) ∈ SI

)]
; ∀j ∈ k − 1 ∪ {0} ⊂ ID

∧ (tk+1 = Arg (t > tk : |e(t) − e(tk)| = δk ∈ R+, tk ∈ SI) ∈ SI
)]

⇐⇒ tj+1 = Arg
(
t > tj :

∣∣e(t) − e
(
tj
)∣∣ = δj ∈ R+, ∀tj(≤ tk) ∈ SI

) ∈ SI; ∀j ∈ k ∪ {0} ⊂ ID.

(2.9)

The sampling criterion (2.8) and its particular version for constant amplitude is of
major theoretical interest because the study of the dynamics it generates combines properties
of discrete-time systems with some properties of nonlinear systems since, in particular, limit
cycles appear in the solution of (2.2)–(2.4) for both the SDADSC, [1, 18]. If δk = δ is a positive
real constant then the sampling criterion is the CADSC, [1, 15–18]. It has been also used in
some practical applications, in particular, for tuning PID controllers, [1]. Since the generation
of each next sampling period is given by an implicit function in such sampling criteria, the
whole control scheme might be considered in the framework of event-driven processes. It is
known that for any nonsingular real matrix T ∈ Rn×n, a time-differentiable real-state vector
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function x : R0+ → Rn satisfying x(t) = T(y(t), Dy(t), . . . , Dn−1y(t))T may be defined so that
(2.2)–(2.4) is equivalent to the nth order dynamic feedback system:

ẋ(t) = Ax(t) + b
(
r(tk) − y(tk)

)
, y(t) = cTx(t), ∀t ∈ [tk , tk+1), (2.10)

where A ∈ Rn×n and b, c ∈ Rn are the matrix of dynamics and the control and output
vectors of the continuous-time system, which depend on the coefficients of the polynomials
A(D) and B(D) and on the entries to the matrix T, subject to initial conditions x(0) =
T(y(0), Dy(0), . . . , Dn−1y(0))T at t = 0. Equation (2.10) holds for any set of sampling instants
SI independent of the particular sampling criterion (2.7). The solution of the first equation
in (2.10) within [tk , tk+1) yields directly, again irrespective of SC, the following discrete-time
system:

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)u(tk) = Ψ(Tk)x(tk) + Γ(Tk)r(tk),

=
k∏

i = 0

[Ψ(Ti)]x(0) +
k∑
i=0

k∏
j = i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti),

(2.11a)

y(tk+1) = cTx(tk+1), (2.11b)

where

Ψ(Tk) := Φ(Tk) − Γ(Tk)cT = eATk

(
In −

(∫Tk

0
eA(Tk−τ) dτ

)
bcT

)
(2.12a)

Φ(Tk) := eA Tk , Γ(Tk) :=

(∫Tk

0
eA(Tk− τ) dτ

)
b, (2.12b)

where Φ(Tk) and Ψ(Tk) are the open-loop (i.e., control-free) and closed-loop (i.e., controlled)
matrices of dynamics, respectively, and Γ(Tk) and c are the control and output vectors,
respectively.

2.2. Basic Stability Results

The global BIBO (bounded-input bounded-output) stability of the controlled closed-loop
system is discussed provided that the uncontrolled transfer function: G(s) := cT(sIn −A)−1b
is stable and it possesses a sufficiently small static gain related to the admissible variation
domain of the time-varying sampling periods. In the regulation case (i.e., the case of
identically zero reference signal r(t)), the closed-loop system is globally asymptotically
Lyapunov stable. Note that the static gain of |G(s)|, |G(0)| = |cTA−1b|, varies linearly with
|bTc| since det(A)/= 0 if A is a stability matrix. Note that the assumption of smallness of the
static gain of the open-loop transfer function is always achievable via incorporation of an
amplifier of sufficiently small gain K to the forward loop provided that such a condition
is not directly satisfied by the given transfer function so that |KcTb| is as sufficiently small
as requested. It is proven in the next result that if the maximum allowable time-varying
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sampling period Tmax increases, then the allowed |G(0)| being compatible with stability
decreases correspondingly. If the minimum allowable sampling period Tmin increases then
such a gain may increase while keeping the stability. The inequality useful for stability in
Theorem 2.3 below is |bTc| ≤ (1 − ε − e−rTmin)r/Tmax(1 − e−rTmax), with ε < 1 − e−rTmin and
max(Reλi(A) < −r < 0; λi(A) ∈ σ(A) for all i ∈ nσA). The stability abscissa of the system
matrix is also relevant in the sense that the gain is allowed to increase as such an abscissa
increases. The subsequent result is concerned with such considerations.

Theorem 2.3. Assume that there is an admissibility bounded interval [Tmin, Tmax] such that Tk ∈
[Tmin, Tmax] for all Tk ∈ SP for some given sampling criterion SC. Assume also that A is a stability
matrix (i.e., G(s) := cT (sIn −A)−1b is a stable transfer function). Then, if |bTc| is sufficiently small
according to an explicit trade-off related to the size of [Tmin, Tmax] and the stability abscissa of the
matrix A, then the closed-loop system is BIBO stable. Furthermore, it is globally asymptotically
Lyapunov stable in the regulation case without any extra assumptions on the uncontrolled transfer
function.

Proof. Direct calculations with (2.12a) and (2.12b) yield:

‖Ψ(Tk)‖2 ≤
∥∥∥eATk

∥∥∥
2

∥∥∥∥∥In −
(∫Tk

0
e−Aτ dτ

)
bcT

∥∥∥∥∥
2

≤ e−rTk +
1 − e−rTk

r
Tk
∣∣∣bTc∣∣∣

≤ e−rTmin +
1 − e−rTmax

r
Tmax

∣∣∣bTc∣∣∣ ≤ 1 − ε < 1

(2.13)

provided that |bTc| ≤ (1−ε−e−rTmin)r/Tmax(1−e−rTmax), for some prefixed real constant ε ∈ (0, 1)
satisfying 0 < ε < 1 − e−rTmin , max(Reλi(A) < −r < 0;λi(A) ∈ σ(A) for all i ∈ nσA) (for some
1 ≤ nσA ≤ n being the number of distinct eigenvalues of A), and Tk ∈ �Tmin, Tmax� for all Tk ∈
SP and any given sampling criterion SC. Proceeding recursively and taking �2-vector and
matrix norms in (2.11a) and (2.11b), one gets since

‖Ψ(Tk)‖2 ≤ ρ := 1 − ε < 1,

‖Γ(Tk)‖2 ≤

(
1 − e−rTk

)
r

∣∣∣bTc∣∣∣ ≤
(
1 − ε − e−rTmin

)
Tmax

,

(2.14)

‖x(tk+1)‖2 ≤
∥∥∥∥∥

k∏
i= 0

[Ψ(Ti)]

∥∥∥∥∥
2

‖x(0)‖2 +
k∑

i= 0

∥∥∥∥∥∥
k∏

j = i+1

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

‖Γ(Ti)‖2|r(ti)|

≤ εk‖x(0)‖2 +
1 − ε − e−rTmin

Tmax

(
k∑

i = 0

εk−i
)

max
i∈ k ∪ {0}

(|r(ti)|)

≤ εk‖x(0)‖2 +
1 − ε − e−rTmin

(1 − ε)Tmax
max
i∈N0

(|r(ti)|)

≤ Kx(‖x(0)‖2) +Kr0Kr

< ∞, ∀tk+1 ∈ SI,

(2.15)
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where Kr0 := (1 − ε − e−rTmin)/(1 − ε)Tmax, Kr := maxi∈N0(‖r(ti)‖2), and then

0 ≤ lim sup
k→∞

‖x(tk+1)‖2 ≤ Kr0 max
i ∈ N0

(|r(ti)|) ≤ Kr0Kr < ∞, (2.16)

since εk → 0 as k → ∞. Equations (2.11a) and (2.11b)-(2.12a) and (2.12b) are replaced
within the inter-sample time intervals with:

x(tk + τ) = Ψ(τ)x(tk) + Γ(τ)r(tk), ∀τ ∈ �0, Tk), (2.17)

Ψ(τ) := Φ(τ) − Γ(τ)cT = eAτ

(
In −

(∫ τ

0
eA(τ− τ

′
)dτ

′
)
bcT

)
, ∀τ ∈ �0, Tk),

Φ(τ) := eAτ , Γ(τ) :=
(∫ τ

0
eA(τ− τ

′
)dτ

′
)
b, ∀τ ∈ �0, Tk), ∀Tk ∈ SP,

(2.18)

so that, one gets from (2.17)-(2.18) by using (2.15)-(2.16):

‖x(tk + τ)‖2 ≤ ‖Ψ(τ)‖2‖x(tk)‖2 + ‖Γ(τ)‖2|r(tk)|

≤ K
′
εk(‖x(0)‖2) +

(
Kr0 + r−1

∣∣∣bTc∣∣∣)Kr < ∞, ∀τ ∈ �0, Tk), ∀Tk ∈ SP,
(2.19)

0 ≤ lim sup
k→∞

‖x(tk + τ)‖2 ≤
(
Kr0 + r−1

∣∣∣bTc∣∣∣)Kr < ∞, ∀τ ∈ �0, Tk), ∀Tk ∈ SP. (2.20)

Thus, the dynamic system (2.11a) and (2.11b)-(2.12a) and (2.12b) is bounded-input-
bounded-output (BIBO) stable for any uniformly bounded reference r(t). If the reference
is identically zero (regulation), then Kr = 0 so that, one gets from (2.16)–(2.20), that
limk→∞x(tk + τ) = 0 for all τ ∈ [0, Tk) for all Tk ∈ SP, irrespective of the initial conditions
so that the dynamic system is globally asymptotically Lyapunov stable. The proof is
complete.

It is obvious that Ψ(Tk) is a convergent matrix (i.e., a stability matrix in the discrete
sense then all its eigenvalues have modulus less than unity) under the conditions of
Theorem 2.3. Note that, otherwise, the state at sampling instants would be at least critically
stable and would diverge for certain bounded inputs which could be fixed by construction.
Since the system is globally Lyapunov stable then it also exhibits ultimate boundedness in
the usual Lyapunov sense as direct conclusion from Theorem 2.3. A more general ultimate
boundedness results is now derived without invoking a sufficiently small static gain of
the uncontrolled system for a string of consecutive products of the matrix Ψ(Tk) being
convergent.

Theorem 2.4. The following properties hold:
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(i) assume that for a given SC and each k ∈ ID, there exists 1 ≤ i = i(k) ≤ i < ∞ such that
‖Ψ(tk, tk+ i)‖2 ≤ ε1 < 1, where Ψ(tk, tk+i) :=

∏k+i−1
j = k [Ψ(Tj)]. Thus, the system is BIBO-

stable for any bounded initial state and possesses the ultimate boundedness property for any
bounded reference sequence r(tk) for all tk ∈ SI;

(ii) if ‖Ψ(tk, tk+�)‖2 ≤ K(k, �) ≤ KΨ < ∞ (which holds in particular if ‖Ψ(Tk)‖2 ≤ 1
for all tk ∈ SP) and ‖∑k

i = 0
∏k

j=i+1[Ψ(Tj)]Γ(Ti)r(ti)‖2
< ∞ for all k ∈ N, then the sys-

tem is BIBO-stable for any bounded initial state.

Proof. For any finite k ∈ ID, define the nonnegative scalar function v(‖x(tk)‖2) := xT (tk)x(tk).
Then, for some finite 1 ≤ i = i(k) ≤ i:

v(‖x(tk+i)‖2) − v(‖x(tk)‖2) = xT (tk+i)x(tk+i) − xT (tk)x(tk)

≤
⎡
⎣k+i−1∑

�=i

⎛
⎝
∥∥∥∥∥∥
k+i−1∏
j=k+1

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

‖Γ(T�)‖2|r(T�)|
⎞
⎠
⎤
⎦

2

+

⎛
⎝2

∥∥∥∥∥∥
k+i−1∏
j=k

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

k+i−1∑
�=i

⎛
⎝
∥∥∥∥∥∥
k+i−1∏
j=k+1

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

‖Γ(T�)‖ 2|r(T�)|
⎞
⎠

−
(

1 − ε2
1

)∥∥∥∥∥∥
k+i−1∏
j=k

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

2

‖x(tk)‖2

⎞
⎟⎠

× ‖x(tk)‖2v
(‖x(tk+i)‖ 2

) − v(‖x(tk)‖2)

= xT (tk+i)x(tk+i) − xT (tk)x(tk)

≤ K2
kr(tk, tk+i) + (2 KkΨ(tk, tk+ i)Kkr( tk, tk+i)

−
(

1 − ε2
1

)
K2

kΨ(tk, tk+i)‖x (tk)‖2

)
‖x(tk)‖2

≤ K
2
kr +

(
2KkΨKkr −

(
1 − ε2

1

)
K2

kΨ(tk, tk+i)‖x(tk)‖ 2

)
‖x(tk)‖2,

(2.21)

where
0 ≤ KkΨ(tk, tk+i) :=

∥∥∥∥∥∥
k+i−1∏
j=k

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

≤ KΨ < ∞,

0 ≤ Krk(tk, tk+i) :=
k+i−1∑
� = i

⎛
⎝
∥∥∥∥∥∥
k+i−1∏
j=k+1

[
Ψ
(
Tj
)]∥∥∥∥∥∥

2

‖Γ(T�)‖2|r(T�)|
⎞
⎠ ≤ Kr < ∞,

(2.22)

with KΨ := maxk≤j≤k+i(KkΨ(tk, tk+i) : k ∈ ID) and Kr := maxk ≤ j ≤k+i(Krk(tk, tk+i) : k ∈ ID)
being independent of k. Now, proceed by contradiction by assuming that {‖x(t�)‖2}�∈ID is
unbounded. Thus, there exists a subsequence {‖x(tk)‖2}k∈ID0⊆ID which diverges for some
numerable subset ID0 of ID so that v(‖x(tk+i)‖2) > v(‖x(tk)‖2) and limk→∞v(‖x(tk)‖2) = ∞.



12 Journal of Applied Mathematics

Choose k ∈ ID0 being arbitrarily large but finite, k + i(k) ∈ ID0 so that ‖x(tk)‖2 ≥
max((2KkΨKkr +ε2)/(1−ε2

1)K
2
kΨ(tk, tk+i),Mk) with Mk being an arbitrarily large positive real

number depending on k and ε2 ∈ R+. This is always possible since {‖x(tk)‖2}k∈ID0 diverges
and 0 ≤ ε1 < 1. From (2.21), one gets:

0 < v(‖x(tk+i)‖2) − v(‖x(tk)‖2)

≤ K
2
kr +

(
2KkΨKkr −

(
1 − ε2

1

)
K2

kΨ(tk, tk+i)‖x(tk)‖2

)
‖x(tk)‖2

≤ K
2
kr − ε3Mk ≤ 0,

(2.23)

if Mk ≥ K
2
kr/ε3 which leads to a contradiction. As a result, {‖x(tk)‖2}k∈ID is bounded from

above if there exists 1 ≤ i = i(k) ≤ i < ∞ such that ‖Ψ(tk, tk+i)‖2 ≤ ε1 < 1, and the reference
sequence is uniformly bounded. Using a similar technique as in Theorem 2.3, it may be
proved that the state is bounded within any intersample period on [tk,∞), for all k ∈ ID
and finite and any sampling criterion SC (i.e., for any tk ∈ SI generated from any SC).
Therefore, the system possesses the property of ultimate boundedness. On the other hand,
the recursive equations (2.15) lead to a bounded solution sequence on any interval [0, tk)
of finite measure if the reference sequence is uniformly bounded since all the matrices of
parameters of the discrete-time dynamic system are bounded for finite time irrespective of
further considerations. Therefore, ultimate boundedness implies BIBO stability and global
stability of the unforced discrete-time system. The proof of Property (i) is complete. Property
(ii) follows directly by taking upper bounds via the use of norms in (2.12b).

The following result parallel to Theorem 2.4 is concerned with instability:

Theorem 2.5. Assume that for a given SC and each k ∈ ID, there exists∞ > i = i(k) ≥ j ∈ N such
that ‖Ψ(tk, tk+i)‖2 ≥ ε1 > 1. Thus, the discrete-time (2.17)-(2.18) system is unstable.

Proof. Take the set of sampling instants tj ∈ SI for the given SC and zero reference input. Now,
take initial conditions x(tk) at a finite tk ∈ SI which are a nonzero eigenvector of Ψ(tk, tk+j�) so
that lim�→∞ inf ‖Ψ(tk, tk+j�)x(tk)‖2 ≥ lim�→∞ inf ε�1‖x(tk)‖2 = ∞. Then, the system is unstable.

Note that the stability condition in terms of the modulus of eigenvalues being less than
unity is equivalent in terms of positive definiteness of the matrix of dynamics to:

ε2
0In ≤ Ψ

T
(tk, tk+i)Ψ(tk, tk+i) ≤ ε2

1In, (2.24)

where 0 ≤ ε0 ≤ ε1 < 1, which could be alternative used in both the statement and proof of
Theorem 2.4.

3. Oscillations and Periodic Oscillations

Concerning the discrete-time system (2.17)-(2.18), whose expression at sampling instants
are (2.11a) and (2.11b)-(2.12a) and (2.12b) for any sampling criterion SC, the following
definitions for weak and strong oscillatory solutions will apply.
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Definition 3.1. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a weak
oscillatory output solution for a given sampling criterion SC and some initial conditionx (0) ∈
Rn if for any given t ∈ R0+, such that y(t)/= 0, there exist finite real numbers α(t) ≥ εα and
β(t) ≥ εβ, being in general dependent on t, for some εαεβ ∈ R+, such that sign(δy(t, t +
α(t))δy(tk, t + α(t) + β(t))) ≤ 0, where δy(t, t′) := y(t′) − y(t).

Definition 3.2. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a strong
oscillatory output solution for some initial condition x(0) ∈ Rn if for any given t ∈ R0+, such
that y(t)/= 0, sign(δy(t, t + α(t))δy(tk, t + α(t) + β(t))) < 0 and y(t + α(t)) and y(t + α(t) + β(t))
are not both zero.

Definition 3.3. The discrete-time system (2.17)-(2.18) has a periodic weak oscillatory output
solution of oscillation period Tper ∈ R+, for some initial condition x(0) ∈ Rn, if sign(δy(t, t +
Tper/2) δy(t, t + Tper)) ≤ 0, y(t, t + Tper) = y(t), for all t ∈ R+.

Definition 3.4. The discrete-time system (2.17)-(2.18) has a periodic strong oscillatory output
solution of oscillation period Tper for some initial condition x (0) ∈ Rn if it has a periodic weak
oscillatory output for such a period and, furthermore, sign(δy(t, t + Tper/2)δy(t, t + Tper)) < 0
if y(t, t + Tper) = y(t) = 0, for all t ∈ R+.

Note that a solution may be oscillatory (Definitions 3.1-3.2) without being periodic
(Definitions 3.3-3.4) when there are changes in the sign of the incremental output along
intervals of finite duration. A weak oscillation compared to a strong oscillation allows
positive or negative increments of the output at finite intervals always of the same sign. The
above Definitions 3.1-3.4 might also be refereed to, in general, to nonsymmetric oscillations
related to their deviations from zero. Note that trivial solutions, that is, those being identically
zero are not periodic solutions according to the given definitions. Note also that periodic
solutions can possess an oscillation period which is not the sum of any fixed set of consecutive
sampling periods even for such a set obeying a rule implying some repetitive sequence of
periods. It turns out that the concepts of oscillation and periodic oscillation may be extended
to any of the components of the state vector. The next result establishes clear implications
among Definitions 3.1-3.4.

Theorem 3.5. If an output solution is strongly oscillatory, then it is also weakly oscillatory.
If an output solution is strongly periodic oscillatory then it is also weakly periodic oscillatory.
If an output solution is weakly (strongly) periodic oscillatory, then it is also weakly (strongly)

oscillatory.

Note that oscillations are not always detectable for any given sampling criterion at
arbitrary sampling instants since hidden oscillations can exist which cannot be detected
at sampling instants. However, sufficient conditions for existence of oscillations can be
formulated at sampling instants as stated in the subsequent results, whose proofs are direct
conclusions of Definitions 3.1-3.2.

Theorem 3.6. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) exhibits a weak
oscillatory output at sampling instants for a given sampling criterion SC and some initial condition
x(0) ∈ Rn if for any tk ∈ SI, such that y(tk)/= 0, there exist finite natural numbers k1(k) and k2(k),
being in general dependent on k ∈ ID, such that sign(δy(tk, tk+k1(k))δy(tk, tk+k1(k)+k2(k))) ≤ 0, where
δy(tk, tj) := y(tj) − y(tk).



14 Journal of Applied Mathematics

Theorem 3.7. The discrete-time system (2.11a) and (2.11b)-(2.12a) and (2.12b) has a
strong oscillatory output at sampling instants for some initial condition x(0) ∈ Rn if
sign(δy(tk, tk+k1(k))δy(tk, tk+k1(k)+k2(k))) < 0 but y(tk+k1(k)) and y(tk+k1(k)+k2(k)) are not both zero.

Remark 3.8. The existence of weak and strong oscillations under the sufficient conditions of
Theorems 3.6 and 3.7, respectively, may be investigated explicitly by the use of the state
evolution over a finite number of consecutive sampling instants through (2.11b) together
with the output expression at sampling instants in the second formula of (2.11a).

Note that the detection of periodic oscillations involving sampling instants only is
not feasible even in terms of sufficient-type conditions since the period of such oscillations
is not necessarily the exact sum of a consecutive number of limit sampling periods. See,
for instance, [1, 15, 16], for SDADSC and CADSC, respectively. The following result states
that stable uncontrolled systems which are closed-loop stable under unity feedback, fulfil the
conditions of Theorem 2.4 and which do not have stable equilibrium points exhibit oscillatory
responses.

Theorem 3.9. Assume that the closed-loop discrete-time system has no stable equilibrium point, while
the uncontrolled system is stable under the conditions of Theorem 2.4, and the sampling criterion also
fulfils the conditions of Theorem 2.4. Then, any solution of the discrete-time closed-loop system is at
least weakly oscillatory and bounded.

Proof. Since any state solution is bounded for bounded initial conditions and do not converge
to a constant equilibrium point, it follows that all the state components verify the incremental
changes of sign of Definition 4.1, since no one can either converge to a constant or to be
unbounded.

A direct related result which follows from Theorem 2.5 is now stated by simple
inspection without a formal proof.

Theorem 3.10. Assume that the closed-loop discrete-time system has no stable equilibrium point
while the discrete-time system is unstable under the conditions of Theorem 2.5 for some sampling
criterion SC. Then, no solution of the discrete-time closed-loop system can be bounded, while it can be
weakly oscillatory and unbounded.

Limit cycles are asymptotic isolated limit periodic oscillations in certain nonlinear
systems which are usually independent of the initial conditions (as, e.g., the well-known
Van der Pol equation). Since some nonlinear systems can also posses oscillations which
depend on initial conditions, as for instance, the also well-known Duffing equation modelling
certain nonlinear strings with combined linear and cubic effects, no difference is made at the
moment between both situations. More precisely, a limit cycle on a plane or a nth-dimensional
manifold is a closed trajectory having the property that at least one another trajectory spirals
into either as time tends to infinity (stable limit cycles or a self-sustained periodic oscillations)
or as time tends to minus infinity (unstable limit cycles). It turns out that a limit cycle exist in
the dynamic system of Section 2 only if for a given sampling criterion SC:

lim
k → ∞

Diy(tk + τ ) = Diy∗(τ), ∀i ∈ n − 1 ∪ {0}, (3.1)

for some periodic function y∗ ∈ PC(n−1)([0, Tper];R) of period Tper > 0 such that:
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(1) all its time derivatives until order (n − 1) exist and are almost everywhere con-
tinuous except at the sampling instants;

(2) Dny∗(t) exists everywhere on its definition domain, but it is not required to be
continuous in-between sampling instants, so that it is not required for the limit
cycle to satisfy y∗ ∈ PC(n)([0, Tper];R);

(3) Dny∗(0+) = D(n)y∗(T+
per) forall τ ∈ [0, Tper) such that tk + τ /∈ SI and for (tk + τ)+ =

t+k+i if tk+i ∈ SI for some i ∈ N.

4. Limit Oscillations under Sampling Criteria

Note from (2.11a) and (2.11b)-(2.12a) and (2.12b) and (2.17)-(2.18) that for any SC:

x(tk+� + τ) = Ψ(τ)(Ψ(Tk )x(tk) + Γ(Tk)r(tk)) + Γ(τ)r(tk+�)

= Ψ(τ)

⎛
⎝k+�−1∏

i=k

[Ψ(Ti)]x(tk )
k+�−1∑
i=k

k+�−1∏
j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞
⎠

+ Γ(τ)r(tk+�)y(tk+� + τ) = cTx(tk + τ)

= cTΨ(τ)

⎛
⎝k+�−1∏

i=k

[Ψ(Ti)]x(tk) +
k+�−1∑
i=k

k+�−1∏
j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞
⎠ + Γ(τ)r(tk+�),

(4.1)

for all tk ∈ SI, for all τ ∈ �0, Tk+�), for all Tk ∈ SP, and for all k ∈ ID, for all � ∈ N, subject
to the parameterizations (2.18) becoming (2.12a) and (2.12b) at sampling instants. If a limit
oscillation exists then, one gets for (4.1):

∃ lim
SI�tk+� →∞

x(tk+� + τ)

= lim
SP�Tk+ i , ID�k → ∞

x∗
(

k+�−1∑
i=k

Tk+i + τ

)

= lim
SI�tk → ∞, Ti∈SP

⎛
⎝Ψ(τ)

⎛
⎝k+�−1∏

i=k

[Ψ(Ti)]x(tk )+
k+�−1∑
i=k

k+�−1∏
j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞
⎠+Γ(τ)r(tk+�)

⎞
⎠

= lim
SP�Tk+i , ID�k→∞

⎛
⎝Ψ(τ)

⎛
⎝k+�−1∏

i = k

[Ψ(Ti)]x∗(tk)+
k+�−1∑
i=k

k+�−1∏
j=i+1

[
Ψ
(
Tj
)]
Γ(Ti)r(ti)

⎞
⎠+Γ(τ)r(tk+�)

⎞
⎠,

(4.2)
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for all � ∈ p and some finite p ∈ N0, for some τ ∈ R0+. Thus,

x∗
(
ti +

p∑
i = 1

Ti + τ

)
= x∗

(
ti
)

=

⎛
⎝Ψ(τ)

⎛
⎝i+p−1∏

j = i

[
Ψ
(
Tj

)]
x∗
(
ti
)

+
i+p−1∑
j=1

i+p−1∏
�=j+1

[
Ψ
(
T�

)]
Γ
(
Tj
)
r
(
tj
)⎞⎠Γ(τ)r

(
ti+p
)⎞⎠,

(4.3)

where the following limits have to exist for Tk ∈ SP, tk ∈ SI, k ∈ ID for all i ∈ p, that is, for the
sampling periods and sampling instants with a certain repeated string sequence, where t0 in
arbitrary starting limit reference sampling instant:

∃ lim
ID� k→∞

Tk+ i := Ti = Tp+i,

∃ lim
ID� k→ ∞

tk+i := ti = tp+i,

∃ lim
ID� k→∞

r(tk+i) := r
(
ti
)
= r
(
tp+i
)
.

(4.4)

Then, the period of the limit oscillation is Tper :=
∑p

i=1 Ti + τ , some real τ ∈ [0, T1). A similar
limiting equation using (4.2) into the output equation: y(tk+� + τ) = cTx(tk + τ) describes the
limit oscillation in the output as tk → ∞. The following four lemmas related to the necessary
condition of the existence of a limit cycle independent of a particular SC follow from (4.3)-
(4.4) and simple topological considerations about uniqueness of the state- trajectory solution:

Lemma 4.1. If (4.3), subject to (4.4), holds, then ∃ limt→∞x(t + τ) = x∗(τ) = x∗(τ + Tper); for all
τ ∈ [0, Tper) and then a limit oscillation of the state-trajectory solution exists.

Proof. Note that limk→∞x(tk+i) = x∗(ti) = x∗(ti + Tper) and limk→∞x(tk + τ) = x∗(τ) =
x∗(τ + Tper) for Tper :=

∑p

i=1 Ti + τ , for some parameterizing τ ∈ [0, T1), for all i ∈ p that
is, at a discrete set of (p + 1) limit sampling instants as time tends to infinity, some p ∈ N0

and this sequence of identities is repeated with period Tper. The statetrajectory inbetween
consecutive samples is prescribed according to the values of the limit reference and the state
trajectory components cannot intersect at any time so that the periodic limit identity holds in
continuous-time as time tends to infinity, and the result is proven.

Lemma 4.2. Assume that distinct double points x∗(ti) (i ∈ p) exist satisfying (4.3), subject to (4.4)
for some p ∈ N0, or equivalently,

⎛
⎝In −Ψ(τ)

⎛
⎝i +p−1∏

j = i

[
Ψ
(
Tj

)]⎞⎠
⎞
⎠x∗

(
ti
)
=

i+p−1∑
j=1

i+p−1∏
�=j+1

[
Ψ
(
T�

)]
Γ
(
Tj
)
r
(
tj
)
, (4.5)



Journal of Applied Mathematics 17

for all i ∈ p and some τ ∈ [0, T1). Assume also that if p = 1 then x∗ (ti) satisfying the above identity
is not an equilibrium point. Then, the existing limit oscillation may be tested by any of the double
points, in particular, by the limit double point x∗(t1) satisfying:

⎛
⎝In −Ψ(τ)

⎛
⎝ p∏

j=1

[
Ψ
(
Tj

)]⎞⎠
⎞
⎠x∗

(
t1
)
=

p∑
j=1

p∏
�=j+1

[
Ψ
(
T�

)]
Γ
(
Tj
)
r
(
tj
)
. (4.6)

If the reference sequence is identically zero, then a limit oscillation exists verifying double points

x ∈ Ker

(
In −Ψ(τ)

(∏p

j=1

[
Ψ
(
Tj

)]))
{
Peq
}

if Ker

(
In −Ψ(τ)

(∏p

j=1

[
Ψ
(
Tj

)]))
{
Peq
} /= {0}.

(4.7)

Proof. It follows from (4.3)-(4.4) and Lemma 4.1 since the state-trajectory solution is unique
for any initial conditions, sampling periods and reference sequence and a periodic limit
oscillation exist. Since the limit double points are distinct, they are not equilibrium points
since the state-trajectory solution is unique if p > 1. If p = 1, the double point is not an
equilibrium one as a requirement of the lemma statement.

Lemma 4.3. If Lemmas 4.1-4.2 hold for a given set of p ∈ N0 limit sampling periods Ti for all i ∈ p
and some real τ ∈ [0, T1), then there is no other limit oscillation for the same sets of limit sampling
periods and limit reference sequence neighboring the one with oscillation period Tper :=

∑p

i= 1 Ti + τ .

Proof. If τ → τ + Δτ then Tper → Tper + Δτ provided identical limit sampling periods Ti

for all i ∈ p. Since all state-trajectories are distinct, any two closed trajectories cannot be
everywhere identical. Thus, two trajectories with identical initial conditions should bifurcate
to different subtrajectories to complete both distinct closed paths at points inside the
common parts of both trajectories. This contradicts the fact that state-trajectory solutions are
unique.

Lemma 4.4. All the closed state trajectory solutions verifying Lemmas 4.1–4.3 are either stable or any
unstable one, if any, is surrounded by two stable ones, namely, point-wise strictly bounded from above
and below by two distinct stable closed state-trajectory solutions. Furthermore, any two closed stable
trajectories cannot be arbitrarily close to each other.

Proof. The two matrices Ψ(τ)(
∏p

j = 1[Ψ(Tj)]) have to posses at least to complex conjugate

eigenvalues at the unit circumference for both tuples (p� , τ�, T j� ; j ∈ p1); � = 1, 2 associated
with the limit closed state-trajectory solutions. Otherwise, the system would be either BIBO
stable or unstable from Theorems 2.4-2.5. Then, since all the eigenvalues are within the closed
unity circle, the system is BIBO stable from Theorem 2.4 so that any state-trajectory solution
can be unbounded. Thus, all existing limit oscillations are bounded for all time and then either
stable or surrounded by two stable ones. On the other hand, if any two stable trajectories
are arbitrary and close to each other then it would be destroyed by any arbitrarily small
disturbance so they would not be stable.
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Lemma 4.4 dictates that potential limit cycles of the solutions are separated to each
other so that there is no accumulation closed attractor of the state-space trajectories. The
interpretation of the implications of Lemma 4.4 for a linear dynamics of dimension n = 2 is
direct. For n > 2, it is possible to interpret the lemma consequences in a plane corresponding
to a 2nd-dimensional system for two of the state components in the same above way while,
for the remaining components, we can consider the surrounding trajectories being equal to
that one under consideration. The whole surrounding closed trajectories are still distinct from
the study for the second-order subsystem.

5. Limit Oscillations for the Constant and Sampling-Dependent
Amplitude Difference Sampling Criteria

5.1. The CADSC

The presence of limit oscillations is now discussed for the CADSC from the study of
oscillations for sampling criteria in the above section. The conditions of stable limit oscillation
for the CADSC are from (4.4)–(4.6) for a double point x∗(t1) to exist satisfying:

⎛
⎝In −Ψ(τ)

⎛
⎝ p∏

j=1

[
Ψ
(
Tj

)]⎞⎠
⎞
⎠x∗

(
t1
)
=

p∑
j=1

p∏
�=j+1

[
Ψ
(
T�

)]
Γ
(
Tj
)
r
(
tj
)
, (5.1)

(i ∈ p) for some p ∈ N0 and some real τ ∈ [0, T1); and, furthermore,

[
y∗
(
t1
)
, y∗
(
t2
)
, . . . , y∗

(
tp
)
, y∗
(
tp + τ

)]

= cT

⎡
⎣In,Ψ(T1

)
, . . . ,

p∏
j=1

[
Ψ
(
Tj

)]
,Ψ(τ)

⎛
⎝ p∏

j=1

[
Ψ
(
Tj

)]⎞⎠
⎤
⎦x∗

(
t1
)

=
[
�δ, (� + 1)δ, . . . ,

(
� + p1 − 1

)
δ,
(
� + p1 − 2

)
δ, . . .(

� + p1 − p2 − 1
)
δ,
(
� + p1 − p2

)
δ, . . . ,

(
� + p − 1

)
δ,
(
� + p − 1

)
δ + τ

]

(5.2)

for some p1 = p1(�), p2 = p2(�) ≤ p ∈ N0 and some finite � ∈ N0. Since the limit oscillation
may be tested starting at any sampling point, it turns out that any limit oscillation verifying
(5.2) for some � ∈ N is also verified 1 ≤ j ≤ � by redefining the integers p1(j); p2(j) ≤ p. A
brief intuitive explanation of (5.2) follows. Take any positive value of the limit oscillation for
a certain � ∈ N such that (5.1)-(5.2) hold together for some p1(�), p2(�) ≤ p ∈ N0 for some
p ∈ N0 and some real τ ∈ [0, T1). Then, a limit oscillation with the system output satisfying
(5.2) starting with no loss in generality by a positive value, continuing to increase p1 times by
step-by-step positive increments δ at each sampling instant, then decreasing p2 times, then
increasing again to complete the closed trajectory. Note that for any � ∈ N0 satisfying the
given constraints, p = (p − p2(�)) + p2(�) and |p − 2p2(�)| ≤ 2 since the number of negative
increments is some p2(�) ≤ p ∈ N0, and the number of positive increments is then p − 2p2(�),
while the absolute difference of amplitude increments is of at most two.
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5.2. The SDADSC

The study of oscillations can be directly generalized to the SDADSC as follows in the sub-
sequent technical result whose proofs is obvious from (5.1)-(5.2).

Theorem 5.1. (1) Assume that a SDADSC is defined to generate the set of sampling instants SI with
a potential set of amplitudes STδ := {δk ∈ R+ : 0 < δ ≤ δk ≤ δ < ∞, for all k ∈ ID} so that ID has a
finite cardinal card ID = fl0 ≥ 1 (If γ0 = 1, one has the particular CADSC);

(2) consider any strictly ordered finite sequence of γ ≥ γ0 amplitudes with possible repetitions
STδ = STδ(γ) := {δ1, δ2, . . . , δγ : δi = δj ∈ STD, ∀i ∈ γ, some j ∈ γ0};

Let a finite real number M be defined asM = M(j) :=
∑�

i=0 δ(ti), where � ∈ N0 is some finite
positive integer defined according to δ(ti) = δk ∈ STδ for all ti ∈ SI and some chosen k = k(ti) ∈ γ0.
Also, define accordingly a set of real numbers M1 = M + δ1 and Mi+1 = Mi + δ ı̀ for all i ∈ γ is
defined from the given set STδ of amplitudes. If γ > γ0, then STδ contains (γ − γ0) repeated elements.

Thus, if (5.1) is defined with p = j + γ + 1 and (5.2) holds with its right-hand side being
replaced with the tuple [ M, M1, . . . , Mγ+1 + τ], then a limit oscillation exists which satisfies the
extended version of (5.1) under the above replacements.

Note from Theorem 5.1 that by appropriate choice of the limiting sequence STδ of
amplitudes, the amplitudes of sustained oscillations might be reduced compared to the use
of a single amplitude.

Example 5.2. First, consider the linear dynamic system of transfer function:

G(s) =
Y (s)
U(s)

= K
s + 1
s2

, (5.3)

where Y (s) and U(s) are the Laplace transforms in the Laplace argument “s” of the output
y(t) of a linear time-invariant dynamic system and its time-differentiable control input u(t)
under zero initial conditions. Under linear unit control feedback u(t) = −y(t), the closed-loop
differential equation becomes y′′(t)+K(y′(t)+y(t)) = 0 subject to any initial conditions y(0) =
y0 and y′(0) = y01. Note the following features in the context of limit sustained oscillations:

(1) this system is globally asymptotically stable (then, its solution y(t) is oscillation-
free) for any K > 0 and might describe a wide set of real processes, for instance, a mechanical
system subject to damping and stiffness or the control of the angular position of a satellite
with respect to its axis under a derivative or tachometric control. It can also describe
mathematically a linear electric circuit with two energy storing devices specified by capacitors
and/or inductors with at least one dissipative device, that is, a resistor which can be in
practice either a separated dissipative device or dissipative effects of the inductors/capaci-
tors;

(2) on the other hand, note that, in order to design an electronic oscillator, that is, an
electronic system whose asymptotic solution is periodic irrespective of the initial conditions, a
nonlinear effect should be included in the system. In this context, note that the solution of the
above damped second-order differential equation converges asymptotically to zero for any
initial conditions and then it is not periodic so that it cannot be used in that way for the design
of oscillators. Note, furthermore, that a typical and well-used class of electric oscillators in
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applications consists of those being typically synthesized with a saturation function f(u(t)) =
satuM0 ,uM(u(t)) of a certain amplifier linear gainK = uM/uM0 in the linear mode, of saturation
threshold uM0 and saturated value uM, that is,

satuM0 ,uM(u(t)) =

⎧⎨
⎩
Ku(t) if |u (t)| ≤ uM0 ,

uM sign(u(t)) otherwise,
(5.4)

together with a linear electric network being of at least third order. The oscillation condition at
a frequency ω0 is that the first-harmonic of the closed-loop response of the frequency domain
satisfies 1 +KG(jω0) = 0, obtained under the replacement s → jω0 with j =

√−1, provided
that such an equation has a real solution ω0 > 0. The amplitude y of the such a first harmonic
y(t) = y sin(ω0t + ϕ) is approximately calculated from the companion complex identity
G(jω0) = Csat(uM0 , uM), where Csat(uM0 , uM) is the critical locus (i.e., the minus describing
function −(satu(t))/y(t), an extended concept of the frequency response for certain separable
or analytical nonlinearities, [36]) which is real for the case of saturations parameterized by
the pair (uM0 , uM) so that the gain in the linear mode of the saturation is K = uM/uM0 .
Note that 1 + Csat(uM0 , uM)G(jω0) = 0 replaces intuitively the condition 1 + KG(jω0) = 0 of
complex conjugate modes for the replacement (−1/K) → Csat(uM0 , uM). The precision of the
computation of the locus Csat(uM0 , uM), and then the precision of the calculated amplitude of
the oscillation first-harmonic, depends on the type of describing function calculated for the
saturation. See [36] and references therein for a number of useful describing functions/critical
locus for different nonlinearities through different, but mutually close, useful definitions of
describing function. The temporal asymptotic solution y(t) tends to the limit cycle of first-
harmonic y(t) = y sin(ω0t + ϕ) for any initial conditions;

(3) it is well known that electronic oscillators with basic saturated amplifiers of gain
K (in their linear mode) require also linear network of at least third- order to be synthesized.
See, for instance, [36]. This is because the impulse response hodograph G(jω) (being the
Fourier transform, if it exists, of the impulse response of the dynamic system) of the linear
feed-forward part of first- and second-order jointly stable and inversely stable systems (i.e.,
both poles and zeros are in Re s < 0) are always in the third and fourth quadrants of the
complex plane. As a result, they cannot cut the critical locus of a saturation nonlinearity for
some frequency since such a critical locus is always allocated in the negative real semi axis;

(4) it is now described, in the context of the current problem at hand, how sustained
oscillations can be obtained from the above described CADSC and SDADSC criteria by using
just second-order systems of transfer functions G(s) = K(s + 1)/s2 in the feedforward loop.
This implies that the order of the auxiliary linear network to synthesize the oscillator can be
diminished related to the typical design using electronic circuitry whose basic amplifier in
saturation mode needs the use of an auxiliary network of at least third-order. Then, consider
again the feedback differential equation referred to above but under discrete control at, in
general, nonperiodic sampling for CADSC and SDADSC:

y”(t) +K
(
y′(t) + 1

)
= Ku(t), u(t) = −y(ti), ∀t ∈ [ti, ti+1), (5.5)

where {ti} is the real sequence of sampling instants, and {Ti = ti+1 − ti}is the real sequence of
sampling periods under the CADSC or the SDADSC sampling criteria for all i ∈ N0 = N∪{0}.
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The above feedback system is a regulator since the control signal u(t) = e(t) = −y(ti) for all t ∈
[ti, ti+1) is generated by a zero-order hold under an identically zero external reference signal.
If the control is identically zero then the resulting linear feedback is globally asymptotically
Lyapunov stable to the origin which is the sole stable equilibrium point. However, the use of
the sampling criteria translates into the presence of limit cycles that is, asymptotic oscillations
being the limits of the solution trajectories in the phase plane. The following values are taken:
K = 1, A = 0.2154 for the single threshold case as the sampling amplitude in the CADSC
criterion and the set of amplitudes Samp ≡ {A1, A2, A3, A4} = {0.12, 0.1677, 0.2154, 0.2631} for
the SDADSC criterion injected in this order to implement the sampling criterion. Since the
control is a regulator, r ≡ 0 for all time, then the sampling criterion becomes

|e(t) − e(ti)| =
∣∣y(t) − y(ti)

∣∣ = A, ∀t ∈ [ti, ti+1), (5.6)

for the CADSC, and

|e(t) − e(ti)| =
∣∣y(t) − y(ti)

∣∣ = A(ti) = A[i/4], ∀t ∈ [ti, ti+1), (5.7)

where [i/4] = Integer Part(i/4); for all i ∈ N0 = N ∪ {0} for the SDADSC. Note that the
sampling criteria (5.6) and (5.7) can be interpreted as a separated nonlinearity of the dynamic
systems (5.5) consisting of a multi-relay with hysteresis displayed in Figure 1 where m(ti) =
−u(ti). In such a way, the sampling and hold device with the sampling criteria is equivalent
to such a nonlinearity which could be potentially be generated in a completely different way
by using relays with hysteresis. In the case of the SDADSC, the amplitudes are taken to vary
consecutively in the defined order in the set of amplitudes of the sampling criterion. The
asymptotic phase plot for the CADSC criterion and SDADSC criterion are, a limit cycle of
fundamental amplitude and frequency 0.39 and 0.3079 cycles/sec., and another limit cycle of
amplitude 0.31 and frequency 0.3095 cycles/sec., respectively. Both limit cycles to which the
phase portraits of the trajectory solutions asymptotically converge are shown in Figure 2. A
direct interpretation of why the asymptotic solution is a stable limit cyclic, so that the solution
is bounded and the whole system is (nonasymptotically) stable relies on the equivalence
of the tandem sampling criteria CADSC and SDADSC through a companion zero-order
hold to two variants of the multiple hysteretic relay nonlinearity of Figure 1. Note that it
is well known that nonlinear systems under certain conditions can generate limit cycles. The
sequences of constant asymptotic sampling periods reached in both cases are also listed in
the figure. Note that the fundamental amplitude of the second limit cycle corresponding to
the SDADSC is reduced more that 20% with respect to the first one while the fundamental
frequencies differ only in about 0.50%, the second one being very slightly larger than the first
one. It has been also observed under exhaustive inspection of related examples by modifying
their parameterizations that the duration of the transient time interval towards the limit cycle
solution is slightly shorter under the first criterion compared to the second one.

If the sampling criterion is modified to the constant amplitude-based sampling
criterion |y(t)+y(ti)| = A for all t ∈ [ti, ti+1) (i.e., modified CADSC) and to the multithreshold
sampling criterion obtained via its right-hand-side replacement by the same multithreshold
sequence as above, that is, Samp ≡ {A1, A2, A3, A4} = {0.12, 0.1677, 0.2154, 0.2631} (i.e.,
modified SDADSC) then one gets the results of Figure 3 below. Note the complex geometry
of the asymptotic oscillations of the standard criteria displayed in Figure 2 compared to the
more smooth shaped ones of the modified ones displayed in Figure 3. It can be pointed



22 Journal of Applied Mathematics

m
(t
) m5

m6

m4

m3

m2e−6 e−5 e−4 e−3 e−2

e6e5e4e2 e3
m−2

m−3

m−4

m−5

m−6

e0 = m0 = 0
e1 = m1 = pA0
e−1 = m−1 = −qA0
p + q = 1

e(t)

Figure 1: Multirelay with hysteresis nonlinear characteristics of the sampling criterion.
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Figure 2: Phase plane plot for the solution versus its first time derivative exhibiting closed limit trajectories.

out that other potential sampling criteria, not been subject to constant or varying (within a
prescribed set) differences of amplitude can lead to asymptotically stable solutions provided
that the admissibility domain for the sampling intervals defined by such sampling criteria is
constrained to the stability domain of a constant sampling provided that the continuous part
of the dynamic system is globally asymptotically stable. See, for instance, Theorem 2.3.

Remark 5.3. Note that Example 5.2 is based on a transfer function description of the linear
part. Thus, the above mathematical results on the limit asymptotic solutions are applicable to
any minimal state-space realization, since in this case the dimension of the linear system
coincides with the order of the transfer function (i.e., its number of poles). In the case
of nonminimal realizations (then being either noncontrollable or nonobservable or both),
the above discussed results still hold if the cancelled modes are strictly stable since their
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Figure 3: Phase plane plot of the modified sampling criteria for the solution versus its first time derivative
exhibiting limit cycles.

contribution to the state-space trajectories and their timederivatives the relevant order vanish
asymptotically as time tends to infinity.

6. Conclusions

This paper has been devoted to investigate the solutions and, in particular, their stability
and instability properties as well as the possible presence of sustained oscillations in discrete
linear dynamic systems under sampling laws which generate time-varying sampling periods
in general. Two sampling criteria have been specially emphasized, namely, (a) the so-called
constant amplitude difference sampling criterion (CADSC), under which the signal of interest is
sampled at each time that it reaches a prescribed threshold variation which is the positive real
constant defining the sampling criterion; (b) the more general sampling criterion is referred
to as a sampling-dependent amplitude difference sampling criterion (SDADSC) which involves a
set of at least two distinct of such amplitudes. Both sampling criteria possess the property
that, together with their associate sampling and zero-order hold device, are characterized as
a relay with multiple hysteresis. Such a nonlinear model is expected to potentially generate
potentially sustained limit oscillations of the solution. The analysis has been fully performed
in the time domain so that, contrarily to the case of the use of frequency-domain analysis
methods, no specific assumption is needed about low-pass filtering constraints of the linear
auxiliary network in order to perform the analysis of the first-harmonic of the existing
sustained oscillations. It is noticed that, the proposed analysis, no separation of the first-order
harmonic of the whole oscillation has to be taken in mind.
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