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We propose a convex image segmentation model in a variational level set formulation. Both
the local information and the global information are taken into consideration to get better
segmentation results. We first propose a globally convex energy functional to combine the local and
global intensity fitting terms. The proposed energy functional is then modified by adding an edge
detector to force the active contour to the boundary more easily. We then apply the split Bregman
method to minimize the proposed energy functional efficiently. By using a weight function that
varies with location of the image, the proposed model can balance the weights between the local
and global fitting terms dynamically. We have applied the proposed model to synthetic and real
images with desirable results. Comparison with other models also demonstrates the accuracy and
superiority of the proposed model.

1. Introduction

Image segmentation is a fundamental task in image processing and computer vision. Active
contour models have become one of the most successful methods for image segmentation
[1-5]. Some of active contour models [1, 4-8] are based on the edge information. These
models use the image gradient information to stop the evolving contours on the object
boundaries. We call them edge-based models. Typical edge-based active contour models [4, 5]
have an edge-based stopping term and a balloon force term to control the motion of the
contour. There are also some active contour models [2, 9-13] which are based on the region
information of the image instead of the edge information. We call them region-based models.
Models of this kind use certain region descriptors to segment different regions or identify
interested regions of an image.
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Region-based active contour models have the following advantages over edge-based
models. Firstly, they do not utilize the image gradient and therefore have better performance
for the image with weak object boundaries. Secondly, they are significantly less sensitive to
the location of initial contours. One of the most popular region-based active contour models
is the Chan-Vese (CV) model [2]. This model has been successful for images with two regions,
each having a distinct mean of pixel intensity. In [13], Vese and Chan extended their original
model in [2] by using a multiphase level set formulation, in which multiple regions can be
represented by multiple level set functions. These models are called piecewise constant (PC)
models. However, the PC models and other popular region-based active contour models [9-
11] tend to rely on intensity homogeneity in each of the regions to be segmented. Thus they
cannot cope with images with intensity inhomogeneity.

To overcome this problem, Vese and Chan [13] and Tsai et al. [12] independently
proposed two similar region-based models for more general images. These models, widely
known as piecewise smooth (PS) models, have exhibited certain capability of handling
intensity inhomogeneity. However, the PS models are computationally expensive and suffer
from other difficulties.

Recently, Li et al. proposed a local binary fitting (LBF) model [14, 15] to overcome the
difficulty in segmentation caused by intensity inhomogeneity. By using a kernel function in
the data fitting term, intensity information in local regions is extracted to guide the motion
of the contour, which thereby enables their model to deal with intensity inhomogeneity.
However, these methods [14, 15] are to some extent sensitive to the initialization, which
limits their practical applications. Then Wang et al. [16] combined the advantages of the CV
model and the LBF model to propose an active contour model based on the local and global
intensity fitting (LGIF) energy for image segmentation. The LGIF model can segment images
more accurately. However, the authors need to balance the weights between the two models
appropriately according to different images. This will be a little boring in practice to choose
an appropriate value for the weight.

The split Bregman method [17-19] has also been applied to image segmentation
problems recently in [20-22]. In [21], the authors proposed a convex and fast segmentation
method by applying the split Bregman concept to the CV model. Their method is mainly
for homogenous images. Thus, Yang et al. [22] applied the split Bregman method to
the region-scalable fitting (RSF) energy model to deal with images with inhomogeneity
efficiently.

In this paper, we proposed a new convex region-based image segmentation method
based on the LGIF model to consider the local and global information together. We first
use the globally convex segmentation idea from Chan et al. [23] to propose a convex
energy functional for image segmentation. To minimize the proposed energy functional
more efficiently, we use the split Bregman method just as our previous work in [22].
Instead of using a constant weight for the global fitting term, a weight function that varies
dynamically with location of the image is applied in this paper. In this way, the proposed
model can balance the weights between the local fitting term and the global fitting term
by itself. Therefore, the proposed model can segment more general images accurately and
efficiently.

The remainder of this paper is organized as follows. We first review some related
models and their limitations in Section 2. The proposed model is introduced in Section 3. The
experimental results of the proposed model are given in Section 4. This paper is concluded in
Section 5.
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2. Related Models
2.1. The Mumford-Shah Model for Image Segmentation

Mumford and Shah proposed a famous image segmentation model in [24]. Let Q C R? be the
image domain, and I : Q — R be a given gray level image. Their idea is to find a contour C
that segments the given image I into nonoverlapping regions and a piecewise smooth image
u that approximates I. u is smooth within each of the connected components in the image
domain Q separated by the contour C. The energy functional they formulated is

FMS(y,C) = fQ (u-I+p IQ\C |Vul> +v|C|, (2.1)

where p and v are positive constants. |C| is the length of the contour C. The Mumford-
Shah model has been often used in image segmentation. However, it is difficult to minimize
the functional (2.1) in practice due to the unknown contour C of lower dimension and the
nonconvexity of the functional.

2.2. The CV Model

For a special case of the Mumford-Shah problem when the image u in the functional (2.1) is a
piecewise constant function, Chan and Vese [2] formulated a piecewise constant model called
the CV model without using the image gradient. For an image I, they proposed to minimize
the following energy:

FY(C c1,00) = MJ‘

[I(x) — c1|2dx + A f [I(x) - cz|2dx +v|C|, (2.2)
outside(C)

inside(C)

where Ay, Ay, and v are positive constants. outside(C) and inside(C) represent the regions
outside and inside the contour C, respectively, and ¢; and ¢, are two constants that
approximate the image intensity in outside(C) and inside(C). This energy can be represented
by a level set formulation, and then the energy minimization problem can be converted to
solve a level set evolution equation [2]. One of the most attractive properties of the CV model
is that it is much less sensitive to the initialization.

The optimal constants ¢; and ¢, that minimize the above energy are the averages
of the intensities in the entire regions outside(C) and inside(C), respectively. Such optimal
constants ¢; and ¢, will not be accurate if the intensities within outside(C) or inside(C) are
not homogeneous. Local intensity information which is crucial for inhomogeneous image
segmentation is not considered in this model. This is the reason why the CV model can
not handle image inhomogeneity. Similarly, more general piecewise constant models in
a multiphase level set framework [9, 13] are still not suitable for images with intensity
inhomogeneity.
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2.3. The LBF Model

Li et al. proposed the LBF model in [14, 15] to segment images with intensity inhomogeneity
by using the local intensity information efficiently. The energy functional they proposed is

2
FPHC, f1, fo) = ZMKIQ Ko(x—y)|I(y) —fi(X)Izdy> dx+v|C], (2.3)
i=1 i

where Q; = outside(C) and €, = inside(C). f; and f, are two local fitting functions that
approximate the intensities outside and inside the contour C. K, is a Gaussian kernel with
the standard deviation o. The localization property of this kernel function plays a key role in
segmenting images with intensity inhomogeneity. However, such localization property may
also introduce many local minimums of the energy functional. Consequently, the result is
more dependent on the initialization of the contour. This has been deeply explained in [16].

2.4. The LGIF Model

Wang et al. proposed the LGIF model in [16]. The LGIF model combines the advantages of
the CV model and the LBF model by taking the local and global intensity information into
account. There, they define the local and global intensity fitting energy as follows:

EXCE (D, f1, fa,c1,02) = (1= w)EME (P, f1, f2) + wWET($,c1,2), (2.4)

where w is a constant (0 < w < 1).

The local intensity fitting (LIF) energy &Y (¢, f1, f2) is defined as the first two terms
of the LBF model [14, 15]:

2
EIF(, f1,£2) = S j(f Ko(x=y)|1(y) - fi(x) |2Ml-<¢<y>>dy)dx, (25)
i=1

where ¢ is the level set function, H is the Heaviside function. M;(¢) = H(¢) and M () =
1-H($).

The global intensity fitting (GIF) energy £ (¢, ¢1, ¢») is defined as the first two terms
of the CV model [2]:

E(p,c1,00) =M f [T(x) = c1]*H (¢p(x))dx + Ay f I1(x) - co* (1 - H($) (x))dx. (2.6)

Then the other two terms P(¢) = [1/2(|Vd(x)| - 1)*dx and £(¢) = [|VH(p(x))|dx
are also needed as in [2, 7, 13] to regularize the level set function ¢ and the contour C,
respectively. In practice, the Heaviside function H is approximated by a smooth function
H, defined by

H.(x) = % [1 + %arctan(f)] , (2.7)
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where ¢ is a positive constant. The derivative of H, is the smoothed Dirac delta function:

£

1
. 2.8
6€(x) o 52 + x2 ( )
Thus the energy functional they proposed is
FLSE(D, f1, fo,c1,00) = EES(, fi, fo c1,02) +v.LA(D) + D (D), (29)

where v and p are positive constants.

3. The Proposed Model
3.1. The New Proposed Convex Model

We propose a new and convex region-based image segmentation model to consider both the
local and the global information as [16]. The energy functional (2.9) of the LGIF model in
Section 2.4 is not convex. Following the idea in Chan et al. [23], we first propose a convex
energy functional based on the LGIF model.

According to Wang et al. [16], the optimal local fitting functions f1, f», constants c1,
2, and level set function ¢ that minimize the energy functional (2.9) in the LGIF model are
updated using the standard gradient descent method as follows:

_ Ko(0) % [ME($(0)1(x)]

fi(x) = Ko 00 * Mf (¢(X)) , 1=1,2, (3.1)
JI(x) M£(p(x))dx
P = , =1,2, 3.2
TME () dx 32
% = 5.(¢)(F1 + F5) + v6.($) div<%> + ‘u<V2¢ - div<|z—g|>>, (3.3)

where M7 (¢) = H.(¢), M5(¢) =1 - H.(¢). F1(x) and F»(x) are defined as

Fi(x) = (1 - w) (—Al j Koy -9 |I(x) - f1(y)*dy

+Azj1<o<y—x>|1<x> —fz(Y)|2dY>r (3:4)

Fa(x) = w(—)L1|I(x) — a1 + M) I (x) - c2|2>.

Fi and F) are called the LIF force and the GIF force, respectively.
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To apply the idea in Chan et al. [23] to the LGIF model, we consider the gradient flow
equation (3.3). The last term is used to regularize the level set function ¢ to be close to a
distance function. Here we drop it first, the new obtained gradient flow equation is

%‘f 5. (¢)<(P1 +F2)+vd1v<|vz|>> (3.5)

and without loss of generality, we take v = 1.
We then apply the globally convex segmentation idea of Chan et al. [23]; the stationary
solution of (3.5) coincides with the stationary solution of

o9 v
ai’ <(F1 + Fz) + d1V< |V(;b| >> (36)

We now propose a new energy functional as follows:
&(9) = f|V(¢(X)) |edx + J(P(X)(—(Fl (%) + F2(x)))dx. (3.7)

It can be clearly seen that the simplified flow (3.6) is just the gradient descent flow of
the new proposed energy functional (3.7). Thus the minimization problem we want to solve
is

min &(¢) = min <I|V(¢(x)) |dx + fqb(x)(—(Fl (x) + Fz(x)))dx>. (3.8)

To guarantee the global minimum, the solution is restricted to lie in a finite interval. In
this paper we use a more general form ay < ¢ < by as follows:

min £(¢) = min <J|V(¢(x))|dx+f¢(x)r(x)dx>, (3.9)

ap<¢p<bg ap<p<bg

where r(x) = —(F1(x) + F2(x)).
The segmented region can be found by thresholding the level set function for some
€ (ag, by) if the optimal ¢ is found:

Qi = {x:p(x) >a}, (3.10)

where the thresholding value a is chosen as a = (ag + bp) /2 in this paper.
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The first term in the proposed energy functional (3.7) is in fact the traditional total
variation (TV) norm:

V() = f|V¢(x)|dx - 4. (3.11)

To incorporate information from an edge detector [25], we then replace the standard
TV norm (3.11) with the weighted TV norm:

V() = [ (V10D T4 ]ax = |79, 612)

where I is the given image and g() = 1/ (1 + p|¢|*) is the nonnegative edge detector function.
p is a parameter that determines the detail level of the segmentation.
Thus the proposed minimization problem becomes

min &(¢) = min <|ng|g + <¢,r>>, (3.13)

ag<P<by ap<Pp<by
where (¢,7) = [ p(x)r(x)dx.

3.2. Split Bregman Method for Minimization of the Proposed Model

The efficiency of the split Bregman method for image segmentation has been demonstrated
in [21, 22]. We now apply the split Bregman method to solve the proposed minimization
problem in a more efficient way. We introduce the auxiliary variable, d — V¢. To weakly
enforce the resulting equality constraint, we add a quadratic penalty function which results
in the following unconstrained problem:

<¢*,cf*) = arg min Jig +{(p, 1)+ %”cf— ng||2. (3.14)

ap<Pp<by

The Bregman iteration is then applied to strictly enforce the constraint d = V. The
optimization problem becomes

, A - 2
k+1 Fk+1Y _ : r _ 1k
<<;b ,d > =arg min d|g+ (¢, 1)+ 3 ”d Ve -bt|, (3.15)
A = B 4 VRl gF, (3.16)

Keeping d fixed, the Euler-Lagrange equation of the optimization problem (3.15) with
respect to ¢ is

A¢ = % +V. ((I— 5), whenever ap < ¢ < by. (3.17)
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Ek+1 — Ek + V¢k+1 _ jk+l
Find Q’l‘ = {x: pF(x) > a)
Update Ff and F}

end while

Algorithm 1

For (3.17), a central difference is used for the Laplace operator and a backward
difference is used for the divergence operator; the numerical scheme for (3.17) is

L Ax _ qx Yy _4qY _ x
aj=dly —drdl —dl - (b

x Yy Yy
- R S O ].) ,

ij-1
1 r
Bij = 1 <¢i—1,j + i1+ Pijor + Pijar — Tt ai,j>, (3.18)

(;bi,j = max{min{ﬁi,j, bo}, [10}.

For a fixed level set function ¢, we minimize (3.15) with respect to d and obtain

d** = shrinkg (Ek + VL, %) = shrink (5" + V§**!, %) (3.19)

where shrink(x, y) is the shrinkage operator [18, 21] defined as

X
—max(|x| —y,0), x#0,
shrink(x,y) = { Xl ( 7.0 (3.20)
Y
0, x =0.

Thus the split Bregman algorithm for the proposed minimization problem (3.13) can
be summarized in Algorithm 1.

In this algorithm we use GS(rk, 0?‘,1;", A) to denote one sweep of the Gauss-Seidel
formula (3.18). This algorithm is different from the one in our previous work [22] when
updating r.

Note here that we say the proposed energy functional £(¢) in the minimization
problem (3.13) is convex; in fact it means that it is convex with respect to ¢ for a fixed r.
From Algorithm 1, it can be seen that r is computed before updating ¢. Thus each time when
we update ¢ using the Gauss-Seidel formula, the value of r is in fact fixed.

3.3. The Choosing for the Parameter w

The parameter w controls the influence of the LIF force and GIF force which can be
seen clearly from (3.4). When the intensity inhomogeneity is severe, the accuracy of
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Figure 1: Results of an inhomogeneous image with different models. (a) The original image. (b) The initial
contour. (c¢) The final contour with the CV model. (d) The final contour with the LBF model. (e) The final
contour with the LGIF model. (f) The final contour with the proposed model.

the segmentation relies on the LIF force. Thus a smaller value of w should be chosen as the
weight of the GIF force. For images with minor inhomogeneity, the GIF force alone is able
to attract the contour to a location near the object boundaries. In this case, relatively larger
w should be chosen as the weight of the GIF force. In [16], w is chosen as a constant for a
given image. Wang et al. need to choose an appropriate value for w according to the degree
of inhomogeneity.

In our paper, we choose w in a different way as [26]. Instead of a constant value for w,
a weight function that varies dynamically with location of the image is chosen in this paper.
The weight function w is defined as follows

w =7y -average(Cn) - (1 -Cn), (3.21)

where v is a fixed parameter and Cy represents the local contrast ratio of the given image,
which is defined as

Mmax - Mmin

Cn(x) = v , (3.22)
8

where N denotes the size of the local window, M,.x and My, are the maximum and
minimum of the intensities within this local window, respectively. M, represents the intensity
level of the image, for gray level images, it is usually 255. Cn(x) varies between 0 and 1. It
reflects how rapidly the intensity changes in a local region. It is smaller in smooth regions
and larger in regions close to the object boundaries.
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Figure 2: Results of an airplane image with different models. (a) The original image. (b) The initial contour.
(c) The final contour with the CV model. (d) The final contour with the LBF model. (e) The final contour
with the LGIF model. (f) The final contour with the proposed model.

In the above weight function (3.21), average(Cy) is the average value of Cy over the
whole image and it reflects the overall contrast information of the image. For an image with
a strong overall contrast, we believe that the image has much more obvious background and
foreground, so we increase the weight of the global term on the whole. (1 — Cy) adjusts the
weight of the global term dynamically in all regions, making it smaller in regions with high
local contrast and larger in regions with low local contrast. Thus the weight value can vary
dynamically with different locations. It is determined by the intensity of the given image.

4. Experimental Results

We have tested the proposed model with synthetic and real images in this section. As in [22],
we simply initialize the level set function ¢ as a binary step function which takes a constant
value by inside a region and another constant value ay outside. The advantage of using a
binary step function as the initial level set function is that new contours can emerge easily
and the curve evolution is significantly faster than the evolution from an initial function as
a signed distance map. We use ap = -2, by =2,0 =3.0,e =1,y = 0.1, and A = 0.001 for all
images shown in this paper. We choose = 100 for all gray images and f = 1 for all color
images. The values chosen for the parameters Ay and A, are specified in each figure.

Figure 1 shows the results for an inhomogeneous image from [26] with different
methods. (a) and (b) show the original image and the initial contour, while the final contours
using the CV model, the LBF model, the LGIF model, and the proposed model are shown in
(c)—(f). From this example, we can see that the CV model fails to get the correct segmentation
result. The LBF model traps into the local minimum. The LGIF model also gets an incorrect
result by using a constant weight w. The proposed model gives the right segmentation result.
We choose Ay = 1.1e — 6 and A, = le — 6 for this image. This example demonstrates the
superiority of our proposed model over other models. Furthermore, our result is even better
than the result gotten from [26]; the upper part of the object was missed there.
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(d)

Figure 3: Comparison of the final level set function ¢ with different models for the airplane image from
Figure 2. The final ¢ obtained by the CV model, the LBF model, the LGIF model, and the proposed model
is shown in (a)—(d), respectively.

(a) (b) () (d) (e)
® (8) (h) @ )

Figure 4: Results of two vessel images with different methods. (a) and (f) Original images with initial
contours. (b) and (g) Final contours with the CV model. (c) and (h) Final contours with the LBF model.
(d) and (i) Final contours with the LGIF model. (e) and (j) Final contours with the proposed model.

LA

Figure 5: Comparison of the final level set function ¢ between the LBF model and the proposed model. (a)
and (b) are the final ¢ for the LBF model. (c) and (d) are the final ¢ for the the proposed model.
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(a) (b) () (d) (e)

Figure 6: Comparison between the other models and the proposed model for a synthetic inhomogeneous
image. The original image with the initial contour, the final contours with the CV model, the LBF model,
the LGIF model, and the proposed model are shown in (a)—(e), respectively.
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Figure 7: The mesh figures of the final level set function ¢ with different models for the image from
Figure 6. (a) The final ¢ with the CV model. (b) The final ¢ with the LBF model. (c) The final ¢ with
the LGIF model. (d) The final ¢ with the proposed model.

The results for an airplane image using different methods are shown in Figure 2. A =
l.le -6 and A, = 1le - 6 are also used for this image. We can see that the result obtained by
applying the proposed model is the best one among all these four models. This can also be
seen clearly from the final level set function ¢ shown in Figure 3.

Figure 4 shows the results for two X-ray images of vessels with different methods. We
use Ay = Ay = le — 5 for these two vessel images. We can see from (b) and (g) that the CV
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Figure 8: Results of the proposed model for a color image of elephants. (a)-(d) show the curve evolution
process from the initial contour to the final contour. (e)—(h), (i)—(1), and (m)—(p) show fi, f> and the fitting

image f = 37, M () fi, respectively, at different iterations.

Figure 9: Results of the proposed model for a color image of starfish. (a)—(d) show the curve evolution
process from the initial contour to the final contour.

model fails to segment the vessels correctly by only using the global intensity information.
(d) and (i) show that the results with the LGIF model are either incorrect, because a constant
weight of the global term is used and thus the segmenting curve is influenced too much by
the global fitting energy. Column 3 and Column 5 show that both the LBF model and the
proposed model can segment these two images correctly.

To compare the results of the two vessel images in Figure 4 with the LBF model and
the proposed model, we show the final level set function ¢ with the two models in Figure 5.
It can be seen that the proposed model can get better final ¢ than the LBF model.
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(d)

Figure 10: Results of the proposed model for several other color images. (a)-(d) The original images with
the initial contours. (e)-(h) The original images with the final contours.

Figure 11: Results of the SBRSF model for some color images from Figures 8, 9, and 10. The initial contours
for these images are the same as used in the proposed model.

In Figure 6 we give a synthetic inhomogeneous image that the proposed model can
handle while the other models fail to segment it correctly. We use A; = A, = le — 5 for this
image. From (b)—(d) we can see that there are unwanted curves in the final segmentation
results when using the other three models. (e) shows that the proposed model can get the
correct final contour. In fact by observing the curve evolution processes of these four models,
unwanted curves also grow when using the proposed model. However, these unwanted
curves will finally disappear with our model because they can move quickly by using the
split Brgman method.

Figure 7 shows the corresponding mesh figures of the final level set function ¢ with
different models for the same synthetic image from Figure 6. Comparing these four mesh
figures of the final ¢, we can observe that the proposed model can obtain the best final level
set function ¢ shown in (d) of Figure 7.

The proposed model can be easily extended to be applied for color images. Figure 8
shows an application of our model to a color image of elephants. \; = 1.1le-6and A, = le-6
are used for this image. The first row shows the active contours on the original image from its
initial to converged state. The proposed model can segment this image correctly which can
be seen from (d). The second and third rows show the corresponding two fitting images fi
and f,. The whole fitting images f = 37, M: () fi at different iterations are shown in the
last row. The final fitting image shown in (p) can fit the original image well.

Figure 9 shows the curve evolution process from the initial contour to the final contour
for a color image of starfish with the proposed model. This image is very inhomogeneous both
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in the background and foreground and is difficult to segment. We choose A; = 1, = 1e — 7 for
this image. The proposed model can segment it correctly.

In Figure 10, we show the results of several other color images with the proposed
model. We use A\; = 1.1e — 5 and A, = le - 5 for the first banana image, while \; = A\, =1e -6
for the other three images. (a)—(d) show the original images with the initial contours. (e)—(h)
show the original images with the final contours. Experimental results show that our model
can segment color images well.

In our previous work [22], we have proposed a convex model by applying the split
Bregman method to the RSF model. We call it the SBRSF model here. In the SBRSF model
we only consider the local information without considering the global information. Thus the
SBRSF model may get many local minimums, which can be seen in Figure 11. In Figure 11,
we give the results of some color images from Figures 8, 9, and 10. The same initial contours
and parameters have been used for the SBRSF model as the proposed model. However, local
minimums will occur in the leg part of the back elephant, in the right part of the starfish
image, in the middle part of the banana image and in the green pepper. The proposed model
considers both the local and the global information and thus can get better results than the
SBRSF model.

5. Conclusion

A new convex region-based image segmentation model is proposed in this paper. We
consider the local and global intensity fitting terms together and propose a convex energy
functional using the globally convex segmentation method. By applying a weight function
that varies dynamically with location of the image, the proposed model can adjust the
weight of the global intensity fitting term by itself. The split Bregman method is then used to
minimize the proposed energy functional more efficiently. We have compared the proposed
model with the CV model, the LBF model, the LGIF model, and our previous SBRSF model
with synthetic and real images. Experimental results have shown the advantages of the
proposed model in image segmentation. The proposed model is a little sensitive to the
parameters Ay and A,. In fact, the SBRSF model also has this problem. It may be caused by
the application of the split Bregman method. This is what we should study more in the future
work.
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