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We use the idea of nonstandard finite difference methods to derive the discrete variational integra-
tors for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator
for linear wave equation with a triangle discretization and two nonstandard finite difference
variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization
and a square discretization, respectively. These methods are naturally multisymplectic. Their
discrete multisymplectic structures are presented by the multisymplectic form formulas. The
convergence of the discretization schemes is discussed. The effectiveness and efficiency of the
proposed methods are verified by the numerical experiments.

1. Introduction

It is a fundamental approach to develop the discrete multisymplectic numerical methods
based on the discrete Hamilton’s principle, because it leads in a natural way to mul-
tisymplectic integrators [1]. The discrete Euler-Lagrange equation is produced in the
discrete variational principle [2–4]; meanwhile, the discrete multisymplectic structure is also
generated [5, 6]. In the other words, the discrete variational integrators are multisymplectic
automatically.

1.1. Multisymplectic Structure of Discrete Variational Integrators

By the Hamilton’s principle [6–9], the discrete multisymplectic structure which is preserved
by the discrete variational integrator, is described by Poincaré-Cartan forms, in a differential
geometric language. In paper [6], Marsden et al. showed how to obtain this structure directly
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from the variational principle, on the Lagrangian side. They defined it as the multisymplectic
form formula, and they showed that it was conserved by the discrete variational integrator.

Lemma 1.1. If u is a solution of discrete Euler-Lagrange equation and V ,W are first variations of u,
then the following discrete multsisymplectic form formula holds:

∑

�;�∩∂U/= 0

(
∑

l:�l∈∂U

[(
j1u
)
∗
(
ij1V ij1WΩl

L

)]
(�)

)
= 0. (1.1)

The details of this conclusion could be referred to papers [5, 6]. This conclusion states
that the discrete variational principles produce discrete variational integrators, and the mul-
tisymplecticity of these variational integrators is presented by the discrete multisymplectic
form formula (1.1).

Vankerschaver et al. [10] revisited the multisymplectic form formula [6], showing
that it could be obtained from the boundary Lagrangian that they defined in their paper.
They presented an easy way to derive discrete multisymplectic form formula from discrete
variational principle, using the notations of Poincaré-Cartan forms. In this paper, we follow
the same way to derive the discrete multisymplectic form formulas of our discrete variational
integrators.

When we use the discrete variational principle, we need to make a approximation of
the Lagrangian. Here, in our paper, we would use nonstandard finite difference methods,
instead of standard finite difference, to approximate the Lagrangian function, and derive the
corresponding discrete variational integrators.

1.2. Nonstandard Finite Difference Methods

The nonstandard finite difference schemes are well developed by Mickens [11–15] in the past
decades. These schemes are developed for compensating the weaknesses that may be caused
by standard finite difference methods, for example, the numerical instabilities. Regarding
the positivity of solutions, boundedness, and monotonicity of solutions, nonstandard finite
difference schemes have a better performance than standard finite difference schemes,
due to its flexibility to construct a nonstandard finite difference scheme that can preserve
certain properties and structures, which are obeyed by the original equations. Also, the
dynamic consistency could be presented well by nonstandard finite difference scheme. These
advantages of nonstandard finite difference methods have been shown in many numerical
applications. GonzLez-Parra et al. [16–18] developed nonstandard finite difference methods
to solve population or biological models. The positivity condition and the conservation law
of population dynamics are preserved by nonstandard finite difference schemes. Jordan
[19] and Malek [20] constructed nonstandard finite difference schemes for heat transfer
problems. For the symplectic systems, Mickens [15] derived the nonstandard finite difference
variational integrator for symplectic ODEs. Ma et al. [21] developed the nonstandard finite
difference variational integrator in stochastic ordinary differential equations.

The initial foundation of nonstandard finite difference methods is formed by the exact
finite difference schemes [22]. After generalizing these results, Mickens summarizes the
following three basic rules to construct nonstandard finite difference schemes.
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(1) The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives appearing in the differential equations.

Note. If the orders of the discrete derivatives are larger than those occurring in the
differential equations, then numerical instabilities will in general occur.

(2) Discrete representations for derivatives must, in general, have nontrivial de-
nominator functions.

Note. For example, the discrete first-derivative is generally represented by

du

dt
−→ ui+1 − ϕ(Δt)ui

φ(Δt)
, (1.2)

where the numerator functions ψ(Δt) and the denominator functions φ(Δt) satisfy

ϕ(Δt) = 1 +O((Δt)), φ(Δt) = Δt +O
(
(Δt)2

)
. (1.3)

(3) Both linear and nonlinear terms should be represented by nonlocal discrete rep-
resentations on the discrete computational lattice.

Note. For example,

u −→ 2ui − ui+1,

u2 −→ uiui+1,

u2 −→
(
ui−1 + ui + ui+1

3

)
ui,

u3 −→ 2ui3 − ui2ui+1,

u3 −→ ui−1uiui+1.

(1.4)

In our paper, we combine the advantages of nonstandard finite difference methods
and discrete variational principles to construct nonstandard finite difference variational
integrators, for two multisymplectic PDEs. These integrators are multysimplectic and their
multysimplecticity are presented by their discrete multisymplectic form formulas, respec-
tively.

In Section 2, we consider a simple linear wave equation. With the triangle discretiza-
tion, we define the discrete Lagrangian using the idea of nonstandard finite difference and
derive discrete variational integrator and the corresponding multisymplectic form formula,
by discrete variational principle. The convergence of this method is analyzed. In Section 3,
for the nonlinear Klein-Gordon equation, triangle discretization and square discretization are
considered to obtain the nonstandard finite difference variational integrators. The discrete
multisymplectic structures are presented, respectively. The convergence orders of the two
methods are also discussed, and the convergence orders are shown in error tables in the
numerical experiment section. Section 4 is devoted to showing the numerical behaviors of
the developed nonstandard finite difference variational integrators.
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2. Nonstandard Finite Difference Variational
Integrator for Linear Wave Equation

We first consider a simple linear wave equation,

utt = uxx, (2.1)

where u(x, t) is a scalar field function with two independent variables, x and t.
This linear wave equation is actually a multisymplectic PDE. As a classical and

simple multisymplectic example, wave equation and its multisymplectic structure have been
studied from both Hamiltonian [23–28] and Lagrangian viewpoints [3, 5, 6, 10]. Based on the
Lagrangian viewpoint, we could also obtain (2.1) from the Euler-Lagrange equation

∂L

∂u
=
d

dt

∂L

∂ut
+

d

dx

∂L

∂ux
, (2.2)

with the Lagrangian function L(u, ut, ux),

L(u, ut, ux) =
1
2
ut

2 − 1
2
ux

2. (2.3)

Assume that we have a uniform quadrangular mesh in the base space, with mesh
lengths Δx and Δt. The nodes in this mesh are denoted by (i, j) ∈ Z×Z, corresponding to the
points (xi, tj) := (iΔx, jΔt) in R

2. We denote the value of the field u at the node (i, j) by uji .
We label the triangle at (i, j) with three ordered triple ((i, j), (i + 1, j), (i, j + 1)) as �ij , and we
define X� to be the set of all such triangles. Then the discrete jet bundle [6, 10] is defined as
follows:

J1�Y :=
{(
u
j

i , u
j

i+1, u
j+1
i

)
∈ R

3 :
((
i, j
)
,
(
i + 1, j

)
,
(
i, j + 1

)) ∈ X�
}
, (2.4)

which is equal to X� × R
3.

Nowwe use nonstandard finite difference to define the discrete Lagrangian Ld on J1�Y ,
which is the discrete version of Lagrangian density [10, 29],

Ld
(
u
j

i , u
j

i+1, u
j+1
i

)
:=

1
2
ΔtΔxL

⎛

⎝u
j

i + u
j

i+1 + u
j+1
i

3
,
u
j+1
i − uji
φ(Δt)

,
u
j

i+1 − u
j

i

ψ(Δx)

⎞

⎠, (2.5)

where denominator functions φ(Δt) and ψ(Δx) are defined according the exact solution of
wave equation [5, 6, 12]

φ(Δt) =
1
2
sin
(
Δt
2

)
, ψ(Δx) =

1
2
sin
(
Δx
2

)
. (2.6)

We have followed the rules of constructing nonstandard finite difference schemes in
Mickens’ papers [11–15].
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(1) The discrete first-derivative is represented by

du

dt
−→ u

j+1
i − uji
φ(Δt)

,
du

dx
−→ u

j

i+1 − u
j

i

ψ(Δx)
, (2.7)

where denominator functions φ(Δt), ψ(Δx) are defined in (2.6). Using Taylor series
expansion,

sin
(
Δt
2

)
=

Δt
2

− 1
48

(Δt)3 + · · · . (2.8)

Then the denominator functions satisfy

φ(Δt) = Δt +O
(
(Δt)3

)
, ψ(Δx) = Δx +O

(
(Δx)3

)
. (2.9)

(2) Nonlocal representation on the discrete computational lattice are used here by

u −→ u
j

i + u
j

i+1 + u
j+1
i

3
. (2.10)

So, for the linear wave equation (2.1)with the Lagrangian (2.3), the discrete Lagrangi-
an becomes

Ld
(
u
j

i , u
j

i+1, u
j+1
i

)
=

1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i − uji
φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i+1 − u
j

i

ψ(Δx)

⎞

⎠
2
⎞
⎟⎠ . (2.11)

By the discrete Hamilton’s principle [6, 10], we have the discrete Euler-Lagrange
equation,

D1Ld
(
u
j

i , u
j

i+1, u
j+1
i

)
+D2Ld

(
u
j

i−1, u
j

i , u
j+1
i−1
)
+D3Ld

(
u
j−1
i , u

j−1
i+1 , u

j

i

)
= 0, (2.12)

where Ld(u
j

i−1, u
j

i , u
j+1
i−1 ) and Ld(u

j−1
i , u

j−1
i+1 , u

j

i ) are defined similarly as (2.11), which are

Ld
(
u
j

i−1, u
j

i , u
j+1
i−1
)
=

1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i−1 − u

j

i−1
φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i − u
j

i−1
ψ(Δx)

⎞

⎠
2
⎞
⎟⎠ ,

Ld
(
u
j−1
i , u

j−1
i+1 , u

j

i

)
=

1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j

i − u
j−1
i

φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j−1
i+1 − u

j−1
i

ψ(Δx)

⎞

⎠
2
⎞
⎟⎠.

(2.13)
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After some simple calculations, the discrete Euler-Lagrange equation (2.12) becomes

u
j+1
i − 2uji + u

j−1
i

(
φ(Δt)

)2 − u
j

i+1 − 2uji + u
j

i−1
(
ψ(Δx)

)2 = 0. (2.14)

We could find that this scheme is symmetric in (i, j + 1) and (i, j − 1), (i + 1, j) and
(i − 1, j). This is the nonstandard finite difference variational integrator, for the linear wave
equation.

As we mentioned in Section 1 and Lemma 1.1, the advantages of deriving the multis-
ymplectic numerical schemes from discrete variational principle are that they are naturally
multisymplectic and the discrete multisymplectic structures are also generated in the
variational principle. Now it is meaningful to show the multisymplectic structure of this
discrete variational integrator (2.14) based on nonstandard finite difference method.

Since we consider triangulation discretization here, we focus on three adjacent tri-
angles around u

j

i , denote this area by U. Following the idea in [10], the discrete boundary
Lagrangian is given by

L∂U(u∂U) := extuni
[
Ld
(
uni , u

n
i+1, u

n+1
i

)
+ Ld

(
uni−1, u

n
i , u

n+1
i−1
)
+ Ld

(
un−1i , un−1i+1 , u

n
i

)]
, (2.15)

where

u∂U :=
(
uni+1, u

n+1
i , un+1i−1 , u

n
i−1, u

n−1
i , un−1i+1

)
. (2.16)

Taking twice exterior derivative of both sides, we have, by the fact that d2L∂U ≡ 0, the
discrete multisymplectic form formula with following form [10]:

3∑

k=1

3∑

l=1;l /= k

Ωk
L

(
Δ(l)
)
= 0, (2.17)

where Ωk
L = −dΘk

L (for k = 1, 2, 3). The discrete Poincaré-Cartan forms Θ1
L, Θ

2
L, and Θ3

L are
defined by

Θ1
L

(
uni , u

n
i+1, u

n+1
i

)
:= D1Ld

(
uni , u

n
i+1, u

n+1
i

)
duni , (2.18)

and similarly for Θ2
L and Θ3

L. Thus, for the linear wave equation (2.1), the multisymplectic
form formula of this scheme (2.14) based on nonstandard finite difference method can be
obtained as follows:

du
j+1
i ∧ duji + du

j−1
i ∧ duji

(
φ(Δt)

)2 − du
j

i+1 ∧ du
j

i + du
j

i−1 ∧ du
j

i
(
ψ(Δx)

)2 = 0. (2.19)

Now we have the first conclusion.
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Theorem 2.1. The nonstandard finite difference variational integrator (2.14),

u
j+1
i − 2uji + u

j−1
i

(
φ(Δt)

)2 − u
j

i+1 − 2uji + u
j

i−1
(
ψ(Δx)

)2 = 0, (2.20)

for linear wave equation (2.1) is multisymplectic, and the discrete multisymplectic structure is

du
j+1
i ∧ duji + du

j−1
i ∧ duji

(
φ(Δt)

)2 − du
j

i+1 ∧ du
j

i + du
j

i−1 ∧ du
j

i
(
ψ(Δx)

)2 = 0. (2.21)

We now discuss the convergence of this variational integrator (2.14) based on the
nonstandard finite difference method. From the Lax equivalence theoremwe know that, for a
well-posed linear initial value problem, the consistent finite difference method is convergent
if and only if it is stable.

By Taylor series expansion, we have

u
j+1
i − 2uji + u

j−1
i

(
φ(Δt)

)2 =
u
j+1
i − 2uji + u

j−1
i

(
Δt +O

(
(Δt)3

))2 =
1 − O

(
(Δt)2

)

(Δt)2
(
u
j+1
i − 2uji + u

j−1
i

)

=
1 − O

(
(Δt)2

)

(Δt)2
(
(Δt)2utt

(
xi, tj

)
+O(Δt)4

)

= utt
(
xi, tj

)
+O
(
(Δt)2

)
.

(2.22)

Similarly,

u
j

i+1 − 2uji + u
j

i−1
(
ψ(Δx)

)2 = uxx
(
xi, tj

)
+O
(
(Δx)2

)
. (2.23)

The above two equations show that the scheme is consistent and the truncation error
for the integrator (2.14) is O((Δt)2 + (Δx)2).

To explore the stability of the nonstandard finite difference variational integrator
(2.14), we introduce the following notations:

v
j

i =
u
j

i − u
j−1
i

φ(Δt)
, w

j

i−1/2 =
u
j

i − u
j

i−1
ψ(Δt)

. (2.24)
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Then the three-level explicit integrator (2.14) is equivalent to the following two-level
scheme:

v
j+1
i − vji
φ(Δt)

=
w
j

i+1/2 −w
j

i−1/2
ψ(Δx)

,

w
j+1
i−1/2 −w

j

i−1/2
φ(Δt)

=
v
j+1
i − vj+1i−1
ψ(Δx)

.

(2.25)

By using the Von Neumann method [30], we could get the amplification matrix of the
above scheme,

G
(
β,Δt

)
=
(

1 2ir sin
(
βΔx

)

2ir sin
(
βΔx

)
1 − 4r2sin2(βΔx

)
)
, (2.26)

where r = φ(Δt)/ψ(Δx). Note that, in the above matrix, i =
√−1. Let η = 4r2sin2(βΔx). We

have the characteristic equation

λ2 − (2 − η)λ + 1 = 0 (2.27)

and the eigenvalues

λ = 1 − 1
2
η ±
(
1
4
η2 − η

)1/2

. (2.28)

When |λ| ≤ 1, that is, r ≤ 1, the scheme (2.14) satisfies the Von Neumann conditions,
which is a necessary condition of the stability of the scheme (2.14). If r < 1, βh/=nπ , where
n is an integer, then G has two different eigenvalues. If r < 1, βh = nπ , then G is an identity
matrix, but (d/dβh)G has two different eigenvalues [30]. So r < 1 is the sufficient condition
of the stability for integrator (2.14). Note that, if r = 1, there is an unbounded solution vji =
(−1)i+j(1 − 2j),wj

i+1/2 = (−1)i+j2j. So the scheme (2.14) is not stable when r = 1. Now, we find
the necessary and sufficient condition of the stability for integrator (2.14), which is

r =
φ(Δt)
ψ(Δx)

< 1. (2.29)

With the consistence and stability conditions, we have following conclusion.

Theorem 2.2. The nonstandard finite difference variational integrator (2.14) is convergent, when the
step sizes Δt and Δx satisfy φ(Δt) < ψ(Δx).

We have shown the idea of using the nonstandard finite difference method to get
the discrete variational integrator and the corresponding discrete multisymplectic form
formula. In the next section, we will consider the discrete variational integrators for a more
complicated example, the nonlinear Klein-Gordon equation.
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3. Nonstandard Finite Difference Variational Integrators for
Nonlinear Klein-Gordon Equation

In this section, we consider the nonlinear Klein-Gordon equation [31],

utt = uxx − u3 + u. (3.1)

As known, this equation can be obtained by Euler-Lagrange equation (2.2) with the
Lagrangian function

L(u, ut, ux) =
1
2
ut

2 − 1
2
ux

2 − 1
4
u4 − 1

2
u2. (3.2)

Now we consider the triangle discretization and square discretization, respectively, to
get the nonstandard finite difference variational integrators.

3.1. Triangle Discretization

Following the steps in last section and using the idea of nonstandard finite difference, we
define the discrete Lagrangian Ld as

Ld
(
u
j

i , u
j

i+1, u
j+1
i

)

=
1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i − uji
φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i+1 − u
j

i

ψ(Δx)

⎞

⎠
2

− 1
4

⎛
⎜⎜⎝
a1

(
u
j

i

4
+ uji+1

4
+ uj+1i

4
)
+ b1
(
u
j

i

2
u
j

i+1u
j+1
i + uji+1

2
u
j

iu
j+1
i + uj+1i

2
u
j

iu
j

i+1

)

3a1 + 3b1

⎞
⎟⎟⎠

+
1
2

⎛
⎜⎜⎝
a2

(
u
j

i

2
+ uji+1

2
+ uj+1i

2
)
+ b2
(
u
j

iu
j

i+1 + u
j

i+1u
j+1
i + ujiu

j+1
i

)

3a2 + 3b2

⎞
⎟⎟⎠

⎞
⎟⎟⎠,

(3.3)

based on the following constructing rules,

(1) The discrete first derivative is represented by

du

dt
−→ u

j+1
i − uji
φ(Δt)

,
du

dx
−→ u

j

i+1 − u
j

i

ψ(Δx)
, (3.4)
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where the denominator functions are defined by (2.6), and

φ(Δt) = Δt +O
(
(Δt)3

)
, ψ(Δx) = Δx +O

(
(Δx)3

)
. (3.5)

(2) Nonlocal representations for u4 and u2 are given by

u4 −→
a1

(
u
j

i

4
+ uji+1

4
+ uj+1i

4
)
+ b1
(
u
j

i

2
u
j

i+1u
j+1
i + uji+1

2
u
j

iu
j+1
i + uj+1i

2
u
j

iu
j

i+1

)

3a1 + 3b1
,

u2 −→
a2

(
u
j

i

2
+ uji+1

2
+ uj+1i

2
)
+ b2
(
u
j

iu
j

i+1 + u
j

i+1u
j+1
i + ujiu

j+1
i

)

3a2 + 3b2
,

(3.6)

where a1, b1, a2, and b2 are positive parameters. Such discretizations for u4 and u2

guarantee the symmetric property of the discrete Lagrangian function [15].

Similarly, we define discrete Lagrangians on other two adjoint triangles,

Ld
(
u
j

i−1, u
j

i , u
j+1
i−1
)

=
1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i−1 − u

j

i−1
φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i − u
j

i−1
ψ(Δx)

⎞

⎠
2

− 1
4

⎛
⎜⎜⎝
a1

(
u
j

i

4
+ uji−1

4
+ uj+1i−1

4
)
+ b1
(
u
j

i−1
2
u
j

iu
j+1
i−1 + u

j

i

2
u
j

i−1u
j+1
i−1 + u

j+1
i−1

2
u
j

i−1u
j

i

)

3a1 + 3b1

⎞
⎟⎟⎠

+
1
2

⎛
⎜⎜⎝
a2

(
u
j

i−1
2
+ uji

2
+ uj+1i−1

2
)
+ b2
(
u
j

i−1u
j

i + u
j

iu
j+1
i−1 + u

j+1
i−1u

j

i−1
)

3a2 + 3b2

⎞
⎟⎟⎠

⎞
⎟⎟⎠,
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Ld
(
u
j−1
i , u

j−1
i+1 , u

j

i

)

=
1
2
ΔtΔx

⎛
⎜⎝

1
2

⎛

⎝u
j

i − u
j−1
i

φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j−1
i+1 − u

j−1
i

ψ(Δx)

⎞

⎠
2

− 1
4

⎛
⎜⎜⎝
a1

(
u
j−1
i

4
+ uj−1i+1

4
+ uji

4
)
+ b1
(
u
j−1
i

2
u
j−1
i+1u

j

i + u
j−1
i+1

2
u
j

iu
j−1
i + uji

2
u
j−1
i u

j−1
i+1

)

3a1 + 3b1

⎞
⎟⎟⎠

+
1
2

⎛
⎜⎜⎝
a2

(
u
j−1
i

2
+ uj−1i+1

2
+ uji

2
)
+ b2
(
u
j−1
i u

j−1
i+1 + u

j−1
i+1u

j

i + u
j

iu
j−1
i

)

3a2 + 3b2

⎞
⎟⎟⎠

⎞
⎟⎟⎠.

(3.7)

Now, the discrete variational integrator with nonstandard finite difference methods
could be obtained by discrete Euler-Lagrange equation (2.12):

D1Ld
(
u
j

i , u
j

i+1, u
j+1
i

)
+D2Ld

(
u
j

i−1, u
j

i , u
j+1
i−1
)
+D3Ld

(
u
j−1
i , u

j−1
i+1 , u

j

i

)
= 0. (3.8)

Substituting Ld(u
j

i , u
j

i+1, u
j+1
i ), Ld(u

j

i−1, u
j

i , u
j+1
i−1 ), and Ld(u

j−1
i , u

j−1
i+1 , u

j

i ) into above equa-
tion, we arrive at

− u
j+1
i − 2uji + u

j−1
i

(
φ(Δt)

)2 +
u
j

i+1 − 2uji + u
j

i−1
(
ψ(Δx)

)2

− 1
4

1
3a1 + 3b1

[
12a1u

j

i

3
+ 2b1

(
u
j

iu
j

i+1u
j+1
i + ujiu

j

i−1u
j+1
i−1 + u

j

iu
j−1
i u

j−1
i+1

)

+ b1
(
u
j

i+1

2
u
j+1
i + uj+1i

2
u
j

i+1 + u
j

i−1
2
u
j+1
i−1 + u

j+1
i−1

2
u
j

i−1 + u
j−1
i

2
u
j−1
i+1 + u

j−1
i+1

2
u
j−1
i

)]

+
1
2

1
3a2 + 3b2

[
6a2u

j

i + b2
(
u
j

i+1 + u
j+1
i + uji−1 + u

j+1
i−1 + u

j−1
i+1 + u

j−1
i

)]
= 0.

(3.9)

Using the definition of discrete Lagrangian functions, one can find that this scheme is
symmetric with respect to (i, j+1) and (i, j−1), (i+1, j) and (i−1, j); that it is multisymplectic,
and that it preserves the multisymplectic structure of the original equation.
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Its corresponding discrete multisymplectic form formula can be obtained from (2.17),
that is,

− du
j+1
i ∧ duji − du

j

i ∧ du
j−1
i

(
φ(Δt)

)2 +
du

j

i+1 ∧ du
j

i − du
j

i ∧ du
j

i−1
(
ψ(Δx)

)2

−
((

C1u
j

iu
j+1
i + C1u

j

i+1u
j+1
i +

1
2
C1u

j+1
i

2 − C2

)
du

j

i+1 ∧ du
j

i

+
(
C1u

j

iu
j

i+1 +
1
2
C1u

j

i+1

2
+ C1u

j+1
i u

j

i+1 − C2

)
du

j+1
i ∧ duji

+
(
C1u

j

iu
j+1
i−1 + C1u

j

i−1u
j+1
i−1 +

1
2
C1u

j+1
i−1

2 − C2

)
du

j

i−1 ∧ du
j

i

+
(
C1u

j

iu
j

i−1 +
1
2
C1u

j

i−1
2
+ C1u

j+1
i−1u

j

i−1 − C2

)
du

j+1
i−1 ∧ du

j

i

+
(
C1u

j

iu
j−1
i+1 + C1u

j−1
i u

j−1
i+1 +

1
2
C1u

j−1
i+1

2 − C2

)
du

j−1
i ∧ duji

+
(
C1u

j

iu
j−1
i +

1
2
C1u

j−1
i

2
+ C1u

j−1
i+1u

j−1
i − C2

)
du

j−1
i+1 ∧ du

j

i

)
= 0,

(3.10)

where

C1 =
b1

2(3a1 + 3b1)
, C2 =

b2
3a2 + 3b2

. (3.11)

It shows the multisymplectic structure of scheme (3.9), and the relations between the
field values on the three adjoint triangles are around uji .

We now analyze the truncation error of integrator (3.9). By Taylor series expansion
[32, 33], we have

1
4

1
3a1 + 3b1

[
12a1u

j

i

3
+ 2b1

(
u
j

iu
j

i+1u
j+1
i + ujiu

j

i−1u
j+1
i−1 + u

j

iu
j−1
i u

j−1
i+1

)

+ b1
(
u
j

i+1

2
u
j+1
i + uj+1i

2
u
j

i+1 + u
j

i−1
2
u
j+1
i−1 + u

j+1
i−1

2
u
j

i−1 + u
j−1
i

2
u
j−1
i+1 + u

j−1
i+1

2
u
j−1
i

)]

= u3
(
xi, tj

)
+O
(
(Δx)2 + ΔxΔt + (Δt)2

)
,

1
2

1
3a2 + 3b2

[
6a2u

j

i + b2
(
u
j

i+1 + u
j+1
i + uji−1 + u

j+1
i−1 + u

j−1
i+1 + u

j−1
i

)]

= u
(
xi, tj

)
+O
(
(Δx)2 + (Δt)2

)
.

(3.12)
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Combining the above two equations and (2.22), (2.23), we can observe that the
nonstandard finite difference variational integrator (3.9) has the truncation error O((Δx)2 +
ΔxΔt + (Δt)2).

The above results are summarized in the following theorem.

Theorem 3.1. The nonstandard finite difference variational integrator (3.9) for the nonlinear Klein-
Gordon equation (3.1) is multisymplectic, and its truncation error is O((Δx)2 +ΔxΔt + (Δt)2). The
discrete multisymplectic structure of this scheme is presented by (3.10).

3.2. Square Discretization

In this case, we denote a square at (i, j)with four ordered quaternion ((i, j), (i+ 1, j), (i+ 1, j +
1), and (i, j + 1)) by �j

i and define X� to be the set of all such squares. Then the discrete jet
bundle [6, 10] is defined as

J1�Y :=
{(
u
j

i , u
j

i+1, u
j+1
i+1 , u

j+1
i

)
∈ R

4 :
((
i, j
)
,
(
i + 1, j

)
,
(
i + 1, j + 1

)
,
(
i, j + 1

)) ∈ X�
}
, (3.13)

which is equal to X� × R
4.

Following the philosophy of the nonstandard finite difference method, we define the
discrete Lagrangian Ld on J1�Y as

Ld
(
u
j

i , u
j

i+1, u
j+1
i+1 , u

j+1
i

)

=

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i − uji
2φ(Δt)

+
u
j+1
i+1 − u

j

i+1

2φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j+1
i+1 − u

j+1
i

2ψ(Δx)
+
u
j

i+1 − u
j

i

2ψ(Δx)

⎞

⎠
2

− 1
4
u
j

iu
j

i+1u
j+1
i+1u

j+1
i

+
1
2

⎛

⎝u
j

iu
j

i+1 + u
j

iu
j+1
i+1 + u

j

iu
j+1
i + uji+1u

j+1
i+1 + u

j+1
i+1u

j+1
i + uj+1i+1u

j+1
i

6

⎞

⎠

⎞

⎠ΔtΔx.

(3.14)

In this case,

(1) the discrete first-derivative is represented by

du

dt
−→ u

j+1
i − uji
2φ(Δt)

+
u
j+1
i+1 − u

j

i+1

2φ(Δt)
,

du

dx
−→ u

j+1
i+1 − u

j+1
i

2ψ(Δx)
+
u
j

i+1 − u
j

i

2ψ(Δx)
,

(3.15)

where the denominator functions are defined by (2.6), and

φ(Δt) = Δt +O
(
(Δt)3

)
, ψ(Δx) = Δx +O

(
(Δx)3

)
; (3.16)
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(2) nonlocal representations for u4 and u2 are

u4 −→ u
j

iu
j

i+1u
j+1
i+1u

j+1
i ,

u2 −→ u
j

iu
j

i+1 + u
j

iu
j+1
i+1 + u

j

iu
j+1
i + uji+1u

j+1
i+1 + u

j+1
i+1u

j+1
i + uj+1i+1u

j+1
i

6
.

(3.17)

Similarly, we have the definitions of Ld on the other three squares adjoint to uji :

Ld
(
u
j

i−1, u
j

i , u
j+1
i , u

j+1
i−1
)

=

⎛
⎜⎝

1
2

⎛

⎝u
j+1
i − uji
2φ(Δt)

+
u
j+1
i−1 − u

j

i−1
2φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i − u
j

i−1
2ψ(Δx)

+
u
j+1
i − uj+1i−1
2ψ(Δx)

⎞

⎠
2

− 1
4
u
j

i−1u
j

iu
j+1
i u

j+1
i−1

+
1
2

⎛

⎝u
j

i−1u
j

i + u
j

i−1u
j+1
i + uji−1u

j+1
i−1 + u

j

iu
j+1
i + ujiu

j+1
i−1 + u

j+1
i u

j+1
i−1

6

⎞

⎠

⎞

⎠ΔtΔx,

Ld
(
u
j−1
i−1 , u

j−1
i , u

j

i , u
j

i−1
)

=

⎛
⎜⎝

1
2

⎛

⎝u
j

i−1 − u
j−1
i−1

2φ(Δt)
+
u
j

i − u
j−1
i

2φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i − u
j

i−1
2ψ(Δx)

+
u
j−1
i − uj−1i−1
2ψ(Δx)

⎞

⎠
2

− 1
4
u
j−1
i−1u

j−1
i u

j

iu
j

i−1

+
1
2

⎛

⎝u
j−1
i−1u

j−1
i + uj−1i−1u

j

i + u
j−1
i−1u

j

i−1 + u
j−1
i u

j

i + u
j−1
i u

j

i−1 + u
j

iu
j

i−1
6

⎞

⎠

⎞

⎠ΔtΔx,

Ld
(
u
j−1
i , u

j−1
i+1 , u

j

i+1, u
j

i

)

=

⎛
⎜⎝

1
2

⎛

⎝u
j

i − u
j−1
i

2φ(Δt)
+
u
j

i+1 − u
j−1
i+1

2φ(Δt)

⎞

⎠
2

− 1
2

⎛

⎝u
j

i+1 − u
j

i

2ψ(Δx)
+
u
j−1
i+1 − u

j−1
i

2ψ(Δx)

⎞

⎠
2

− 1
4
u
j−1
i u

j−1
i+1u

j

i+1u
j

i

+
1
2

⎛

⎝u
j−1
i u

j−1
i+1 + u

j−1
i u

j

i+1 + u
j−1
i u

j

i + u
j−1
i+1u

j

i+1 + u
j−1
i+1u

j

i + u
j

i+1u
j

i

6

⎞

⎠

⎞

⎠ΔtΔx.

(3.18)
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Taking derivate of action functional with respect to u
j

i , we have the discrete Euler-
Lagrange equation in this square discretization [5, 6, 10, 34], which is

D1Ld
(
u
j

i , u
j

i+1, u
j+1
i+1 , u

j+1
i

)
+D2Ld

(
u
j

i−1, u
j

i , u
j+1
i , u

j+1
i−1
)

+D3Ld
(
u
j−1
i−1 , u

j−1
i , u

j

i , u
j

i−1
)
+D4Ld

(
u
j−1
i , u

j−1
i+1 , u

j

i+1, u
j

i

)
= 0.

(3.19)

Substituting the discrete Lagrangian Ld(u
j

i , u
j

i+1, u
j+1
i+1 , u

j+1
i ), Ld(u

j

i−1, u
j

i , u
j+1
i , u

j+1
i−1 ),

Ld(u
j−1
i−1 , u

j−1
i , u

j

i , u
j

i−1), and Ld(u
j−1
i , u

j−1
i+1 , u

j

i+1, u
j

i ) into the previous equation, we arrive at

(
− 1

2φ(Δt)2
− 1

2ψ(Δx)2
+
1
6

)(
u
j+1
i + uj−1i

)
+

(
1

2φ(Δt)2
+

1

2ψ(Δx)2
+
1
6

)(
u
j

i+1 + u
j

i−1
)

+

(
1

φ(Δt)2
− 1

ψ(Δx)2

)
u
j

i +

(
− 1

4φ(Δt)2
+

1

4ψ(Δx)2
+

1
12

)(
u
j+1
i+1 + u

j+1
i−1 + u

j−1
i−1 + u

j−1
i+1

)

− 1
4

(
u
j

i+1u
j+1
i+1u

j+1
i + uji−1u

j+1
i u

j+1
i−1 + u

j−1
i−1u

j−1
i u

j

i−1 + u
j−1
i u

j−1
i+1u

j

i+1

)
= 0.

(3.20)

After simple calculations, it becomes

1
4

⎛

⎝u
j+1
i+1 − 2uji+1 + u

j−1
i+1

(
φ(Δt)

)2 + 2
u
j+1
i − 2uji + u

j−1
i

(
φ(Δt)

)2 +
u
j+1
i−1 − 2uji−1 + u

j−1
i−1

(
φ(Δt)

)2

⎞

⎠

− 1
4

⎛

⎝u
j+1
i+1 − 2uj+1i + uj+1i−1
(
ψ(Δx)

)2 + 2
u
j

i+1 − 2uji + u
j

i−1
(
ψ(Δx)

)2 +
u
j−1
i+1 − 2uj−1i + uj−1i−1
(
ψ(Δx)

)2

⎞

⎠

+
1
4

(
u
j

i+1u
j+1
i+1u

j+1
i + uji−1u

j+1
i u

j+1
i−1 + u

j−1
i−1u

j−1
i u

j

i−1 + u
j−1
i u

j−1
i+1u

j

i+1

)

− 1
12

(
u
j+1
i+1 + u

j+1
i−1 + u

j−1
i−1 + u

j−1
i+1 + 2uj+1i + 2uj−1i + 2uji+1 + 2uji−1

)
= 0.

(3.21)

It is multisymplectic and symmetric in (i, j + 1) and (i, j − 1), (i + 1, j) and (i − 1, j).
Similarly, we have the discrete multisymplectic form formula:

(
− 1

2
(
φ(Δt)

)2 − 1

2
(
ψ(Δx)

)2 +
1
6
− 1
4
u
j

i+1u
j+1
i+1 −

1
4
u
j

i−1u
j+1
i−1

)
du

j+1
i ∧ duji

+

(
− 1

2
(
φ(Δt)

)2 − 1

2
(
ψ(Δx)

)2 +
1
6
− 1
4
u
j−1
i−1u

j+1
i − 1

4
u
j−1
i+1u

j

i+1

)
du

j−1
i ∧ duji

+

(
1

2
(
φ(Δt)

)2 +
1

2
(
ψ(Δx)

)2 +
1
6
− 1
4
u
j+1
i+1u

j+1
i − 1

4
u
j−1
i u

j−1
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)
du

j

i+1 ∧ du
j

i
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+

(
1

2
(
φ(Δt)

)2 +
1

2
(
ψ(Δx)

)2 +
1
6
− 1
4
u
j+1
i u

j+1
i−1 −

1
4
u
j−1
i−1u

j−1
i

)
du

j−1
i ∧ duji

+

(
− 1

4
(
φ(Δt)
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1

4
(
ψ(Δx)
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1
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− 1
4
u
j
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j+1
i
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j+1
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j

i

+

(
− 1

4
(
φ(Δt)

)2 +
1

4
(
ψ(Δx)

)2 +
1
12
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4
u
j

i−1u
j+1
i
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du
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i−1 ∧ du

j
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+

(
− 1

4
(
φ(Δt)
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1

4
(
ψ(Δx)

)2 +
1
12

− 1
4
u
j−1
i u

j

i−1
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j−1
i−1 ∧ du

j

i

+

(
− 1

4
(
φ(Δt)
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1

4
(
ψ(Δx)

)2 +
1
12

− 1
4
u
j−1
i u

j+1
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)
du
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j

i = 0.

(3.22)

To study the truncation error of the integrator, we do the Taylor expansion which leads
to

u
j+1
p − 2ujp + u

j−1
p

(
φ(Δt)

)2 = utt
(
xp, tj

)
+O
(
(Δt)2

)
, p = i − 1, i, i + 1,

u
q

i+1 − 2uqi + u
q

i−1
(
ψ(Δx)

)2 = uxx
(
xi, tq

)
+O
(
(Δx)2

)
, q = j − 1, j, j + 1,

1
4
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u
j

i+1u
j+1
i+1u

j+1
i + uji−1u

j+1
i u

j+1
i−1 + u

j−1
i−1u

j−1
i u

j

i−1 + u
j−1
i u

j−1
i+1u

j

i+1

)

= u3
(
xi, tj

)
+ (Δx)2

(
2u
(
xi, tj

)
uxx
(
xi, tj

)
+ u2x

(
xi, tj

))

+ (Δt)2
(
2u
(
xi, tj

)
utt
(
xi, tj

)
+ u2t

(
xi, tj

))

= u3
(
xi, tj

)
+O
(
(Δx)2 + (Δt)2

)
,

1
12

(
u
j+1
i+1 + u

j+1
i−1 + u

j−1
i−1 + u

j−1
i+1 + 2uj+1i + 2uj−1i + 2uji+1 + 2uji−1

)

= u
(
xi, tj

)
+O
(
(Δx)2 + (Δt)2

)
.

(3.23)

Combing these equations, we can readily observe that the nonstandard finite dif-
ference variational integrator (3.21) has truncation error O((Δx)2 + (Δt)2). To verify this
conclusion, we investigate the numerical convergence order in our numerical experiments.
See Section 4.

We summarize our conclusion in the following theorem.
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Figure 1: The waveforms of linear wave equation (2.1) by the nonstandard finite difference variational
integrator (2.14) (Δt = 0.1, Δx = 0.2).

Theorem 3.2. The nonstandard finite difference variational integrator (3.21) for the nonlinear Klein-
Gordon equation (3.1) is multisymplectic, and its truncation error is O((Δx)2 + (Δt)2). The discrete
multisymplectic structure of this scheme is presented by (3.22).

4. Numerical Simulations

In this section, we report the performance of the nonstandard finite difference variational
integrator (2.14) for solving linear wave equation (2.1) and the nonstandard finite difference
variational integrators (3.21) and (3.9) for the nonlinear Klein-Gordon equation (3.1).

4.1. Linear Wave Equation

For linear wave equation (2.1), we consider the initial conditions

u(x, 0) = sechx, −10 < x < 10,

ut(x, 0) = 0, −10 < x < 10,
(4.1)

and the periodic boundary conditions

u(−10, t) = u(10, t), ux(−10, t) = ux(10, t). (4.2)

The nonstandard finite difference variational integrator (2.14) is an explicit five points
scheme. We choose the denominator functions φ and ψ in as φ(Δt) = 2 sin(Δt/2) and ψ(Δt) =
2 sin(Δx/2).

From Figure 1, we can see that the nonstandard finite difference variational integrator
(2.14) for the linear wave equation performs very well and the periodicity of the linear wave
equation is preserved accurately.
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4.2. Nonlinear Klein-Gordon Equation

We now consider the nonlinear Klein-Gordon equation (3.1)with the initial condition

u(x, 0) = A
(
1 + cos

(
2πx
L

))
, ut(x, 0) = 0, (4.3)

and periodic boundary conditions.
We use nonstandard finite difference variational integrator (3.21) to simulate this

problemwith amplitudeA = 5. The nonstandard finite difference variational integrator (2.14)
is an implicit nine-points nonstandard finite difference scheme. The denominator functions φ
and ψ are defined the same as before.

As depicted in Figure 2, the nonstandard finite difference variational integrator (3.21)
simulates the wave propagation perfectly at the beginning. After a long time simulation,
the integrator still performs very accurate and stable, without showing any blowup. With
periodic boundary condition, the wave going out the computational domain shows up in the
other direction periodically.

4.3. Convergence Order of the Nonlinear Integrators (3.9) and (3.21)

To further investigate the numerical convergence of the proposed schemes, we conduct
a series of numerical tests of our nonlinear integrators. In this example, we consider the
nonlinear Klein-Gordon equation (3.1)with the initial boundary conditions as follows:

u(x, 0) =
√
2 sech

⎛

⎝
√

−1
1 − c2x

⎞

⎠,

ut(x, 0) = c

√
−2

1 − c2 sech
⎛

⎝
√

−1
1 − c2 (x − ct)

⎞

⎠ tanh

⎛

⎝
√

−1
1 − c2 (x − ct)

⎞

⎠,

u(−10, t) =
√
2 sech

⎛

⎝
√

−1
1 − c2 (−10 − ct)

⎞

⎠,

u(10, t) =
√
2 sech

⎛

⎝
√

−1
1 − c2 (10 − ct)

⎞

⎠,

(4.4)

where c = 1.2. The exact solution of the problem is

u(x, t) =
√
2 sech

⎛

⎝
√

−1
1 − c2 (10 − ct)

⎞

⎠. (4.5)

The nonstandard finite difference integrators (3.9) and (3.21) are applied to simulate
the Klein-Gordon equation. In the integrator (3.9), we choose a1 = b1 = a2 = b2 = 1 here.
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(a) Waveforms at the beginning from t = 0 to t = 2
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(b) Waveforms from t = 5 to t = 8

Figure 2: Waveforms of nonlinear Klein-Gordon equation by the nonstandard finite difference variational
integrator (3.21) (Δt = 0.01, Δx = 0.01).

The l∞-norm errors at t = 1, t = 1.5, and t = 2 are listed in Tables 1 and 2. The orders in the
tables are calculated with the formula [35, 36]

Order ≈ ln(Error(Δx1)/Error(Δx2))
ln(Δx1/Δx2)

. (4.6)

Overall, it is clear that the error decreases as the mesh size goes to zero, indicating the
convergence of our nonlinear integrators (3.9) and (3.21). Moreover, numerical orders clearly
exhibit second order convergence when the mesh size decreases withΔt = Δx, which further
confirms our theoretical derivation of the truncation errors of the numerical schemes.

In all, the numerical tests verify that the nonstandard finite difference variational
integrators that we developed are capable of preserving the characteristics of original
equations. They are all accurate, effective, and suitable for solving multisymplectic systems.
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Table 1: The error and convergence orders of (3.9) for Klein-Gordon problem with Δt = Δx.

Mesh size t = 1 t = 1.5 t = 2
Δx = 0.1

Error 6.3e − 3 8.9e − 3 1.07e − 2
Order — — —

Δx = 0.05
Error 1.6e − 3 2.3e − 3 2.8e − 3
Order 1.9773 1.9522 1.9341

Δx = 0.025
Error 4.1645e − 4 5.8258e − 4 7.0059e − 4
Order 1.9419 1.9811 1.9988

Δx = 0.0125
Error 1.0480e − 4 1.4622e − 4 1.7565e − 4
Order 1.9905 1.9943 1.9959

Table 2: The error and convergence orders of (3.21) for Klein-Gordon problem with Δt = Δx.

Mesh size t = 1 t = 1.5 t = 2
Δx = 0.1

Error 1.28e − 2 1.81e − 2 2.25e − 2
Order — — —

Δx = 0.05
Error 3.3e − 3 4.6e − 3 5.7e − 3
Order 1.9556 1.9763 1.9809

Δx = 0.025
Error 8.3445e − 4 1.2e − 3 1.4e − 3
Order 1.9836 1.9386 2.0255

Δx = 0.0125
Error 2.0990e − 4 2.9458e − 4 3.6187e − 4
Order 1.9911 2.0263 1.9984

5. Conclusion

In this paper, we have considered a linear wave equation and a nonlinear Klein-
gordon equation. We have derived the nonstandard finite difference variational integrators
and the corresponding multisymplectic form formulas from these two multisymplectic
PDEs. We have shown that the nonstandard finite difference methods are flexible in
constructing numerical schemes and can be employed to derive multisymiplectic schemes for
multisymplectic systems. The convergence of ourmethods has been discussed. The numerical
experiments have shown effectiveness and efficiency of these nonstandard finite difference
variational integrators.
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