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Under new assumptions, we provide suffcient conditions for the (upper and lower) semicontinuity
and continuity of the solution mappings to a class of generalized parametric set-valued Ky Fan
inequality problems in linear metric space. These results extend and improve some known results
in the literature (e.g., Gong, 2008; Gong and Yoa, 2008; Chen and Gong, 2010; Li and Fang, 2010).
Some examples are given to illustrate our results.

1. Introduction

The Ky Fan inequality is a very general mathematical format, which embraces the formats
of several disciplines, as those for equilibrium problems of mathematical physics, those from
game theory, those from (vector) optimization and (vector) variational inequalities, and so
on (see [1, 2]). Since Ky Fan inequality was introduced in [1, 2], it has been extended and
generalized to vector or set-valued mappings. The Ky Fan Inequality for a set-/vector-valued
mapping is known as the (weak) generalized Ky Fan inequality ((W)GKFI, in short). In the
literature, existing results for various types of (generalized) Ky Fan inequalities have been
investigated intensively, see [3–5] and the references therein.

It is well known that the stability analysis of solution maps for parametric Ky Fan
inequality (PKFI, in short) is an important topic in optimization theory and applications.
There are some papers to discuss the upper and/or lower semicontinuity of solution maps.
Cheng and Zhu [6] discussed the upper semicontinuity and the lower semicontinuity of
the solution map for a PKFI in finite-dimensional spaces. Anh and Khanh [7, 8] studied
the stability of solution sets for two classes of parametric quasi-KFIs. Huang et al. [9]
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discussed the upper semicontinuity and lower semicontinuity of the solution map for a
parametric implicit KFI. By virtue of a density result and scalarization technique, Gong [10]
first discussed the lower semicontinuity of the set of efficient solutions for a parametric KFI
with vector-valued maps. By using the ideas of Cheng and Zhu [6], Gong and Yao [11]
studied the continuity of the solution map for a class of weak parametric KFI in topological
vector spaces. Then, Kimura and Yao [12] discussed the semicontinuity of solution maps for
parametric quasi-KFIs. Based on the work of [6, 10], the continuity of solution sets for PKFIs
was discussed in [13] without the uniform compactness assumption. Recently, Li and Fang
[14] obtained a new sufficient condition for the lower semicontinuity of the solution maps
to a generalized PKFI with vector-valued mappings, where their key assumption is different
from the ones in [11, 13].

Motivated by the work reported in [10, 11, 14, 15], this paper aims at studying the
stability of the solution maps for a class of generalized PKFI with set-valued mappings.
We obtain some new sufficient conditions for the semicontinuity of the solution sets to
the generalized PKFI. Our results are new and different from the corresponding ones in
[6, 10, 11, 13–17].

The rest of the paper is organized as follows. In Section 2, we introduce a class of
generalized set-valued PKFI and recall some concepts and their properties which are needed
in the sequel. In Section 3, we discuss the upper semicontinuity and lower semicontinuity of
the solution mappings for the class of generalized PKFI and compare our main results with
the corresponding ones in the recent literature ([10, 11, 13–15]). We also give two examples
to illustrate that our main results are applicable.

2. Preliminaries

Throughout this paper, if not, otherwise, specified, d(·, ·) denotes the metric in any metric
space. Let B(0, δ) denote the closed ball with radius δ ≥ 0 and center 0 in any metric linear
spaces. Let X and Y be two real linear metric spaces. Let Z be a linear metric space and let Λ
be a nonempty subset of Z. Let Y ∗ be the topological dual space of Y , and let C be a closed,
convex, and pointed cone in Y with intC/= ∅, where intC denotes the interior of C. Let

C∗ :=
{
f ∈ Y ∗ : f

(
y
) ≥ 0, ∀y ∈ C} (2.1)

be the dual cone of C.
LetA be a nonempty subset ofX, and let F : A×A ⇒ Y \{∅} be a set-valued mapping.

We consider the following generalized KFI which consist in finding x ∈ A(λ) such that

F
(
x, y

) ∩ (− intC) = ∅, ∀y ∈ A(λ). (KFI)

When the set A and the function F are perturbed by a parameter λ which varies over
a set Λ of Z, we consider the following weak generalized PKFI which consist in finding x ∈
A(λ) such that

F
(
x, y, λ

) ∩ (− intC) = ∅, ∀y ∈ A(λ), (PKFI)
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where A : Λ ⇒ X \ {∅} is a set-valued mapping and F : B × B ×Λ ⊂ X ×X ×Z ⇒ Y \ {∅} is a
set-valued mapping with A(Λ) =

⋃
λ∈ΛA(λ) ⊂ B.

For each λ ∈ Λ, the solution set of (PKFI) is defined by

V (F, λ) :=
{
x ∈ A(λ) | F(x, y, λ) ∩ (− intC) = ∅, ∀y ∈ A(λ)

}
. (2.2)

For each f ∈ C∗ \ {0} and for each λ ∈ Λ, the f-solution set of (PKFI) is defined by

Vf(F, λ) :=

{

x ∈ A(λ) | inf
z∈F(x,y,λ)

f(z) ≥ 0, ∀y ∈ A(λ)

}

. (2.3)

Special Case

(i) If for any λ ∈ Λ, x, y ∈ A(λ), F(x, y, λ) := ϕ(x, y, λ) + ψ(y, λ) − ψ(x, λ), where
ϕ : A(μ)×A(μ)×Λ → 2Y is a set-valued mapping and ψ : A(μ)×Λ → Y is a single-
valued mapping, the (PKFI) reduces to the weak parametric vector equilibrium
problem ((W)PVEP) considered in [15].

(ii) When F is a vector-valued mapping, that is, F : B × B × Λ ⊂ X × X × Z → Y , the
(PKFI) reduces to the parametric Ky Fan inequality in [14].

(iii) If for any λ ∈ Λ, x, y ∈ A(λ), F(x, y, λ) := ϕ(x, y, λ) + ψ(y, λ) − ψ(x, λ), where
ϕ : A(μ) × A(μ) × Λ → Y and ψ : A(μ) × Λ → Y are two vector-valued maps,
the (PKFI) reduces to the parametric (weak) vector equilibrium problem (PVEP)
considered in [10, 11, 13, 16].

Throughout this paper, we always assume V (F, λ)/= ∅ for all λ ∈ Λ. This paper aims at
investigating the semicontinuity and continuity of the solutionmapping V (F, λ) as set-valued
map from the set Λ into X. Now, we recall some basic definitions and their properties which
are needed in this paper.

Definition 2.1. Let F : X ×X × Z ⇒ Y \ {∅} be a trifunction.
(i) F(x, ·, λ) is called C-convex function on A(λ), if and only if for every x1, x2 ∈ A(λ)

and t ∈ [0, 1], tF(x, x1, λ) + (1 − t)F(x, x2, λ) ⊂ F(x, tx1 + (1 − t)x2, λ) + C.
(ii) F(x, ·, λ) is calledC-like-convex function onA(λ), if and only if for any x1, x2 ∈ A(λ)

and any t ∈ [0, 1], there exists x3 ∈ A(λ) such that tF(x, x1, λ) + (1 − t)F(x, x2, λ) ⊂
F(x, x3, λ) + C.

(iii) F(·, ·, ·) is called C-monotone on A(Λ) × A(Λ) × Λ, if and only if for any λ ∈ Λ
and x, y ∈ A(λ), F(x, y, λ) + F(y, x, λ) ⊂ −C. The mapping F is called C-strictly
monotone (or called C-strongly monotone in [10]) on A(Λ) × A(Λ) × Λ if F is C-
monotone and if for any given λ ∈ Λ, for all x, y ∈ A(λ) and x /=y, s.t. F(x, y, λ) +
F(y, x, λ) ⊂ − intC.

Definition 2.2 (see [18]). Let X and Y be topological spaces, T : X ⇒ Y \ {∅} be a set-valued
mapping.

(i) T is said to be upper semicontinuous (u.s.c., for short) at x0 ∈ X if and only if for
any open set V containing T(x0), there exists an open setU containing x0 such that
T(x) ⊆ V for all x ∈ U.
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(ii) T is said to be lower semicontinuous (l.s.c., for short) at x0 ∈ X if and only if for
any open set V with T(x0)∩V /= ∅, there exists an open setU containing x0 such that
T(x) ∩ V /= ∅ for all x ∈ U.

(iii) T is said to be continuous at x0 ∈ X, if it is both l.s.c. and u.s.c. at x0 ∈ X. T is said
to be l.s.c. (resp. u.s.c.) on X, if and only if it is l.s.c. (resp., u.s.c.) at each x ∈ X.

From [19, 20], we have the following properties for Definition 2.2.

Proposition 2.3. Let X and Y be topological spaces, let T : X ⇒ Y \ {∅} be a set-valued mapping.

(i) T is l.s.c. at x0 ∈ X if and only if for any net {xα} ⊂ X with xα → x0 and any y0 ∈ T(x0),
there exists yα ∈ T(xα) such that yα → y0.

(ii) If T has compact values (i.e., T(x) is a compact set for each x ∈ X), then T is u.s.c. at x0
if and only if for any net {xα} ⊂ X with xα → x0 and for any yα ∈ T(xα), there exist
y0 ∈ T(x0) and a subnet {yβ} of {yα}, such that yβ → y0.

3. Semicontinuity and Continuity of the Solution Map for (PKFI)

In this section, we obtain some new sufficient conditions for the semicontinuity and
continuity of the solution maps to the (PKFI).

Firstly, we provide a new result of sufficient condition for the upper semicontinuity
and closeness of the solution mapping to the (PKFI).

Theorem 3.1. For the problem (PKFI), suppose that the following conditions are satisfied:

(i) A(·) is continuous with nonempty compact value on Λ;

(ii) F(·, ·, ·) is l.s.c. on B × B ×Λ.

Then, V (F, ·) is u.s.c. and closed on Λ.

Proof. (i) Firstly, we prove V (F, ·) is u.s.c. on Λ. Suppose to the contrary, there exists some
μ0 ∈ Λ such that V (F, ·) is not u.s.c. at μ0. Then, there exist an open set V satisfying V (F, μ0) ⊂
V and sequences μn → μ0 and xn ∈ V (F, μn), such that

xn /∈ V, ∀n. (3.1)

Since xn ∈ A(μn) and A(·) are u.s.c. at μ0 with compact values by Proposition 2.3, there is an
x0 ∈ A(μ0) such that xn → x0 (here, we can take a subsequence {xnk} of {xn} if necessary).

Now, we need to show that x0 ∈ V (F, μ0). By contradiction, assume that x0 /∈ V (F, μ0).
Then, there exists y0 ∈ A(μ0) such that

F
(
x0, y0, μ0

) ∩ (− intC)/= ∅, (3.2)

that is,

∃z0 ∈ F
(
x0, y0, μ0

)
, s.t. z0 ∈ − intC. (3.3)
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By the lower semicontinuity of A(·) at μ0, for y0 ∈ A(μ0), there exists yn ∈ A(μn) such
that yn → y0.

It follows from xn ∈ V (F, μn) and yn ∈ A(μn) that

F
(
xn, yn, μn

) ∩ (− intC) = ∅. (3.4)

Since F(·, ·, ·) is l.s.c. at (x0, y0, λ0), for z0 ∈ F(x0, y0, μ0), there exists zn ∈ F(xn, yn, μn)
such that

zn −→ z0. (3.5)

From (3.3), (3.5), and the openness of intC, there exists a positive integerN sufficiently large
such that for all n ≥N,

zn ∈ − intC, for zn ∈ F(xn, yn, μn
)
, (3.6)

which contradicts (3.4). So, we have

x0 ∈ V
(
F, μ0

) ⊂ V. (3.7)

Since xn → x0 (here we can take a subsequence {xnk} of {xn} if necessary), we can find (3.7)
contradicts (3.1). Consequently, V (F, ·) is u.s.c. on Λ.

(ii) In a similar way to the proof of (i), we can easily obtain the closeness of V (F, ·) on
Λ. This completes the proof.

Remark 3.2. Theorem 3.1 generalizes and improves the corresponding results of Gong [10,
Theorem 3.1] in the following four aspects:

(i) the condition that A(·) is convex values is removed;

(ii) the vector-valued mapping F(·, ·, ·) is extended to set-valued mapping, and the
condition that C-monotone of mapping is removed;

(iii) the assumption (iii) of Theorem 3.1 in [10] is removed;

(iv) the condition that A(·) is uniformly compact near μ ∈ Λ is not required.

Moreover, we also can see that the obtained result extends Theorem 2.1 of [15].

Now, we give an example to illustrate that Theorem 3.1 is applicable.

Example 3.3. Let X = Z = Y = R, C = R+, Λ = [0, 21/2] be a subset of Z. Let F : X ×X ×Λ ⇒ Y
be a set-valued mapping defined by F(x, y, λ) = [(y + 1)(λ2 + 1)(x − λ), 10 + λ2] and let
A : Λ ⇒ X defined by A(λ) = [λ2, 2].

It follows from direct computation that

A(Λ) = [0, 2], V (F, λ) = [λ, 2], ∀λ ∈ Λ =
[
0, 21/2

]
. (3.8)

Then, we can verify that all assumptions of Theorem 3.1 are satisfied. By Theorem 3.1, V (F, ·)
is u.s.c. and closed on Λ. Therefore, Theorem 3.1 is applicable.
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When F : X × X × Z → Y is a vector-valued mapping, one can get the following
corollary.

Corollary 3.4. For the problem (PKFI), suppose that F : X×X×Z → Y is a vector-valued mapping
and the following conditions are satisfied:

(i) A(·) is continuous with nonempty compact value on Λ;

(ii) F(·, ·, ·) is continuous on B × B ×Λ.

Then, V (F, ·) is u.s.c. and closed on Λ.

Now, we give a sufficient condition for the lower semicontinuity of the solution maps
to the (PKFI).

Theorem 3.5. Let f ∈ C∗ \ {0}. Suppose that the following conditions are satisfied:

(i) A(·) is continuous with nonempty compact value on Λ;

(ii) F(·, ·, ·) is u.s.c. with nonempty compact values on B × B ×Λ;

(iii) for each λ ∈ Λ, x ∈ A(λ) \ Vf(F, λ), there exists y ∈ Vf(F, λ), such that

F
(
x, y, λ

)
+ F

(
y, x, λ

)
+ B

(
0, dγ

(
x, y

)) ⊂ −C, (3.9)

where γ > 0 is a positive constant.

Then, Vf(F, ·) is l.s.c. on Λ.

Proof. By the contrary, assume that there exists λ0 ∈ Λ, such that Vf(F, ·) is not l.s.c. at λ0.
Then, there exist λα with λα → λ0 and x0 ∈ Vf(F, λ0), such that for any xα ∈ Vf(F, λα) with
xα� x0.

Since x0 ∈ A(λ0) andA(·) are l.s.c. at λ0, there exists x̂α ∈ A(λα) such that x̂α → x0. We
claim that x̂α ∈ A(λ) \ Vf(F, λα). If not, for x̂α ∈ Vf(F, λα), it follows from above-mentioned
assumption that x̂α � x0, which is a contradiction.

By (iii), there exists yα ∈ Vf(F, λα), such that

F
(
x̂α, yα, λα

)
+ F

(
yα, x̂α, λα

)
+ B

(
0, dγ

(
x̂α, yα

)) ⊂ −C. (3.10)

For yα ∈ Vf(F, λα) ⊂ A(λα), because A(·) is u.s.c. at λ0 with compact values by
Proposition 2.3, there exist y0 ∈ A(λ0) and a subsequence {yαk} of {yα} such that yαk → y0.
In particular, for (3.10), we have

F
(
x̂αk , yαk , λαk

)
+ F

(
yαk , x̂αk , λαk

)
+ B

(
0, dγ

(
x̂αk , yαk

)) ⊂ −C. (3.11)

Then, there exist ẑαk ∈ F(x̂αk , yαk , λαk) and z̃αk ∈ F(yαk , x̂αk , λαk) such that

ẑαk + z̃αk + B
(
0, dγ

(
x̂αk , yαk

)) ⊂ −C. (3.12)
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Since F(·, ·, ·) is u.s.c. with compact values on B × B × Λ by Proposition 2.3, there exist ẑ0 ∈
F(x0, y0, λ0) and z̃0 ∈ F(y0, x0, λ0) such that ẑαk → ẑ0, z̃αk → z̃0. From x̂αk → x0, yαk → y0,
the continuity of d(·, ·), and the closedness of C, we have

ẑ0 + z̃0 + B
(
0, dγ

(
x0, y0

)) ⊂ −C. (3.13)

It follows from x0 ∈ Vf(F, λ0) and y0 ∈ A(λ0) that infz∈F(x0,y0,λ0)f(z) ≥ 0. Particularly, we have

f(ẑ0) ≥ 0. (3.14)

On the other hand, since yαk ∈ Vf(F, λαk) and x̂αk ∈ A(λαk), we have infz∈F(yαk ,x̂αk ,λαk )f(z) ≥ 0.
Also, we have f(z̃αk) ≥ 0. It follows from the continuity of f that we have

f(z̃0) ≥ 0. (3.15)

By (3.14), (3.15), and the linearity of f , we get

f(ẑ0 + z̃0) = f(ẑ0) + f(z̃0) ≥ 0. (3.16)

For the above x0 and y0, we consider two cases:

Case i. If x0 /=y0, by (3.13), we can obtain that

ẑ0 + z̃0 ∈ − intC. (3.17)

Then, it follows from f ∈ C∗ \ {0} that

f(ẑ0 + z̃0) < 0, (3.18)

which is a contradiction to (3.16).

Case ii. If x0 = y0, since yα ∈ Vf(F, λα), yα → y0 = x0, this contradicts that for any xα ∈
Vf(F, λα), xα do not converge to x0. Thus, Vf(F, ·) is l.s.c. on Λ. The proof is completed.

Remark 3.6. Theorem 3.5 generalizes and improves the corresponding results of [14, Lemma
3.1] in the following three aspects:

(i) the condition that A(·) is convex values is removed;

(ii) the vector-valued mapping F(·, ·, ·) is extended to set-valued map;

(iii) the constant γ can be any positive constant (γ > 0) in Theorem 3.5, while it should
be strictly restricted to γ = 1 in Lemma 3.1 of [14].

Moreover, we also can see that the obtained result extends the ones of Gong and Yao [11,
Theorem 2.1], where a strong assumption that C-strict/strong monotonicity of the mappings
is required.
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The following example illustrates that the assumption (iii) of Theorem 3.5 is essential.

Example 3.7. Let X = Y = R, C = R+. Let Λ = [3, 5] be a subset of Z. For each λ ∈ Λ, x, y ∈ X,
let A(λ) = [λ − 3, 2] and F : X ×X ×Λ ⇒ Y \ {∅} be a set-valued mapping defined by

F
(
x, y, λ

)
=

[(
39 − λ2 − λ

)√λ + 6
3

x
(
x − y), 68 + (2λ − 1)2 +

λ

3

]

. (3.19)

Obviously, assumptions (i) and (ii) of Theorem 3.5 are satisfied, andA(λ) = [0, 2], for all λ ∈
Λ. For any given λ ∈ Λ, let f(F(x, y, λ)) = z/3, for all z ∈ F(x, y, λ). Then, it follows from a
direct computation that

Vf(F, 3) = {0, 2}, Vf(F, λ) = 2, ∀λ ∈ (3, 5]. (3.20)

However, Vf(F, λ) is even not l.c.s. at λ = 3. The reason is that the assumption (iii)
is violated. Indeed, if x = 0 ∈ Vf(F, λ), for λ = 3 and for all γ > 0, there exist y = 1/2 ∈
A(λ) \ Vf(F, λ) = (0, 2), such that

F
(
x, y, λ

)
+ F

(
y, x, λ

)
+ B

(
0, dγ

(
x, y

))

=

[(
39 − λ2 − λ

)√λ + 6
3

x
(
x − y), 68 + (2λ − 1)2 +

λ

3

]

+

[(
39 − λ2 − λ

)√λ + 6
3

y
(
y − x), 68 + (2λ − 1)2 +

λ

3

]

+ B
(
0, dγ

(
x, y

))

=

[(
39 − λ2 − λ

)√λ + 6
3

(
x − y)2, 136 + 2(2λ − 1)2 +

2λ
3

]

+ B
(
0, dγ

(
x, y

))

=
[
27
4

−
∣∣∣∣0 −

1
2

∣∣∣∣

γ

, 188 +
∣∣∣∣0 −

1
2

∣∣∣∣

γ]
/⊆ − C;

(3.21)

if x = 2 ∈ Vf(F, λ), for λ = 3 and for all γ > 0, there exist y = 1/2 ∈ A(λ) \ Vf(F, λ), using a
similar method, we have F(x, y, λ)+F(y, x, λ)+B(0, dγ (x, y))/⊆−C. Therefore, (iii) is violated.

Now, we show that Vf(F, ·) is not l.s.c. at λ = 3. Indeed, there exists 0 ∈ Vf(F, 3) and
there exists a neighborhood (−2/9, 2/9) of 0, for any neighborhood N(3) of 3, there exists
3 < λ̃ < 5 such that λ̃ ∈N(3) and

Vf
(
F, λ̃

)
= 2 /∈

(
−2
9
,
2
9

)
. (3.22)

Thus,

Vf
(
F, λ̃

)
∩
(
−2
9
,
2
9

)
= ∅. (3.23)

By Definition 2.2 (or page 108 in [18]), we know that Vf(F, ·) is not l.c.s. at λ = 3. So, the
assumption (iii) of Theorem 3.5 is essential.
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By virtue of Theorem 1.1 in [15] (or Lemma 2.1 in [16]), we can get the following
proposition.

Proposition 3.8. Suppose that for each λ ∈ Λ and x ∈ A(λ), F(x,A(λ), λ) +C is a convex set, then

V (F, λ) =
⋃

f∈C∗\{0}
Vf(F, λ). (3.24)

Theorem 3.9. For the problem (PKFI), suppose that the following conditions are satisfied:

(i) A(·) is continuous with nonempty compact convex value on Λ;

(ii) F(·, ·, ·) is continuous with nonempty compact values on B × B ×Λ;

(iii) for each λ ∈ Λ, x ∈ A(λ) \ Vf(F, λ), there exists y ∈ Vf(F, λ), such that

F
(
x, y, λ

)
+ F

(
y, x, λ

)
+ B

(
0, dγ

(
x, y

)) ⊂ −C, (3.25)

where γ > 0 is a positive constant.

(iv) for each λ ∈ Λ and for each x ∈ A(λ), F(x, ·, λ) is C-like-convex on A(λ).

Then, V (F, ·) is closed and continuous (i.e., both l.s.c. and u.s.c.) on Λ.

Proof. From Theorem 3.1, it is easy to see that V (F, ·) is u.s.c. and closed on Λ. Now, we will
only prove that V (F, ·) is l.s.c. on Λ. For each λ ∈ Λ and for each x ∈ A(λ), since F(x, ·, λ)
is C-like-convex on A(λ), F(x,A(λ), λ) + C is convex. Thus, by virtue of Proposition 3.8, for
each λ ∈ Λ, it holds

V (F, λ) =
⋃

f∈C∗\{0}
Vf(F, λ). (3.26)

By Theorem 3.5, for each f ∈ C∗ \ {0}, Vf(F, ·) is l.s.c. on Λ. Therefore, in view of Theorem2
in [20, page 114], we have V (F, ·) is l.s.c. on Λ. This completes the proof.

Remark 3.10. Theorem 3.9 generalizes and improves the work in [15, Theorems 3.4-3.5]. Our
approach on the (semi)continuity of the solution mapping V (F, ·) is totally different from the
ones by Chen and Gong [15]. In [15], the Vf(F, λ) is strictly to be a singleton, while it may be
a set-valued one in our paper. In addition, the assumption that C-strictly monotonicity of the
mapping F is not required and the C-convexity of F is generalized to the C-like-convexity.

When the mapping F is vector-valued, we obtain the following corollary.

Corollary 3.11. For the problem (PKFI), suppose that F : X×X×Z → Y is a vector-valued mapping
and the following conditions are satisfied:

(i) A(·) is continuous with nonempty compact convex value on Λ;

(ii) F(·, ·, ·) is continuous on B × B ×Λ;
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(iii) for each λ ∈ Λ, x ∈ A(λ) \ Vf(F, λ), there exists y ∈ Vf(F, λ), such that

F
(
x, y, λ

)
+ F

(
y, x, λ

)
+ B

(
0, dγ

(
x, y

)) ⊂ −C, (3.27)

where γ > 0 is a positive constant.

(iv) for each λ ∈ Λ and for each x ∈ A(λ), F(x, ·, λ) is C-like-convex on A(λ).

Then, V (F, ·) is closed and continuous (i.e., both l.s.c. and u.s.c.) on Λ.

Remark 3.12. Corollary 3.11 generalizes and improves [10, Theorem 4.2] and [13, Theorem
4.2], respectively, because the assumption that C-strict monotonicity of the mapping F is not
required.

Next,we give the following example to illustrate the case.

Example 3.13. LetX = Z = R, Y = R
2, C = R

2
+,Λ = [−1, 1] be a subset of Z. Let F : X×X×Λ →

Y be a mapping defined by

F
(
x, y, λ

)
=
(
−3
2
− λ2,

(
λ2 + 1

)
x

)
(3.28)

and define A : Λ → 2Y by A(λ) = [−1, 1].
Obviously, A(·) is a continuous set-valued mapping from Λ to R with nonempty

compact convex values, and conditions (ii) and (iv) of Corollary 3.11 are satisfied.
Let f = (0, 2) ∈ C∗ \ {0}, it follows from a direct computation that Vf(F, λ) = [0, 1] for

any λ ∈ Λ. Hence, for any x ∈ A(λ) \ Vf(F, λ), there exists y = 0 ∈ Vf(F, λ), such that,

F
(
x, y, λ

)
+ F

(
y, x, λ

)
+ B

(
0, dγ

(
x, y

))

=
(
−3
2
− λ2,

(
λ2 + 1

)
x

)
+
(
−3
2
− λ2,

(
λ2 + 1

)
y

)
+ B

(
0, dγ

(
x, y

))

=
(
−3 − 2λ2,

(
λ2 + 1

)
x
)
+ B

(
0, |x − 0|γ)

∈ −C.

(3.29)

Thus, the condition (iii) of Corollary 3.11 is also satisfied. By Corollary 3.11, V (F, ·) is closed
and continuous (i.e., both l.s.c. and u.s.c.) on Λ.

However, the condition that F is a C-strictly monotone mapping is violated. Indeed,
for any λ ∈ Λ = [−1, 1] and x ∈ A(λ) \ Vf(F, ·), there exist y = −x ∈ Vf(F, ·) with y = −x, such
that

F
(
x, y, λ

)
+ F

(
y, x, λ

)
=
(
−3 − 2λ2, 0

)
/∈ − intC, (3.30)

which implies that F(·, ·, ·) is not R
2
+-strictly monotone onA(Λ)×A(Λ)×Λ. Then, Theorem 4.2

in [10] and Theorem 4.2 in [13] are not applicable, and the corresponding results in references
(e.g., [11, Lemma 2.2, Theorem 2.1]) are also not applicable.
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