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The notions of higher-order weakly generalized contingent epiderivative and higher-order weakly
generalized adjacent epiderivative for set-valued maps are proposed. By virtue of the higher-order
weakly generalized contingent (adjacent) epiderivatives, both necessary and sufficient optimality
conditions are obtained for Henig efficient solutions to a set-valued optimization problem whose
constraint set is determined by a set-valued map. The imposed assumptions are relaxed in
comparison with those of recent results in the literature. Examples are provided to show some
advantages of our notions and results.

1. Introduction

In the last several decades, several notions of derivatives (epiderivatives) for set-valuedmaps
have been proposed and used for the formulation of optimality conditions in set-valued
optimization problems. By virtue of contingent derivative (see [1]), Corley [2] investigated
first-order Fritz John type necessary and sufficient optimality conditions for set-valued
optimization problems. Jahn and Rauh [3] proposed the contingent epiderivative of a set-
valued map and then obtained an unified necessary and sufficient optimality condition
by employing the epiderivative. The essential differences between the definitions of the
contingent derivative and the contingent epiderivative are that the graph is replaced by the
epigraph and the derivative is single-valued. Chen and Jahn [4] introduced a notion of a
generalized contingent epiderivative of a set-valued map and then established an unified
necessary and sufficient conditions for a set-valued optimization problem. Lalitha and Arora
[5] introduced a notion of a weak Clarke epiderivative and used it to establish optimality
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criteria for a constrained set-valued optimization problem. As to other concepts of derivatives
(epiderivatives) of set-valued maps and their applications, one can refer to [6–15]. Recently,
second-order derivatives have also been proposed, for example, see [16, 17].

Until now, there are only a few papers to deal with higher-order optimality conditions
and duality of set-valued optimization problems by virtue of the higher-order derivatives or
epiderivatives introduced by the higher-order tangent sets. Since higher-order tangent sets
introduced in [1], in general, are not cones and convex sets, there are some difficulties in
studying higher-order optimality conditions for general set-valued optimization problems. Li
et al. [18] studied some properties of higher-order tangent sets and higher-order derivatives
introduced in [1], and then obtained higher-order necessary and sufficient optimality
conditions for set-valued optimization problems under cone-concavity assumptions. By
using these higher-order derivatives, they [19] also discussed higher-order Mond-Weir
duality for constrained set-valued optimization problems based on weak efficiency. Li and
Chen [20] proposed higher-order generalized contingent (adjacent) epiderivatives of set-
valued maps and, then obtained higher-order Fritz John type necessary and sufficient
conditions for Henig efficient solutions to a constrained set-valued optimization problem.
Wang and Li [21] introduced generalized higher-order contingent (adjacent) epiderivatives
of set-valued maps, and then investigated both necessary and sufficient conditions for Henig
efficient solutions to set-valued optimization problems by employing the generalized higher-
order contingent (adjacent) epiderivatives. Chen et al. [22] introduced higher-order weak
contingent epiderivative and higher-order weak adjacent epiderivative for set-valued maps,
and then investigated higher-order Mond-Weir type dual, higher-order Wolfe type dual,
and higher-order optimality conditions to a constrained set-valued optimization problem by
employing the higher-order weak adjacent (contingent) epiderivatives and Henig efficiency.

Motivated by the work reported in [5, 18–22], we first introduce the notions of
higher-order weakly generalized contingent epiderivative, higher-order weakly generalized
adjacent epiderivative for set-valued maps and generalized cone-convex set-valued maps.
Second, we discuss some properties used in this paper and the existence of higher-order
weakly generalized contingent epiderivative and higher-order weakly generalized adjacent
epiderivative. Finally, based on higher-order weakly generalized contingent (adjacent)
epiderivatives and Henig efficiency, we discuss higher-order optimality conditions to a
constrained set-valued optimization problem.

The rest of the paper is organized as follows. In Section 2, we collect some of the
concepts and some of their properties required for the paper. In Section 3, we define higher-
order weakly generalized contingent epiderivative and higher-order weakly generalized
adjacent epiderivative of set-valued maps and study existence and some properties of them.
In Section 4, we establish higher-order necessary and sufficient optimality conditions to a
constrained set-valued optimization problem.

2. Preliminaries and Notations

Throughout this paper, let X, Y , and Z be three real normed spaces, where the spaces Y and
Z are partially ordered by nontrivial pointed closed convex cones C ⊂ Y and D ⊂ Z with
int C/= ∅ and int D/= ∅, respectively. We assume that 0X, 0Y , 0Z denote the origins of X,Y,Z,
respectively, Y ∗ denotes the topological dual space of Y , and C∗ denotes the dual cone of C,
defined by C∗ = {ϕ ∈ Y ∗ | ϕ(y) ≥ 0, ∀y ∈ C}. Let M be a nonempty set in Y . The cone
hull of M is defined by cone(M) = {ty | t ≥ 0, y ∈ M}. Let E be a nonempty subset of X,
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and F : E → 2Y and G : E → 2Z be two given nonempty set-valued maps. The effective
domain, the graph, and the epigraph of F are defined, respectively, by dom(F) = {x ∈ E |
F(x)/= ∅}, gph(F) = {(x, y) ∈ X × Y | x ∈ E, y ∈ F(x)} and epi(F) = {(x, y) ∈ X × Y | x ∈
E, y ∈ F(x) + C}. The profile map F+ : E → 2Y is defined by F+(x) = F(x) + C, for every
x ∈ dom(F). Let y0 ∈ Y , F(E) =

⋃
x∈E F(x) and (F−y0)(x) = F(x)−{y0} = {y−y0 | y ∈ F(x)}.

A nonempty convex subset B of the convex cone C is called a base of C, if

C = cone(B), 0Y /∈ cl(B). (2.1)

Suppose that C has a base B. Denote

CΔ(B) =
{
f ∈ C∗ : inf

{
f(b) : b ∈ B} > 0

}
,

Cε(B) = cone(B + εU) ∀0 < ε < δ,
(2.2)

where δ = inf{‖b‖ : b ∈ B} and U is the closed unit ball of Y . It follows from [23] that, for
δ > 0, cl(intCε(B)) is a closed convex pointed cone andC\{0Y} ⊂ int(Cε(B)) for all 0 < ε < δ.

Definition 2.1. Let F : E → 2Y be a set-valued map, x0 ∈ E, y0 ∈ F(x0).
(i) F is said to be C-convex on a convex set E, if epiF is a convex set.

(ii) F is said to be generalized C-convex at (x0, y0) on E, if cone(epiF − {(x0, y0)}) is
convex.

Obviously, if F is C-convex on convex set E, then F is a generalized C-convex at (x0, y0) on
E. But the converse does not hold. For Example, let E = [−1, 1], F(x) = {y ∈ Ry ≥ x2/3}, for
all x ∈ E,(x0, y0) = (0, 0) ∈ gph(F). F is generalized R+-convex at (x0, y0) on E, but F is not
R+-convex.

Definition 2.2. An element y ∈M is said to be a minimal point (resp., weakly minimal point)
ofM ifM ∩ ({y} −C) = {y} (resp.,M ∩ ({y} − intC) = ∅. The set of all minimal points (resp.,
weakly minimal point) ofM is denoted by MincM (resp.,WMincM).

Suppose that m is a positive integer, X is a normed space supplied with a distance d
and K is a subset of X. We denote by d(x,K) = infy∈Kd(x, y) the distance from x to K,
where we set d(x, ∅) = +∞.

Definition 2.3 (see [1]). Let x belong to a subset K of a normed space X and u1, . . . , um−1 be
elements of X. One says the following

(i) The subset

T
(m)
K (x, u1, . . . , um−1) = lim inf

h→ 0+

K − x − hu1 − · · · − hm−1um−1
hm

=

{

y ∈ X | lim
h→ 0+

d

(

y,
K − x − hu1 − · · · − hm−1um−1

hm

)

= 0

} (2.3)

is themth-order contingent set of K at (x, u1, . . . , um−1).
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(ii) The subset

T
(m)
K (x, u1, . . . , um−1) = lim inf

h→ 0+

K − x − hu1 − · · · − hm−1um−1
hm

=

{

y ∈ X | lim
h→ 0+

d

(

y,
K − x − hu1 − · · · − hm−1um−1

hm

)

= 0

} (2.4)

is themth-order adjacent set of K at (x, u1, · · · , um−1).
From Proposition 3.2 in [18], we have the following result.

Proposition 2.4. If K is convex, x ∈ K, and ui ∈ X, i = 1, . . . , m − 1, then T�(m)
K (x, u1, . . .,um−1) is

convex.

3. Higher-Order Weakly Generalized Epiderivatives

Definition 3.1 (see [21]). Let x belong to a subset K of X and u1, . . . , um−1 be elements of X.

(i) The subset

G-T (m)
K (x, u1, . . . , um−1) = lim sup

h→ 0+

cone(K − x) − hu1 − · · · − hm−1um−1
hm

=

{

y ∈ X | lim inf
h→ 0+

d

(

y,
cone(K − x) − hu1 − · · · − hm−1um−1

hm

)

= 0

}

(3.1)

is said to be themth-order generalized contingent set of K at (x, u1, . . . , um−1).

(ii) The subset

G-T�(m)
K (x, u1, . . . , um−1) = lim inf

h→ 0+

cone(K − x) − hu1 − · · · − hm−1um−1
hm

=

{

y ∈ X | lim
h→ 0+

d

(

y,
cone(K − x) − hu1 − · · · − hm−1um−1

hm

)

= 0

}

(3.2)

is said to be themth-order generalized adjacent set of K at (x, u1, . . . , um−1).

Remark 3.2.

(i) The following inclusion holds:

G-T�(m)
K (x, u1, . . . , um−1) ⊆ G-T (m)

K (x, u1, . . . , um−1). (3.3)
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(ii) Both G-T (m)
K (x, u1, . . . , um−1) and G-T

�(m)
K (x, u1, . . . , um−1) are closed.

(iii) If cone(K − {x}) is convex, then G-T�(m)
K (x, u1, . . . , um−1) is convex.

(iv) If cone(K − {x}) is convex, and u1, . . . , um−1 ∈ K, then

G-T (m)
K (x, u1 − x, . . . , um−1 − x) = G-T�(m)

K (x, u1 − x, . . . , um−1 − x). (3.4)

Definition 3.3. Let (x0, y0) ∈ graph(F), (ui, vi) ∈ X × Y, i = 1, 2, . . . , m − 1.

(i) Themth-order weakly generalized contingent epiderivativeD(m)
w-gF(x0, y0, u1, v1, . . .,

um−1, vm−1) of F at (x0, y0) with respect to (in short, w.r.t.) vectors (u1, v1), . . .,
(um−1,vm−1) is the set-valued map from X to Y defined by

D
(m)
w-gF

(
x0, y0, u1, v1, . . . ,um−1, vm−1

)
(x)

=WMin
c

{
y ∈ Y :

(
x, y
) ∈ G-T (m)

epi(F)

(
x0, y0, u1, v1, . . . , um−1, vm−1

)}
.

(3.5)

(ii) The mth-order weakly generalized adjacent epiderivative D�(m)
w-g F(x0, y0,u1, v1, . . .,

um−1, vm−1) of F at (x0, y0) w.r.t. vectors (u1, v1), . . . , (um−1, vm−1) is the set-valued
map from X to Y defined by

D
�(m)
w-g F

(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x)

=WMin
c

{
y ∈ Y :

(
x, y
) ∈ G-T�(m)

epi(F)

(
x0, y0, u1, v1, . . . , um−1, vm−1

)}
.

(3.6)

To compare our derivatives with well-known derivatives, we recall some notions.

Definition 3.4 (see [22]). Let (x0, y0) ∈ graph(F), (ui, vi) ∈ X × Y, i = 1, 2, . . . , m − 1.

(i) The mth-order weakly contingent epiderivative D(m)
w F(x0, y0,u1, v1, · · · ,um−1, vm−1)

of F at (x0, y0)w.r.t. vectors (u1, v1), . . . , (um−1, vm−1) is the set-valued map from X
to Y defined by

D
(m)
w F

(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x)

=WMin
c

{
y ∈ Y :

(
x, y
) ∈ T (m)

epi(F)

(
x0, y0, u1, v1, . . . , um−1, vm−1

)}
.

(3.7)
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(ii) The mth-order weakly adjacent epiderivative D�(m)
w F(x0, y0,u1, v1, . . .,um−1, vm−1) of

F at (x0, y0) w.r.t. vectors (u1, v1),. . . , (um−1, vm−1) is the set-valued map from X to
Y defined by

D
�(m)
w F

(
x0, y0, u1,v1, . . . , um−1, vm−1

)
(x)

=WMin
c

{
y ∈ Y :

(
x, y
) ∈ T�(m)

epi(F)

(
x0, y0, u1, v1, · · · , um−1, vm−1

)}
.

(3.8)

Definition 3.5 (see [20]). Let (x0, y0) ∈ graph(F), (ui, vi) ∈ X × Y, i = 1, 2, . . . , m − 1.

(i) The mth-order generalized contingent epiderivative D(m)
g F(x0, y0,u1, v1, . . . , um−1,

vm−1) of F at (x0, y0) ∈ gph(F) w.r.t. vectors (u1, v1), . . . , (um−1, vm−1) is the set-
valued map from X to Y defined by

D
(m)
g F

(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x)

= Min
c

{
y ∈ Y :

(
x, y
) ∈ T (m)

epi(F)

(
x0, y0, u1, v1, . . . , um−1, vm−1

)}
,

x ∈ dom
[
D(m)F+

(
x0, y0, u1, v1, . . . , um−1, vm−1

)]
.

(3.9)

(ii) The mth-order generalized adjacent epiderivative D
�(m)
g F(x0, y0, u1, v1, . . . , um−1,

vm−1) of F at (x0, y0) ∈ gph(F) w.r.t. vectors (u1, v1), . . . , (um−1, vm−1) is the set-
valued map from X to Y defined by

D
�(m)
g F

(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x)

= Min
c

{
y ∈ Y :

(
x, y
) ∈ T�(m)

epi(F)

(
x0, y0, u1, v1, . . . , um−1, vm−1

)}
,

x ∈ dom
[
D�(m)F+

(
x0, y0, u1, v1, . . . , um−1, vm−1

)]
.

(3.10)

We now discuss the properties of the mth-order weakly generalized contingent
epiderivative and adjacent epiderivative, for which we recall the following definitions.

Definition 3.6 (See [5, 24]).

(i) The cone C is called Daniell, if any decreasing sequence in Y having a lower bound
converges to its infimum.

(ii) A subsetM of Y is said to beminorized, if there exists a y ∈ Y such thatM ⊆ {y}+C.
(iii) The weak domination property is said to hold for a subsetH of Y ifH ⊂WMincH+

intC ∪ {0Y}.
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Using properties of higher-order tangent sets [1], we have the following result.

Proposition 3.7. Let (x0, y0) ∈ gph(F), ui ∈ X, v1 ∈ Y . If the sets {y ∈ Y | (x − x0,

y) ∈ G-T (m)
epi(F)(x0, y0, u1, v1, . . . , um−1, vm−1)} and {y ∈ Y | (x−x0, y) ∈ G-T�(m)

epi(F)(x0, y0,u1, v1, . . . ,
um−1, vm−1)} fulfill the weak domination property for all x ∈ E, then for any x ∈ E,

(i) D(m)
g F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−x0) ⊆ D(m)

w-gF(x0, y0, u1, v1, . . . , um−1, vm−1)(x−
x0) + C,

(ii) D(m)
w F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−x0) ⊆ D(m)

w-gF(x0, y0, u1, v1, . . . , um−1, vm−1)(x−
x0) + C,

(iii) D�(m)
g F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−x0) ⊆ D�(m)

w-g F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−
x0) + C,

(iv) D�(m)
w F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−x0) ⊆ D�(m)

w-g F(x0, y0, u1, v1, . . . , um−1, vm−1)(x−
x0) + C.

Remark 3.8. The reverse inclusions in Proposition 3.7 may not hold. The following examples
explain the case, where we only takem = 1, 2.

Example 3.9. Let X = R, Y = R2, E = R+, C = R2
+, F(x) = {(y1, y2) ∈ R2 : y1 ≥ x2/3, y2 ≥ 0}, for

all x ∈ E, (x0, y0) = (0, (0, 0)) ∈ gph(F). Then,

Tepi(F)
(
x0, y0

)
= T�epi(F)

(
x0, y0

)
=
{(
x, y
) | x = 0, y1 ∈ R+, y2 ∈ R+

}
,

G-Tepi(F)
(
x0, y0

)
= G-T�epi(F)

(
x0, y0

)
= R × (R+ × R+).

(3.11)

Hence, for any x ∈ R+ \ {0},

DgF
(
x0, y0

)
(x − x0) = D�

gF
(
x0, y0

)
(x − x0) = ∅,

DwF
(
x0, y0

)
(x − x0) = D�

wF
(
x0, y0

)
(x − x0) = ∅,

Dw-gF
(
x0, y0

)
(x − x0) = D�

w-gF
(
x0, y0

)
(x − x0)

=
{(
y1, y2

) ∈ R2 | y1 = 0, y2 ∈ R+

}

∪
{(
y1, y2

) ∈ R2 | y1 ∈ R+, y2 = 0
}
.

(3.12)

Example 3.10. Suppose that X = R, Y = R2, E = X,C = R2
+. Let F : E → 2R

2
be a set-

valued map with F(x) = {(y1, y2) ∈ R2 | y1 ≥ x4, y2 ≥ x2}, (x0, y0) = (0, (0, 0)) ∈ gph(F)
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and (u, v) = (1, (0, 0)). Then T
(2)
epi(F)(x0, y0, u, v) = T

�(2)
epi(F)(x0, y0, u, v) = R × (R+ × [1,+∞)),

G-T (2)
epi(F)(x0, y0, u, v) = G-T

�(2)
epi(F)(x0, y0, u, v) = R × (R+ × R+). Therefore, for any x ∈ E,

D
(2)
g F
(
x0, y0, u, v

)
(x − x0) = D�(2)

g F
(
x0, y0, u, v

)
(x − x0) = {(0, 1)},

D
(2)
w F
(
x0, y0, u, v

)
(x − x0) = D�(2)

w F
(
x0, y0, u, v

)
(x − x0)

=
{(

0, y2
) | y2 ≥ 1

} ∪ {(y1, 1
) | y1 ≥ 0

}
,

D
(2)
w-gF

(
x0, y0, u, v

)
(x − x0) = D�(2)

w-gF
(
x0, y0, u, v

)
(x − x0)

=
{(
y1, 0

) | y1 ≥ 0
} ∪ {(0, y2

) | y2 ≥ 0
}
.

(3.13)

Example 3.11. Let X = R, Y = R2, E = X,C = R2
+, F(x) = {(y1, y2) ∈ R2 : y1 ≥ x4/3, y2 ∈ R}, for

all x ∈ E, (x0, y0) = (0, (0, 0)) ∈ gph(F), and (u, v) = (1, (0, 0)). Then,

T
(2)
epi(F)

(
x0, y0, u, v

)
= T�(2)epi(F)

(
x0, y0, u, v

)
= ∅,

G-T (2)
epi(F)

(
x0, y0, u, v

)
= G-T�(2)epi(F)

(
x0, y0, u, v

)
= R × (R+ × R).

(3.14)

Hence, for any x ∈ E,

D
(2)
g F
(
x0, y0, u, v

)
(x − x0) = D�(2)

g F
(
x0, y0, u, v

)
(x − x0) = ∅,

D
(2)
w F
(
x0, y0, u, v

)
(x − x0) = D�(2)

w F
(
x0, y0, u, v

)
(x − x0) = ∅,

D
(2)
w−gF

(
x0, y0, u, v

)
(x − x0) = D�(2)

w−gF
(
x0, y0, u, v

)
(x − x0)

=
{(
y1, y2

) ∈ R2 | y1 = 0, y2 ∈ R
}
.

(3.15)

We now discuss the existence of the mth-order weakly generalized contingent
epiderivative and adjacent epiderivative.

Theorem 3.12. Let C be a closed convex-pointed cone and let C be Daniell.

(i) If the set P(x) := {y ∈ Y : (x, y) ∈ G-T (m)
epi(F)(x0, y0, u1, v1, . . . , um−1, vm−1)} is minorized

for every x ∈ dom(P), then D
(m)
w−g(x0, y0, u1, v1, . . . , um−1, vm−1)(x) exists for all x ∈

dom(P).

(ii) If the setQ(x) := {y ∈ Y : (x, y) ∈ G-T�(m)
epi(F)(x0, y0, u1, v1, . . . , um−1, vm−1)} is minorized

for every x ∈ dom(Q), then D
�(m)
w−g(x0, y0, u1, v1, · · · , um−1, vm−1)(x) exists for all x ∈

dom(Q).

Proof. From Remark 3.2 (ii), we know that mth-order generalized contingent set and mth-
order generalized adjacent set are closed. Thenwe can prove them as the proof of Theorem 3.1
in [22].
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Now we discuss some crucial propositions of the mth-order weakly generalized
contingent epiderivative and adjacent epiderivative.

Proposition 3.13. Let x0 ∈ E, y0 ∈ F(x0), (ui, vi) ∈ {0X} × C. If the set P(x − x0) := {y ∈ Y |
(x − x0, y) ∈ G-T (m)

epi(F)(x0, y0, u1, v1, . . . , um−1, vm−1)} fulfills the weak domination property for all
x ∈ E, then for all x ∈ E,

F(x) − {y0
} ⊂ D(m)

w−gF
(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x − x0) + C. (3.16)

Proof. It follows from Proposition 3.9 in [21] and the weak domination property of P(x − x0)
that the result holds.

From the proof process of Proposition 3.13, we have the following result.

Corollary 3.14. Let x0 ∈ E, y0 ∈ F(x0), (ui, vi) ∈ {0X} × C. If the set P(x − x0) := {y ∈ Y |
(x − x0, y) ∈ G-T�(m)

epi(F)(x0, y0, u1, v1, . . . , um−1, vm−1)} fulfills the weak domination property for all
x ∈ E, then for all x ∈ E,

F(x) − {y0
} ⊂ D�(m)

w−gF
(
x0, y0, u1, v1, . . . , um−1, vm−1

)
(x − x0) + C. (3.17)

Remark 3.15. Since the cone-convexity and cone-concavity assumptions are omitted,
Proposition 3.13 improves [18, Theorem 4.1], [20, Proposition 3.1] and [22, Proposition 3.1].

Proposition 3.16. Let E be a nonempty subset of X, x0 ∈ E, y0 ∈ F(x0), and let ui ∈ E, vi ∈
F(ui) + C, i = 1, 2, . . . , m − 1. If F is generalized C-convex at (x0, y0) on E, and the set Q(x − x0) :=
{y ∈ Y | (x − x0, y) ∈ G-T (m)

epi(F)(x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)} fulfills the weak
domination property for all x ∈ E, then for any x ∈ E,

F(x) − {y0
} ⊂ D(m)

w−gF
(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (3.18)

Proof. Take any x ∈ E, y ∈ F(x) and a sequence {hn} with hn → 0+. Since F is generalized
C-convex at (x0, y0) on E, cone(epi(F) − {(x0, y0)}) is convex, and then

hn
(
u1 − x0, v1 − y0

)
+ · · · + hm−1

n

(
um−1 − x0, vm−1 − y0

) ∈ cone
(
epiF − {(x0, y0

)})
. (3.19)

It follows from hn > 0 and cone(epiF − {(x0, y0)}) is a convex cone that

(
xn, yn

)
: = hn

(
u1 − x0, v1 − y0

)
+ · · · + hm−1

n

(
um−1 − x0, vm−1 − y0

)

+ hmn
(
x − x0, y − y0

) ∈ cone
(
epiF − {(x0, y0

)})
.

(3.20)

We obtain that

(
x − x0, y − y0

)
=

(
xn, yn

) − hn
(
u1 − x0, v1 − y0

) − · · · − hm−1
n

(
um−1 − x0, vm−1 − y0

)

hmn
, (3.21)
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which implies that

(
x − x0, y − y0

) ∈ G-T (m)
epi(F)

(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
, (3.22)

that is, y − y0 ∈ P(x − x0). By the definition of mth-order weakly generalized contingent
epiderivative and the weak domination property, we have

P(x − x0) ⊂ D(m)
w−g
(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (3.23)

Thus,

F(x) − {y0
} ⊂ D(m)

w−gF
(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C, (3.24)

and the proof is complete.

Remark 3.17. Since the cone-convexity assumptions are replaced by generalized cone-con-
vexity assumptions, Proposition 3.16 improves [18, Theorem 4.1], [20, Proposition 3.1] and
[22, Proposition 3.1]. The following example explains the case, where we only takem = 2.

Example 3.18. Let X = R, Y = R2, E = [−1, 1], C = R2
+, F(x) = {(y1, y2) ∈ R : y1 ≥ x2/3, y2 ≥

x2/3}, for all x ∈ E and let (x0, y0) = (0, (0, 0)) ∈ graph(F).
Naturally, F is generalized C-convex at (x0, y0) on E, and F is not C-convex on E. Let

u = 1, v = (1, 1) ∈ F(1) + C. Then

T
(2)
epi(F)

(
x0, y0, u − x0, v − y0

)
= ∅,

G-T (2)
epi(F)

(
x0, y0, u − x0, v − y0

)
=
{(
x, y
) ∈ R × R2 | y1 ≥ x, y2 ≥ x

}
.

(3.25)

Hence, the conditions of Proposition 3.16 are satisfied. For any x ∈ X,

D
(2)
g F
(
x0, y0, u − x0, v − y0

)
(x − x0) = D(2)

w F
(
x0, y0, u − x0, v − y0

)
(x − x0) = ∅,

D
(2)
w−gF

(
x0, y0, u − x0, v − y0

)
(x − x0) =

{(
y1, y2

) ∈ R2 | y1 = x, y2 ≥ x
}

∪
{(
y1, y2

) ∈ R2 | y1 ≥ x, y2 = x
}
.

(3.26)

Thus, for any x ∈ E,

F(x) − {y0
} ⊂ D(m)

w−gF
(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (3.27)

Since F is not C-convex and C-concave on E and T
(2)
epi(F)(x0, y0, u − x0, v − y0) = ∅, the

assumptions of [18, Theorem 4.1], [20, Proposition 3.1] and [22, Proposition 3.1] are not
satisfied. Therefore [18, Theorem 4.1], [20, Proposition 3.1] and [22, Proposition 3.1] are
unusable here.
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Corollary 3.19. Let E be a nonempty convex subset of X, x, x0 ∈ E, y0 ∈ F(x0). Let ui ∈ E, vi ∈
F(ui) + C, i = 1, 2, . . . , m − 1. If F is generalized C-convex at (x0, y0) on E, and the set {y ∈ Y |
(x−x0, y) ∈ G-T�(m)

epi(F)(x0, y0, u1−x0, v1−y0, . . . , um−1−x0, vm−1−y0)} fulfills the weak domination
property for all x ∈ E, then

F(x) − {y0
} ⊂ D�(m)

w−gF
(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (3.28)

4. Higher-Order Optimality Conditions

In this section, we discuss the higher-order optimality Conditions of Henig efficient solutions
for constrained set-valued optimization problems. The notation (F,G)(x) is used to denote
F(x) ×G(x). Firstly, we recall the definition of interior tangent cone of a set and state a result
regarding it from [16].

The interior tangent cone of K at x0 is defined as

ITK(x0) =
{
u ∈ X | ∃λ > 0, ∀t ∈ (0, λ), ∀u′ ∈ BX(u, λ), x0 + tu′ ∈ K

}
, (4.1)

where BX(u, λ) stands for the closed ball centered at u ∈ X and of radius λ.

Lemma 4.1 (see [13]). If K ⊂ X is convex, x0 ∈ K, and intK/= ∅, then

ITintK(x0) = intcone(K − {x0}). (4.2)

Consider the following set-valued optimization problem:

(SP)

⎧
⎨

⎩

min F(x),

s.t. G(x) ∩ (−D)/= ∅, x ∈ E,
(4.3)

let K := {x ∈ E | G(x) ∩ (−D)/= ∅} and F(K) :=
⋃
x∈K f(X). Let x0 ∈ K,y0 ∈ F(x0), (x0, y0) is

said to be a Henig efficient solution of problem (SP), if for some ε ∈ (0, δ),

(
F(K) − {y0

}) ∩ (− int(Cε(B))) = ∅. (4.4)

Lemma 4.2 (see [13]). Let x0 ∈ K,y0 ∈ F(x0). If there exists φ ∈ CΔ(B) such that

φ
(
y
) ≥ φ(y0

)
, ∀y ∈ F(K), (4.5)

then (x0, y0) is a Henig efficient solution of problem (SP).
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Theorem 4.3. Suppose that C has a base B. Let (ui, vi,wi) ∈ X × (−C) × (−D), i = 1, 2, . . . , m − 1,
y0 ∈ F(x0), z0 ∈ G(x0) ∩ (−D), δ = inf{‖b‖ : b ∈ B}. If (x0, y0) is a Henig efficient solution of
(SP), then there exists ε ∈ (0, δ) such that

[
D

(m)
w−g(F,G)

(
x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0

)
(x)

+{(0Y , z0)}
]
∩ − int(Cε(B) ×D) = ∅.

(4.6)

for all x ∈ X.

Proof. Since (x0, y0) is a Henig efficient solution of (SP), there exists an ε ∈ (0, δ) such that
(F(K) − {y0})

⋂− int(Cε(B)) = ∅. Then

cone
(
F(K) + C − {y0

}) ∩ − int(Cε(B)) = ∅. (4.7)

If D(m)
w−g(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)(x) = ∅ for some

x ∈ X, then the result (4.6) holds trivially. So we next prove that for any x ∈ Ω : =
dom[D(m)

w−g(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)], the result (4.6) holds.
Assume that (4.6) does not hold. Then there exist x ∈ Ω and (y, z) ∈ X × Y such that

(
y, z
) ∈ D(m)

w−g(F,G)
(
x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0

)
(x), (4.8)

(
y, z
)
+ (0Y , z0) ∈ −(int(Cε(B)) × intD). (4.9)

It follows from (4.8) and the definition of mth-order weakly generalized contingent
epiderivative that there exist sequences {hn} with hn → 0+ and {(xn, yn, zn)} ⊆
cone(epi(F,G) − {(x0, y0, z0)}) such that

(
xn, yn, zn

) − hn(u1, v1, w1 + z0) − · · · − hm−1
n (um−1, vm−1, wm−1 + z0)

hmn
−→ (x, y, z). (4.10)

From (4.9) and (4.10), there exists a sufficiently largeN1 such that

yn − hnv1 − · · · − hm−1
n vm−1 ∈ − int(Cε(B)), for n > N1, (4.11)

zn : =
zn − hn(w1 + z0) − · · · − hm−1

n (wm−1 + z0)
hmn

=
hn + · · · + hm−1

n

hmn

(
zn − hnw1 − · · · − hm−1

n wm−1
hn + · · · + hm−1

n

− z0
)

−→ z

∈ −(intD + z0) ⊂ −intcone(D + z0).

(4.12)

Since v1, . . . , vm−1 ∈ −C, hn > 0 and C is a convex cone,

hnv1 + · · · + hm−1
n vm−1 ∈ −C. (4.13)
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By (4.11) and (4.13), we get

yn ∈ − int(Cε(B)), for n > N1. (4.14)

According to (4.12) and Lemma 4.1, we obtain −z ∈ ITintD(−z0). Then, it follows from the
definitions of ITintD(−z0) that ∃λ > 0, for all t ∈ (0, λ), for all u′ ∈ BZ(−z, λ),−z0 + tu′ ∈ intD.
Since hn → 0+ and (4.12), there exists a sufficiently largeN2 such that

hmn

hn + · · · + hm−1
n

∈ (0, λ), for n > N2,

−z0 +
hmn

hn + · · · + hm−1
n

(−zn) ∈ int D, for n > N2,

(4.15)

that is,

zn − hnw1 − · · · − hm−1
n wm−1

hn + · · · + hm−1
n

∈ − int D, for n > N2. (4.16)

It follows from hn > 0, w1, . . . , wm−1 ∈ −D and D is a convex cone that

zn ∈ − intD, for n > N2. (4.17)

Since zn ∈ cone(G(xn) + D − {z0}), there exist λn ≥ 0, z̃n ∈ G(xn) and dn ∈ D such that
zn = λn(z̃n + dn − z0). It follows from (4.17) that z̃n ∈ G(xn) ∩ (−D), for n > N2, and then

xn ∈ K, for n > N2. (4.18)

Then it follows from (4.14) that

yn ∈ cone
(
F(K) + C − {y0

}) ∩ − int(Cε(B)), for n > max{N1,N2}, (4.19)

which contradicts (4.7). Thus (4.6) holds and the proof is complete.

From D + intD ⊆ intD,C + intCε(B) ⊆ intCε(B) and Theorem 4.3, we have the
following corollary.

Corollary 4.4. Suppose that C has a base B. Let (ui, vi,wi) ∈ X × (−C) × (−D), i = 1, 2, . . . , m − 1,
y0 ∈ F(x0), z0 ∈ G(x0) ∩ (−D), δ = inf{‖b‖ : b ∈ B}. If (x0, y0) is a Henig efficient solution of
(SP), then there exists ε ∈ (0, δ) such that

[
D

(m)
w−g(F,G)

(
x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0

)
(X)

+C ×D + {(0Y , z0)}
]
∩ (− int(Cε(B) ×D)) = ∅.

(4.20)
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Theorem 4.5. Suppose that C has a base B, δ = inf{‖b‖ : b ∈ B}. Let y0 ∈ F(x0), (ui, vi −y0, wi) ∈
X × (−C) × (−D), i = 1, 2, . . . , m − 1. If (x0, y0) is a Henig efficient solution of (SP), then for some
ε ∈ (0, δ) and for any z0 ∈ G(x0) ∩ (−D),

[
D

(m)
w-g(F,G)

(
x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0

)
(X)

+C ×D + {(0Y , z0)}
]
∩ − int(Cε(B) ×D) = ∅.

(4.21)

Proof. IfD(m)
w-g(F,G)(x0, y0, z0, u1 −x0, v1 −y0, w1 −z0, . . . , um−1 −x0, vm−1 −y0, wm−1 −z0)(x) = ∅

for some x ∈ X, then the result holds trivially. So we suppose that for any x ∈ Ω :
= dom[D(m)

w-g(F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 − z0)].
Then the proof of the fact follows on the lines of [20, Theorem 4.1] by using mth-order
weakly generalized contingent epiderivative instead of mth-order generalized adjacent
epiderivative.

Theorem 4.6. Let (ui, vi,wi) ∈ X×(−C)×(−D), i = 1, 2, . . . , m−1, y0 ∈ F(x0), z0 ∈ G(x0)∩(−D),
let B be base of C and δ = inf{‖b‖ : b ∈ B}. Suppose that the following conditions are satisfied:

(i) (F,G) is generalized (C,D)-convex at (x0, y0, z0) on nonempty set E,

(ii) the pair (x0, y0) is a Henig efficient solution of (SP),

(iii) P(x) := {(y, z) ∈ (Y,Z) | (x − x0, y, z) ∈ G-T (m)
epi(F,G)(x0, y0, u1, v1, w1 +

z0, . . . , um−1, vm−1,wm−1 + z0)} fulfills the weak domination property for all x ∈ E,
(0Y , 0Z) ∈ [D(m)

w−g(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)](0X).

Then there exist φ ∈ CΔ(B) and ψ ∈ D∗ such that

∅(y) + ψ(z) ≥ 0, (z0) = 0, (4.22)

for all (y, z) ∈ Δ(x) := D
(m)
w−g(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)(x) and

x ∈ Ω := domΔ.

Proof. Let z0 ∈ G(x0) ∩ (−D). Define

M =
⋃

x∈Ω
Δ(x) + C ×D + (0Y , z0). (4.23)

By the similar line of proof for convexity ofM in Theorem 5.1 in [20], we obtain that
M is a convex set. It follows from Corollary 4.4 that

M ∩ (−(int(cone(εU + B)) × intD)) = ∅. (4.24)

By the separation theorem of convex sets, there exist φ ∈ Y ∗ and ψ ∈ Z∗, not both zero
functionals such that for all (y, z) ∈M, (y, z) ∈ −(int(cone(εU + B)) × intD), we have

φ
(
y
)
+ ψ(z) ≥ φ(y) + ψ(z). (4.25)
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It follows from (4.25) that

φ
(
y
) ≤ ψ(z), ∀(y, z) ∈ − int(cone(εU + B)) × intD, (4.26)

φ
(
y
)
+ ψ(z) ≥ 0, ∀(y, z) ∈M. (4.27)

Whence

φ
(
y
)
+ ψ(z) ≥ 0, (4.28)

for all (y, z) ∈ Δ(x) and x ∈ Ω.
From (4.26), we obtain that ψ is bounded below on the intD. Then ψ(z) ≥ 0, for all

∈ intD. Naturally ψ ∈ D∗ and

φ(b) ≥ φ(u), ∀b ∈ B, u ∈ εU. (4.29)

SinceU is symmetry, there exists a u0 ∈ εU such that φ(u0) = t > 0. Then φ ∈ CΔ(B).
From (4.27) and condition (iii), we have ψ(z0) ≥ 0. Since z0 ∈ −D and ψ ∈ D∗, ψ(z0) ≤

0. So

ψ(z0) = 0, (4.30)

and the proof is complete.

Remark 4.7. We notice that a Kuhn-Tucker type necessary optimality condition in Theorem 4.6
is obtained under weaker assumptions than those assumed in [20, Theorem 5.1] and [22,
Theorem 6.1]. The following example explains the case, where we only takem = 2.

Example 4.8. Suppose that X = Y = Z = R,E = X, C = D = R+, B = {2}. Let F : E → 2Y be a
set-valued map with

F(x) =
{
y ∈ R : y ≥ x2/3

}
, x ∈ E, (4.31)

and G : E → Z be a set-valued map with

G(x) =
{
z ∈ R : z ≥ x4/5

}
, x ∈ E. (4.32)

Let x0 = 0 ∈ E, y0 = 0 ∈ F(x0), z0 = 0 ∈ G(x0). Naturally, (F,G) is generalized C×D-convex at
(x0, y0, z0) on E. Consider the following constrained set-valued optimization problem (4.6):

min, F(x),

s.t. x ∈ E,G(x) ∩ (−D)/= ∅.
(4.33)
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By definition, (x0, y0) is a Henig efficient solution of (4.6). Take (u1, v1, w1) = (−1, 0, 0) ∈
gph(Dw−g(F,G)(x0, y0, z0)). By directly calculating, we have

G-T (2)
epi(F,G)

(
x0, y0, z0, u1, v1, w1 + z0

)
=
{(
x, y, z

) ∈ E × R2 : y ≥ 0, z ≥ 0
}
,

(0Y , 0Z) ∈ D(2)
w−g(F,G)

(
x0, y0, z0, u1, v1, w1 + z0

)
(0X).

(4.34)

Then, the conditions of Theorem 4.6 are satisfied, and

D
(2)
w−g(F,G)

(
x0, y0, z0, u1, v1, w1 + z0

)
(x)

=
{(
y, z
) ∈ R2 : y = 0, z ≥ 0

}
∪
{(
y, z
) ∈ R2 : y ≥ 0, z = 0

}
.

(4.35)

Simultaneously, take φ = 1 ∈ CΔ(B) and ϕ = 1 ∈ D∗. Obviously, the 2nd-order necessary
optimality condition of Theorem 4.6 holds.

Since neither F nor G is R+-convex on nonempty convex set E and
T
(2)
epi(F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0) = ∅, the assumptions of [20, Theorem 5.1]

and [22, Theorem 6.1] are not satisfied. Therefore [20, Theorem 5.1] and [22, Theorem 6.1]
are unusable here.

As a direct consequence of Theorem 4.6, we get the following corollary.

Corollary 4.9 (See [21]). Let (ui, vi,wi) ∈ X × (−C) × (−D), i = 1, 2, . . . , m − 1, y0 ∈ F(x0), let B
be base of C and δ = inf{‖b‖ : b ∈ B}. Suppose that the following conditions are satisfied:

(i) F and G are C-convex and D-convex on nonempty convex set E,respectively,

(ii) the pair (x0, y0) is a Henig efficient solution of (SP),

(iii) (0Y , 0Z) ∈ [G − D(m)(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)](0X),
for any z0 ∈ G(x0)

⋂
(−D).

Then for any z0 ∈ G(x0)
⋂
(−D), there exist φ ∈ CΔ(B) and ψ ∈ D∗ such that

φ
(
y
)
+ ψ(z) ≥ 0, ψ(z0) = 0, (4.36)

for all (y, z) ∈ G-D(m)(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0)(x) and x ∈ Ω :
= domG-D(m)(F,G)(x0, y0, z0, u1, v1, w1 + z0, . . . , um−1, vm−1, wm−1 + z0).

Theorem 4.10. Suppose that C has a base B. Let x, x0 ∈ E, y0 ∈ F(x0),z0 ∈ G(x0)
⋂
(−D). Suppose

that the following conditions are satisfied:

(i) ui ∈ E, vi ∈ F(ui) + C,wi ∈ G(ui) +D, i = 1, 2, . . . , m − 1,

(ii) (F,G) is generalized C ×D-convex at (x0, y0, z0) on E,

(iii) if the set {(y, z) ∈ (Y,Z) | (x − x0, y, z) ∈ G-T (m)
epi(F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 −

z0, . . . , um−1−x0, vm−1−y0, wm−1−z0)} fulfills the weak domination property for all x ∈ E,
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(iv) there exist φ ∈ CΔ(B) and ψ ∈ D∗ such that

φ
(
y
)
+ ψ(z) ≥ 0, ψ(z0) = 0, (4.37)

for all (y, z) ∈ D
(m)
w−g(F,G)(x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . , um−1 − x0, vm−1 − y0, wm−1 −

z0)(x − x0), for all x ∈ K.
Then the pair (x0, y0) is a Henig efficient solution of (SP).

Proof. It follows from Proposition 3.16 that

(
y − y0, z − z0

) ∈ D(m)
w−g(F,G)

(
x0, y0, z0, u1 − x0, v1 − y0, w1 − z0, . . . ,

um−1 − x0, vm−1 − y0, wm−1 − z0
)
(x − x0) + C ×D,

(4.38)

for all (y, z) ∈ (F,G)(x), x ∈ K. Then,

φ
(
y − y0

)
+ ψ(z − z0) ≥ 0, ∀(y, z) ∈ (F,G)(x). (4.39)

Thus, for any x ∈ K, there exists a z ∈ G(x) with z ∈ −D such that ψ(z) ≤ 0. It follows from
ψ(z0) = 0 and (4.39) that

φ
(
y
) ≥ φ(y0

)
, ∀y ∈ F(K). (4.40)

Whence it follows from Lemma 4.2 that (x0, y0) is a Henig efficient solution of (SP).

Similarly as in the proof of Theorem 4.10, it follows from Proposition 3.13 that we have
the following result.

Theorem 4.11. Suppose that C has a base B. Let x, x0 ∈ E, y0 ∈ F(x0),z0 ∈ G(x0)
⋂
(−D). Suppose

that the following conditions are satisfied:

(i) (ui, vi,wi) ∈ {0X} × C ×D, i = 1, 2, . . . , m − 1,

(ii) If the set {(y, z) ∈ (Y,Z) | (x − x0, y, z) ∈ G-T (m)
epi(F,G)(x0, y0, u1, v1, . . . , um−1, vm−1)}

fulfills the weak domination property for all x ∈ E,
(iii) there exist φ ∈ CΔ(B) and ψ ∈ D∗ such that

φ
(
y
)
+ ψ(z) ≥ 0, ψ(z0) = 0, (4.41)

for all (y, z) ∈ D(m)
w−g(F,G)(x0, y0, z0, u1, v1, w1, . . . , um−1, vm−1, wm−1)(x − x0), for all x ∈ K.

Then the pair (x0, y0) is a Henig efficient solution of (CP).

Remark 4.12.

(i) Since Theorem 4.11 does not involve the convexity, it improves [20, Theorem 5.4]
and [22, Theorem 6.2].
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(ii) If we use mth-order weakly generalized adjacent epiderivative instead of the mth-
order weak generalized contingent epiderivative in Theorems 4.3, 4.5, 4.6, 4.10 and
4.11, then the corresponding results for mth-order weakly generalized adjacent
epiderivative still hold.
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