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The periodic boundary value problem is discussed for a class of fractional evolution equations. The
existence and uniqueness results of mild solutions for the associated linear fractional evolution
equations are established, and the spectral radius of resolvent operator is accurately estimated.
With the aid of the estimation, the existence and uniqueness results of positive mild solutions are
obtained by using the monotone iterative technique. As an application that illustrates the abstract
results, an example is given.

1. Introduction

In this paper, we investigate the existence and uniqueness of positive mild solutions of the
periodic boundary value problem (PBVP) for the fractional evolution equation in an ordered
Banach space X

Dαu(t) +Au(t) = f(t, u(t)), t ∈ I,

u(0) = u(ω),
(1.1)

whereDα is the Caputo fractional derivative of order 0 < α < 1, I = [0, ω], −A : D(A) ⊂ X →
X is the infinitesimal generator of an analytic semigroup {T(t)}t≥0 of uniformly bounded
linear operators on X, and f : I ×X → X is a continuous function.

The origin of fractional calculus goes back to Newton and Leibnitz in the seventieth
century. We observe that fractional order can be complex in viewpoint of pure mathematics
and there is much interest in developing the theoretical analysis and numerical methods to
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fractional equations, because they have recently proved to be valuable in various fields of sci-
ence and engineering. Indeed, we can find numerous applications in viscoelasticity, electro-
chemistry, electromagnetism, biology, and hydrogeology. For example space-fractional diffu-
sion equations have been used in groundwater hydrology to model the transport of passive
tracers carried by fluid flow in a porous medium [1, 2] or to model activator-inhibitor dy-
namics with anomalous diffusion [3].

Fractional evolution equations, which is field have abundant contents. Many differen-
tial equations can turn to semilinear fractional evolution equations in Banach spaces. For
example, fractional diffusion equations are abstract partial differential equations that involve
fractional derivatives in space and time. The time fractional diffusion equation is obtained
from the standard diffusion equation by replacing the first-order time derivative with a frac-
tional derivative of order α ∈ (0, 1), namely,

∂αt u
(
y, t

)
= Au

(
y, t

)
, t ≥ 0, y ∈ R, (1.2)

we can takeA = ∂
β1
y , for β1 ∈ (0, 1], orA = ∂y+∂

β2
y for β2 ∈ (1, 2], where ∂αt , ∂

β1
y , ∂β2y are the frac-

tional derivatives of order α, β1, β2, respectively. Recently, fractional evolution equations are
attracting increasing interest, see El-Borai [4, 5], Zhou and Jiao [6, 7], Wang et al. [8, 9], Shu
et al. [10] and Mu et al. [11, 12]. They established various criteria on the existence of solu-
tions for some fractional evolution equations by using the Krasnoselskii fixed point theorem,
the Leray-Schauder fixed point theorem, the contraction mapping principle, or the monotone
iterative technique. However, no papers have studied the periodic boundary value problems
for abstract fractional evolution equations (1.1), though the periodic boundary value pro-
blems for ordinary differential equations have been widely studied by many authors (see
[13–18]).

In this paper, without the assumptions of lower and upper solutions, by using the
monotone iterative technique, we obtain the existence and uniqueness of positive mild solu-
tions for PBVP (1.1). Because in many practical problems such as the reaction diffusion equa-
tions, only the positive solution has the significance, we consider the positive mild solutions
in this paper. The characteristics of positive operator semigroup play an important role in ob-
taining the existence of the positive mild solutions. Positive operator semigroup are widely
appearing in heat conduction equations, the reaction diffusion equations, and so on (see [19]).
It is worth noting that our assumptions are very natural and we have tested them in the prac-
tical context. In particular to build intuition and throw some light on the power of our results,
we examine sufficient conditions for the existence and uniqueness of positive mild solutions
for periodic boundary value problem for fractional parabolic partial differential equations
(see Example 4.1).

We now turn to a summary of this work. Section 2 provides the definitions and pre-
liminary results to be used in theorems stated and proved in the paper. In particular to faci-
litate access to the individual topics, the existence and uniqueness results of mild solutions for
the associated linear fractional evolution equations are established and the spectral radius of
resolvent operator is accurately estimated. In Section 3, we obtain very general results on the
existence and uniqueness of positive mild solutions for PBVP (1.1), when the nonlinear term
f satisfies some conditions related to the growth index of the operator semigroup {T(t)}t≥0.
The main method is the monotone iterative technique. In Section 4, we give also an example
to illustrate the applications of the abstract results.
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2. Preliminaries

Let us recall the following known definitions. For more details see [20–23].

Definition 2.1. The fractional integral of order α with the lower limit zero for a function f is
defined as:

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t − s)1−α
ds, t > 0, α > 0, (2.1)

provided the right side is point-wise defined on [0,∞), where Γ(·) is the gamma function.

Definition 2.2. The Riemann-Liouville derivative of order αwith the lower limit zero for a fun-
ction f can be written as:

LDαf(t) =
1

Γ(n − α)
dn

dtn

∫ t

0

f(s)

(t − s)α+1−n
ds, t > 0, n − 1 < α < n. (2.2)

Definition 2.3. The Caputo fractional derivative of order α for a function f can be written as:

Dαf(t) = L
D

α

(

f(t) −
n−1∑

k=0

tk

k!
f (k)(0)

)

, t > 0, n − 1 < α < n. (2.3)

Remark 2.4. (i) If f ∈ Cn[0,∞), then

Dαf(t) =
1

Γ(n − α)

∫ t

0

fn(s)

(t − s)α+1−n
ds, t > 0, n − 1 < α < n. (2.4)

(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X, then the integrals and derivatives

which appear in Definitions 2.1–2.3 are taken in Bochner’s sense.

Throughout this paper, let X be an ordered Banach space with norm ‖ · ‖ and partial
order ≤, whose positive cone P = {y ∈ X | y ≥ θ} (θ is the zero element of X) is normal with
normal constant N. Let C(I, X) be the Banach space of all continuous X-value functions on
interval I with norm ‖u‖C = maxt∈I‖u(t)‖. Evidently, C(I, X) is also an ordered Banach space
with the partial ≤ reduced by the positive function cone PC = {u ∈ C(I, X) | u(t) ≥ θ, t ∈ I}. PC

is also normal with the same constant N. For u, v ∈ C(I, X), u ≤ v if u(t) ≤ v(t) for all t ∈ I.
For v,w ∈ C(I, X), denote the ordered interval [v,w] = {u ∈ C(I, X) | v ≤ u ≤ w} in C(I, X),
and [v(t), w(t)] = {y ∈ X | v(t) ≤ y ≤ w(t)}(t ∈ I) in X. Set Cα(I, X) = {u ∈ C(I, X) |
Dαu exists and Dαu ∈ C(I, X)}. X1 denotes the Banach space D(A) with the graph norm
‖ · ‖1 = ‖ · ‖+ ‖A · ‖. Suppose that −A is the infinitesimal generator of an analytic semigroup of
uniformly bounded linear operators {T(t)}t≥0. This means there exists M ≥ 1 such that

‖T(t)‖ ≤ M t ≥ 0. (2.5)
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Lemma 2.5 (see [4]). If h satisfies a uniform Hölder condition, with exponent β ∈ (0, 1], then the
unique solution of the linear initial value problem (LIVP) for the fractional evolution equation,

Dαu(t) +Au(t) = h(t), t ∈ I,

u(0) = x0 ∈ X,
(2.6)

is given by

u(t) = U(t)x0 +
∫ t

0
(t − s)α−1V (t − s)h(s)ds, (2.7)

where

U(t) =
∫∞

0
ζα(θ)T(tαθ)dθ, V (t) = α

∫∞

0
θζα(θ)T(tαθ)dθ, (2.8)

ζα(θ) is a probability density function defined on (0,∞).

Remark 2.6. (i) See [6, 7],

ζα(θ) =
1
α
θ−1−1/αρα

(
θ−1/α

)
,

ρα(θ) =
1
π

∞∑

n=0
(−1)n−1θ−αn−1 Γ(nα + 1)

n!
sin(nπα), θ ∈ (0,∞),

(2.9)

(ii) see [6, 24], ζα(θ) ≥ 0, θ ∈ (0,∞),
∫∞
0 ζα(θ)dθ = 1,

∫∞
0 θζα(θ)dθ = 1/Γ(1 + α),∫∞

0 θvζα(θ)dθ = Γ(1 + v)/Γ(1 + αv) for v ∈ (−1,∞),
(iii) see [4, 5], the Laplace transform of ζα is given by

∫∞

0
e−pθζα(θ)dθ =

∞∑

n=0

(−p)n
Γ(1 + nα)

= Eα

(−p), (2.10)

where Eα(·) is the Mittag-Leffler function (see [20]),
(iv) see [24] by (i) and (ii), we can obtain that for p ≥ 0

∫∞

0
e−pθθζα(θ)dθ =

1
α

∞∑

n=0

(−p)n
Γ(α(n + 1))

=
1
α
Eα,α

(−p), (2.11)

where Eα(·), Eα,α(·) are the Mittag-Leffler functions.
(v) see [25] for p < 0, 0 < Eα(p) < Eα(0) = 1,
(vi) see [10] if δ > 0 and t > 0, then −(1/δ)(Eα(−δtα))′ = tα−1Eα,α(−δtα).

Remark 2.7. See [6, 8], the operators U and V , given by (2.8), have the following properties:
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(i) For any fixed t ≥ 0,U(t) and V (t) are linear and bounded operators, that is, for any
x ∈ X,

‖U(t)x‖ ≤ M‖x‖, ‖V (t)x‖ ≤ αM

Γ(1 + α)
‖x‖, (2.12)

(ii) {U(t)}t≥0 and {V (t)}t≥0 are strongly continuous.

Definition 2.8. If h ∈ C(I, X), by the mild solution of IVP (2.6), we mean that the function
u ∈ C(I, X) satisfying the integral (2.7).

We also introduce some basic theories of the operator semigroups. For an analytic semi-
group {R(t)}t≥0, there exist M1 > 0 and δ ∈ R such that (see [26])

‖R(t)‖ ≤ M1e
δt, t ≥ 0. (2.13)

Then

ν0 = inf
{
δ ∈ R | there exist M1 > 0 such that ‖R(t)‖ ≤ M1e

δt, ∀t ≥ 0
}

(2.14)

is called the growth index of the semigroup {R(t)}t≥0. Furthermore, ν0 can also be obtained
by the following formula:

ν0 = lim sup
t→+∞

ln‖R(t)‖
t

. (2.15)

Definition 2.9 (see [26]). A C0-semigroup {T(t)}t≥0 is called a compact semigroup if T(t) is
compact for t > 0.

Definition 2.10. An analytic semigroup {T(t)}t≥0 is called positive if T(t)x ≥ θ for all x ≥ θ and
t ≥ 0.

Remark 2.11. For the applications of positive operators semigroup, we can see [27–31].

Definition 2.12. A bounded linear operator K on X is called to be positive if Kx ≥ θ for all
x ≥ θ.

Remark 2.13. By Remark 2.6(ii), we obtain thatU(t) and V (t) are positive for t ≥ 0 if {T(t)}t≥0
is a positive semigroup.

Lemma 2.14. Let X be an ordered Banach space, whose positive cone P is normal. If {T(t)}t≥0 is an
exponentially stable analytic semigroup, that is, ν0 = lim supt→+∞(ln ‖T(t)‖/t) < 0. Then the linear
periodic boundary value problem (LPBVP),

Dαu(t) +Au(t) = h(t), t ∈ I,

u(0) = u(ω),
(2.16)
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has a unique mild solution

u(t) := (Qh)(t) = U(t)B(h) +
∫ t

0
(t − s)α−1V (t − s)h(s)ds, (2.17)

whereU(t) and V (t) are given by (2.8),

B(h) = (I −U(ω))−1
∫ω

0
(ω − s)α−1V (ω − s)h(s)ds, (2.18)

Q : C(I, X) → C(I, X) is a bounded linear operator, and the spectral radius r(Q) ≤ 1/|ν0|.

Proof. For any ν ∈ (0, |ν0|), by there existsM1 such that

‖T(t)‖ ≤ M1e
−νt, t ≥ 0. (2.19)

In X, give the equivalent norm | · | by

|x| = sup
t≥0

∥∥eνtT(t)x
∥∥, (2.20)

then ‖x‖ ≤ |x| ≤ M1‖x‖. By |T(t)|we denote the norm of T(t) in (X, | · |), then for t ≥ 0,

|T(t)x| = sup
s≥0

‖eνsT(s)T(t)x‖

= e−νtsup
s≥0

∥∥∥eν(s+t)T(s + t)x
∥∥∥

= e−νtsup
η≥t

∥∥eνηT
(
η
)
x
∥∥

≤ e−νt|x|.

(2.21)

Thus, |T(t)| ≤ e−νt. Then by Remark 2.6,

|U(t)| =
∣∣∣∣

∫∞

0
ζα(θ)T(tαθ)dθ

∣∣∣∣

≤
∫∞

0
ζα(θ)e−νt

αθdθ

= Eα(−νtα) < 1.

(2.22)
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Therefore, I −U(ω) has bounded inverse operator and

(I −U(ω))−1 =
∞∑

n=0
(U(ω))n, (2.23)

∣
∣
∣(I −U(ω))−1

∣
∣
∣ ≤ 1

1 − Eα(−νωα)
. (2.24)

Set

x0 = (I −U(ω))−1
∫ω

0
(ω − s)α−1V (ω − s)h(s)ds, (2.25)

then

u(t) = U(t)x0 +
∫ t

0
(t − s)α−1V (t − s)h(s)ds (2.26)

is the unique mild solution of LIVP (2.6) satisfing u(0) = u(ω). So set

B(h) = (I −U(ω))−1
∫ω

0
(ω − s)α−1V (ω − s)h(s)ds,

(Qh)(t) = U(t)B(h) +
∫ t

0
(t − s)α−1V (t − s)h(s)ds,

(2.27)

then u := Qh is the unique mild solution of LPBVP (2.16). By Remark 2.7, Q : C(I, X) →
C(I, X) is a bounded linear operator. Furthermore, by Remark 2.6, we obtain that

|V (t)| =
∣∣∣∣α

∫∞

0
θζα(θ)T(tαθ)dθ

∣∣∣∣

≤ α

∫∞

0
θζα(θ)e−νt

αθdθ

= Eα,α(−νtα).

(2.28)

By (2.24), (2.28) and Remark 2.6, for t ≥ 0 we have that

|(Qh)(t)| ≤
∣∣∣∣U(t)(I −U(ω))−1

∫ω

0
(ω − s)α−1V (ω − s)h(s)ds

∣∣∣∣

+

∣∣∣∣∣

∫ t

0
(t − s)α−1V (t − s)h(s)ds

∣∣∣∣∣

≤ Eα(−νtα)
1 − Eα(−νωα)

∣∣∣∣

∫ω

0
(ω − s)α−1V (ω − s)ds

∣∣∣∣|h|C
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+

∣
∣
∣
∣
∣

∫ t

0
(t − s)α−1V (t − s)ds

∣
∣
∣
∣
∣
|h|C

=

[
Eα(−νtα)

1 − Eα(−νωα)
1
ν
Eα

(−ν(ω − s)α
)
∣
∣
∣
∣

ω

0
+
1
ν
Eα

(−ν(t − s)α
)
∣
∣
∣
∣

t

0

]

|h|C

=
|h|C
ν

,

(2.29)

where | · |C = maxt∈I | · (t)|. Thus, |Qh|C ≤ |h|C/ν. Then |Q| ≤ 1/ν and the spectral radius
r(Q) ≤ 1/ν. By the randomicity of ν ∈ (0, |ν0|), we obtain that r(Q) ≤ 1/|ν0|.

Remark 2.15. For sufficient conditions of exponentially stable operator semigroups, one can
see [32].

Remark 2.16. If {T(t)}t≥0 is a positive and exponentially stable analytic semigroup generated
by −A, by Remark 2.13, then the resolvent operator Q : C(I, X) → C(I, X) is also a positive
bounded linear operator.

Remark 2.17. For the applications of Lemma 2.14, it is important to estimate the growth index
of {T(t)}t≥0. If T(t) is continuous in the uniform operator topology for t > 0, it is well known
that ν0 can be obtained byσ(A): the spectrum of A (see [33])

ν0 = − inf{Reλ | λ ∈ σ(A)}. (2.30)

We know that T(t) is continuous in the uniform operator topology for t > 0 if T(t) is a com-
pact semigroup, see [26]. Assume that P is a regeneration cone, {T(t)}t≥0 is a compact and
positive analytic semigroup. Then by the characteristic of positive semigroups (see [31]), for
sufficiently large λ0 > − inf{Reλ | λ ∈ σ(A)}, we have that λ0I + A has positive bound-
ed inverse operator (λ0I+A)−1. Since σ(A)/= ∅, the spectral radius r((λ0I+A)−1) = 1/dist(−λ0,
σ(A)) > 0. By the Krein-Rutmann theorem (see [34, 35]), A has the first eigenvalue λ1, which
has a positive eigenfunction x1, and

λ1 = inf{Reλ | λ ∈ σ(A)}, (2.31)

that is, ν0 = −λ1.

Corollary 2.18. Let X be an ordered Banach space, whose positive cone P is a regeneration cone. If
{T(t)}t≥0 is a compact and positive analytic semigroup, and its first eigenvalue of A is

λ1 = inf{Reλ | λ ∈ σ(A)} > 0, (2.32)

then LPBVP (2.16) has a unique mild solution u := Qh, Q : C(I, X) → C(I, X) is a bounded linear
operator, and the spectral radius r(Q) = 1/λ1

Proof. By (2.32), we know that the growth index of {T(t)}t≥0 is ν0 = −λ1 < 0, that is, {T(t)}t≥0
is exponentially stable. By Lemma 2.14, Q : C(I, X) → C(I, X) is a bounded linear operator,
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and the spectral radius r(Q) ≤ 1/λ1. On the other hand, since λ1 has a positive eigenfunction
x1, in LPBVP (3.17) we set h(t) = x1, then x1/λ1 is the corresponding mild solution. By the
definition of the operator Q, Q(x1) = x1/λ1, that is, 1/λ1 is an eigenvalue of Q. Then r(Q) ≥
1/λ1. Thus, r(Q) = 1/λ1.

3. Main Results

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with normal con-
stantN. If {T(t)}t≥0 is a positive analytic semigroup, f(t, θ) ≥ θ for all t ∈ I, and the following con-
ditions are satisfied.

(H1) For any R > 0, there exists C = C(R) > 0 such that

f(t, x2) − f(t, x1) ≥ −C(x2 − x1), (3.1)

for any t ∈ I, θ ≤ x1 ≤ x2, ‖x1‖, ‖x2‖ ≤ R.

(H2) There exists L < −ν0 (ν0 is the growth index of {T(t)}t≥0), such that

f(t, x2) − f(t, x1) ≤ L(x2 − x1), (3.2)

for any t ∈ I, θ ≤ x1 ≤ x2.

Then PBVP (1.1) has a unique positive mild solution.

Proof. Let h0(t) = f(t, θ), then h0 ∈ C(I, X), h0 ≥ θ. Consider LPBVP

Dαu(t) + (A − LI)u(t) = h0(t), t ∈ I,

u(0) = u(ω).
(3.3)

−(A−LI) generates a positive analytic semigroup eLtT(t), whose growth index is L+ν0 < 0. By
Lemma 2.14 and Remark 2.16, LPBVP (3.3) has a unique mild solution w0 ∈ C(I, X) and
w0 ≥ θ.

SetR0 = N‖w0‖+1, C = C(R0) is the corresponding constant in (H1). Wemay suppose
C > max{ν0,−L}, otherwise substitute C + |ν0| + |L| for C, (H1) is also satisfied. Then we con-
sider LPBVP

Dαu(t) + (A + CI)u(t) = h(t), t ∈ I,

u(0) = u(ω).
(3.4)

−(A + CI) generates a positive analytic semigroup T1(t) = e−CtT(t), whose growth index is
−C + ν0 < 0. By Lemma 2.14 and Remark 2.16, for h ∈ C(I, X) LPBVP (3.4) has a unique mild
solution u := Q1h, Q1 : C(I, X) → C(I, X) is a positive bounded linear operator and the
spectral radius r(Q1) ≤ 1/(C − ν0).
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Set F(u) = f(t, u) + Cu, then F : C(I, X) → C(I, X) is continuous, F(θ) = h0 ≥ θ. By
(H1), F is an increasing operator on [θ,w0]. Set v0 = θ, we can define the sequences

vn = Q1 · F(vn−1), wn = Q1 · F(wn−1), n = 1, 2, . . . . (3.5)

By (3.4), we have that

w0 = Q1(h0 + Lw0 + Cw0). (3.6)

In (H2), we set x1 = θ, x2 = w0(t), then

f(t,w0) ≤ h0(t) + Lw0(t), (3.7)

θ ≤ F(θ) ≤ F(w0) ≤ h0 + Lw0 + Cw0. (3.8)

By (3.6) and (3.8), the definition and the positivity of Q1, we have that

Q1θ = θ = v0 ≤ v1 ≤ w1 ≤ w0. (3.9)

Since Q1 · F is an increasing operator on [θ,w0], in view of (3.5), we have that

θ ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0. (3.10)

Therefore, we obtain that

θ ≤ wn − vn = Q1(F(wn−1) − F(vn−1))

= Q1
(
f(·, wn−1) − f(·, vn−1) + C(wn−1 − vn−1)

)

≤ (C + L)Q1(wn−1 − vn−1).

(3.11)

By induction,

θ ≤ wn − vn ≤ (C + L)nQn
1 (w0 − v0) = (C + L)nQn

1 (w0). (3.12)

In view of the normality of the cone P , we have that

‖wn − vn‖C ≤ N(C + L)n
∥∥Qn

1 (w0)
∥∥
C ≤ N(C + L)n

∥∥Qn
1

∥∥
C‖w0‖C. (3.13)

On the other hand, since 0 < C+L < C−ν0, for some ε > 0, we have thatC+L+ε < C−ν0. By the
Gelfand formula, limn→∞ n

√
‖Qn

1‖C = r(Q1) ≤ 1/(C − ν0). Then there exist N0, for n ≥ N0, we
have that ‖Qn

1‖C ≤ 1/(C + L + ε)n. By (3.13), we have that

‖wn − vn‖C ≤ N‖w0‖C
(

C + L

C + L + ε

)n

−→ 0, (n −→ ∞). (3.14)



Journal of Applied Mathematics 11

By (3.10) and (3.14), similarly to the nested interval method, we can prove that there exists a
unique u∗ ∈ ⋂∞

n=1[vn,wn], such that

lim
n→∞

vn = lim
n→∞

wn = u∗. (3.15)

By the continuity of the operator Q1 · F and (3.5), we have that

u∗ = Q1 · F(u∗). (3.16)

By the definition of Q1 and (3.10), we know that u∗ is a positive mild solution of (3.4) when
h(t) = f(t, u∗(t)) + Cu∗(t). Then u∗ is the positive mild solution of PBVP (1.1).

In the following, we prove that the uniqueness. If u1, u2 are the positive mild solutions
of PBVP (1.1). Substitute u1 and u2 forw0, respectively, thenwn = Q1 ·F(ui) = ui (i = 1, 2). By
(3.14), we have that

‖ui − vn‖C −→ 0, (n −→ ∞, i = 1, 2). (3.17)

Thus, u1 = u2 = limn→∞vn, PBVP (1.1) has a unique positive mild solution.

Corollary 3.2. Let X be an ordered Banach space, whose positive cone P is a regeneration cone. If
{T(t)}t≥0 is a compact and positive analytic semigroup, f(t, θ) ≥ θ for for all t ∈ I, f satisfies (H1)
and the following condition:

(H2)
′ There exist L < λ1, where λ1 is the first eigenvalue of A, such that

f(t, x2) − f(t, x1) ≤ L(x2 − x1), (3.18)

for any t ∈ I, θ ≤ x1 ≤ x2.

Then PBVP (1.1) has a unique positive mild solution.

Remark 3.3. In Corollary 3.2, since λ1 is the first eigenvalue of A, the condition “L < λ1” in
(H2)

′ cannot be extended to “L < λ1”. Otherwise, PBVP (1.1) does not always have a mild
solution. For example, f(t, x) = λ1x.

4. Examples

Example 4.1. Consider the following periodic boundary value problem for fractional parabol-
ic partial differential equations in X:

∂αt u −Δu = f(t, u(t, x)), (t, x) ∈ I ×Ω,

u | ∂Ω = 0,

u(0, x) = u(ω, x), x ∈ Ω,

(4.1)
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where ∂αt is the Caputo fractional partial derivative of order 0 < α < 1, I = [0, ω], Ω ⊂ R
N is

a bounded domain with a sufficiently smooth boundary ∂Ω, Δ is the Laplace operator, f :
I × R → R is continuous.

Let X = L2(Ω), P = {v | v ∈ L2(Ω), v(x) ≥ 0 a.e. x ∈ Ω}. Then X is an Banach space
with the partial order “≤” reduced by the normal cone P . Define the operator A as follows:

D(A) = H2(Ω) ∩H1
0(Ω), Au = −Δu. (4.2)

Then −A generates an operator semigroup {T(t)}t≥0 which is compact, analytic, and uniform-
ly bounded. By themaximumprinciple, we can find that {T(t)}t≥0 is a positive semigroup. De-
note u(t)(x) = u(t, x), f(t, u(t))(x) = f(t, u(t, x)), then the system (4.1) can be reformulated
as the problem (1.1) in X.

Theorem 4.2. Assume that f(t, 0) ≥ 0 for t ∈ I, the partial derivative f ′
u(t, u) is continuous on any

bounded domain and sup f ′
u(t, u) < λ1, where λ1 is the first eigenvalue of −Δ under the condition

u | ∂Ω = 0. Then the problem (4.1) has a unique positive mild solution.

Proof. It is easy to see that (H1) and (H2)
′ are satisfied. By Corollary 3.2, the problem (4.1) has

a unique positive mild solution.
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