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This paper is concerned with the traveling fronts of a diffusive food-limited population model
with spatiotemporal delay. Sufficient conditions are established for the existence of traveling
wave fronts by choosing different kinds of delay kernels. The approach used here is the upper-
lower solution method and monotone iteration technique. Our work extends and/or covers some
previous results.

1. Introduction

This paper is concerned with the traveling fronts for the following food-limited model:

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ u(x, t)
1 − au(x, t) − b(g ∗ u)(x, t)

1 + adu(x, t) + bd
(
g ∗ u)(x, t) , x ∈ R, t ≥ 0, (1.1)

where a, b, and d are nonnegative constants, a+ b > 0, and the kernel g(x, t) is any integrable
nonnegative function satisfying g(−x, t) = g(x, t),

∫+∞

0

∫+∞

−∞
g
(
y, s

)
dy ds = 1,

(
g ∗ u)(x, t) =

∫ t

−∞

∫+∞

−∞
g
(
x − y, t − s)u(y, s)dy ds, (1.2)

which was first proposed and analyzed by Gourley and So [1] on a finite domain Ω.
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In the case a = 0, b = 1, d = β, (1.1) becomes

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ u(x, t)
1 − (

g ∗ u)(x, t)
1 + β

(
g ∗ u)(x, t) . (1.3)

Recently, many researchers studied the existence of traveling fronts of (1.3)with some
specific g(x, t). For the case

g(x, t) = δ(t − τ)δ(x), (1.4)

where δ(·) is the Dirac delta function, Gourley [2] showed that, for any c > 2, there exists
τ∗(c) > 0 such that, for any τ < τ∗(c), (1.3) has a traveling front connecting the equilibria 0
and 1, by using the approach developed by Wu and Zou [3]. For the case

g(x, t) =
1
τ
e−t/τ

1√
4πt

e−x
2/4t, (1.5)

Gourley and Chaplain [4] proved the existence of traveling fronts for any c ≥ 2 and sufficient
small τ > 0, by employing linear chain techniques to recast the traveling wave equations as
a finite-dimensional system of ODEs and using Fenichel’s geometric singular perturbation
theory [5] and the Fredholm alternative. For the case

g(x, t) = δ(t − τ) 1√
4πt

e−x
2/4t, (1.6)

Gourley and Chaplain [4], by using the method of Canosa [6], obtained some information on
the monotonicity of traveling fronts for sufficiently large c. Furthermore, for these cases

g(x, t) =
t

τ2
e−t/τ

1√
4πt

e−x
2/4t, g(x, t) = δ(t − τ) 1√

4πt
e−x

2/4t,

g(x, t) = δ(t)
1
2ρ
e−|x|/ρ, ρ > 0, g(x, t) =

1
τ2
e−t/τδ(x), τ > 0,

(1.7)

Wang and Li [7] showed that, for any c > 2, there exists τ∗(c) > 0 (or ρ∗(c) > 0) such that for
any τ < τ∗(c) (or ρ < ρ∗(c)), (1.3) has a traveling front connecting the equilibria 0 and 1.

In this paper, based on the monotone iteration technique as well as the upper and
lower solution method developed by Wang et al. [8], we will establish the existence of
traveling fronts of (1.1) with the kernel functions (1.4)–(1.7). More precisely, we shall show
that for any c > 2, there exists τ∗(c) > 0 (or ρ∗(c) > 0) such that, for any τ < τ∗(c) (or
ρ < ρ∗(c)), (1.1) has a traveling front connecting the equilibria 0 and K = 1/(a + b) (see
Theorems 2.5 and 2.9 and Remark 2.10), which includes, improves, and/or complements a
number of existing results in [2–4, 7, 9, 10].

The rest of the paper is organized as follows. In Section 2, we establish the existence
of traveling wave fronts of (1.1) with the kernel functions (1.4)–(1.7). For the sake of
convenience, we present in the Appendix some results developed by Wang et al. [8].
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2. Existence of Traveling Fronts

In this section, we will use Theorem A.2 to establish the existence of traveling fronts of (1.1)
by choosing different kernel function g, such as (1.4)–(1.7). It is easy to see that (1.1) has two
uniform steady states K0 = 0 and K = 1/(a + b).

Let u(x, t) = φ(ξ), ξ = x + ct. Then a traveling front φ(ξ) of (1.1) satisfies the boundary
conditions φ(−∞) = K0 and φ(+∞) = K, and the following equation:

φ′′(ξ) − cφ′(ξ) + φ(ξ)
1 − aφ(ξ) − b(g ∗ φ)(ξ)

1 + adφ(ξ) + bd
(
g ∗ φ)(ξ) = 0, ξ ∈ R. (2.1)

For c > 2, let Δc(μ) = μ2 − cμ+ 1 and λ = (c −
√
c2 − 4)/2. Then Δc(λ) = 0. Let 0 < ε < λ,

α > 0,M > 1 and γ > λ such that

λ + ε < γ, λ + ε <
c +

√
c2 − 4
2

, α <
λ

2
(
γ + λ

) ,
1
2
≤Mα ≤M − 1. (2.2)

Clearly, Δc(λ + ε) < 0. Define φ+(ξ) = K/(1 + αe−λξ) and φ−(ξ) = max{Keλξ(1 −Meεξ), 0}.
Then we have the following observations.

Lemma 2.1. (i) φ+(ξ) is increasing in ξ ∈ R and satisfies φ+(−∞) = K0 and φ+(+∞) = K;
(ii) φ+(ξ) ≥ φ−(ξ) for all ξ ∈ R;
(iii) eγξ[φ+(ξ) − φ−(ξ)] is increasing and e−γξ[φ+(ξ) − φ−(ξ)] is decreasing in ξ ∈ R;
(iv) eγξ[φ+(ξ + η) − φ+(ξ)] is increasing and e−γξ[φ+(ξ + η) − φ+(ξ)] is decreasing in ξ ∈ R

for every η > 0.

Clearly, Lemma 2.1 implies that, for γ > λ+ε, φ+(ξ) ∈ Γ∗, φ+(ξ) ∈ Γ∗∗ and supξ∈R
φ−(ξ) >

0. Now, we show that φ+(ξ) and φ−(ξ) are lower and upper solutions of (2.1) by choosing
different kernel functions g, respectively.

For the sake of convenience, throughout this section, we let

f
(
φ(ξ),

(
g ∗ φ)(ξ)) = φ(ξ)

1 − aφ(ξ) − b(g ∗ φ)(ξ)
1 + adφ(ξ) + bd

(
g ∗ φ)(ξ) , ξ ∈ R. (2.3)

2.1. The Case g(x, t) = δ(t)(1/2ρ)e−|x|/ρ, ρ > 0

Clearly, g(x, t) = δ(t)(1/2ρ)e−|x|/ρ satisfies (H0) and in this case

(
g ∗ φ)(ξ) =

∫+∞

−∞

1
2ρ
e−|y|/ρφ

(
ξ − y)dy. (2.4)

Lemma 2.2. For sufficient small ρ > 0, f(φ(ξ), (g ∗ φ)(ξ)) satisfies (H∗∗
1 ).

Proof. Let A = (a2 + 2abd + a2d + ab)/(a + b)2 and B = b(d + 1)/(a + b) + abd/(a + b)2. Fix
γ > A + 2B. Let φ1, φ2 ∈ C(R,R) with 0 ≤ φ1(ξ) ≤ φ2(ξ) ≤ K so that eγξ[φ2(ξ) − φ1(ξ)] is
increasing and e−γξ[φ2(ξ) − φ1(ξ)] is decreasing in ξ ∈ R. It is easy to see that for any η ∈ R,
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eγξ[φ2(ξ + η) − φ1(ξ + η)] is increasing and e−γξ[φ2(ξ + η) − φ1(ξ + η)] is decreasing in ξ ∈ R.
For sufficiently small ρ > 0 satisfying 1 − ργ > 1/2, there is

(
g ∗ φ2

)
(ξ) − (

g ∗ φ1
)
(ξ)

=
∫+∞

−∞

1
2ρ
e−|y|/ρ

[
φ2

(
ξ − y) − φ1

(
ξ − y)]dy

=
∫+∞

0

1
2ρ
e−y/ρ

[
φ2

(
ξ − y) − φ1

(
ξ − y)]dy +

∫+∞

0

1
2ρ
e−y/ρ

[
φ2

(
ξ + y

) − φ1
(
ξ + y

)]
dy

=
∫+∞

0

1
2ρ
e−y/ρeγy

{
e−γy

[
φ2

(
ξ − y) − φ1

(
ξ − y)] + e−γy[φ2

(
ξ + y

) − φ1
(
ξ + y

)]
}
dy

≤ 2
[
φ2(ξ) − φ1(ξ)

]
∫+∞

0

1
2ρ
e−y/ρeγydy

=
1

1 − ργ
[
φ2(ξ) − φ1(ξ)

] ≤ 2
[
φ2(ξ) − φ1(ξ)

]
.

(2.5)

Hence,

φ2
(
1 − aφ2 − bg ∗ φ2

)(
1 + adφ1 + bdg ∗ φ1

) − φ1
(
1 − aφ1 − bg ∗ φ1

)(
1 + adφ2 + bdg ∗ φ2

)

=
(
φ2 − φ1

)[
1 + bdg ∗ φ1 −

(
a + abdg ∗ φ1

)(
φ2 + φ1

) − a2dφ1φ2 − bg ∗ φ2 − b2dg ∗ φ1g ∗ φ2

]

+
(
abdφ2

1 − bdφ1 − bφ1 − abdφ1φ2

)(
g ∗ φ2 − g ∗ φ1

)

≥ −A(
φ2 − φ1

) − B(g ∗ φ2 − g ∗ φ1
)

≥ −(A + 2B)
(
φ2 − φ1

)
> −γ(φ2 − φ1

)
.

(2.6)

Therefore,

f
(
φ2(ξ),

(
g ∗ φ2

)
(ξ)

) − f(φ1(ξ),
(
g ∗ φ1

)
(ξ)

)

= φ2(ξ)
1 − aφ2(ξ) − b

(
g ∗ φ2

)
(ξ)

1 + adφ2(ξ) + bd
(
g ∗ φ2

)
(ξ)

− φ1(ξ)
1 − aφ1(ξ) − b

(
g ∗ φ1

)
(ξ)

1 + adφ1(ξ) + bd
(
g ∗ φ1

)
(ξ)

≥ −γ[φ2(ξ) − φ1(ξ)
]

[
1 + adφ2(ξ) + bd

(
g ∗ φ2

)
(ξ)

][
1 + adφ1(ξ) + bd

(
g ∗ φ1

)
(ξ)

]

> −γ[φ2(ξ) − φ1(ξ)
]
.

(2.7)

This completes the proof.

Lemma 2.3. Assume that 1 − λρ > 0. Then for sufficiently largeM > 1, φ−(ξ) is a lower solution of
(2.1).
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Proof. For ξ ≥ ξ0 = (1/ε) ln(1/M), φ−(ξ) = 0, then

φ′′
−(ξ) − cφ′

−(ξ) + φ−(ξ)
1 − aφ−(ξ) − b

(
g ∗ φ−

)
(ξ)

1 + adφ−(ξ) + bd
(
g ∗ φ−

)
(ξ)

= 0. (2.8)

Let

M ≥ − (d + 1)aK
Δc(λ + ε)

− (d + 1)bK
(
1 − ρλ)(1 + ρλ)Δc(λ + ε)

. (2.9)

For ξ < ξ0 < 0, φ−(ξ) = Keλξ(1 −Meεξ), since

(
g ∗ φ−

)
(ξ) =

∫+∞

−∞

1
2ρ
e−|y|/ρφ−

(
ξ − y)dy

=
∫+∞

ξ−ξ0

1
2ρ
e−|y|/ρeλ(ξ−y)K

(
1 −Meε(ξ−y)

)
dy

≤ K
∫+∞

−∞

1
2ρ
e−|y|/ρeλ(ξ−y)dy =

Keλξ
(
1 − ρλ)(1 + ρλ) ,

(2.10)

and h(z) = (1 − z)/(1 + dz) ≥ 1 − (d + 1)z for all z > 0, then

φ′′
−(ξ) − cφ′

−(ξ) + φ−(ξ)
1 − aφ−(ξ) − b

(
g ∗ φ−

)
(ξ)

1 + adφ−(ξ) + bd
(
g ∗ φ−

)
(ξ)

≥ φ′′
−(ξ) − cφ′

−(ξ) + φ−(ξ)
{
1 − (d + 1)

[
aφ−(ξ) + b

(
g ∗ φ−

)
(ξ)

]}

≥ K
[
λ2 −M(λ + ε)2eεξ

]
eλξ −Kc

[
λ −M(λ + ε)eεξ

]
eλξ +Keλξ

(
1 −Meεξ

)

− (d + 1)aK2e2λξ
(
1 −Meεξ

)2 − (d + 1)bK2e2λξ
(
1 − ρλ)(1 + ρλ)

≥ Ke(λ+ε)ξ
[

−MΔc(λ + ε) − a(d + 1)K − (d + 1)bK
(
1 − ρλ)(1 + ρλ)

]

≥ 0.

(2.11)

Thus, we showed that φ−(ξ) is a lower solution of (2.1). This completes the proof.

Lemma 2.4. For sufficiently small ρ > 0, φ+(ξ) is an upper solution of (2.1).

Proof. Note that

φ′
+(ξ) =

Kαλe−λξ
(
1 + αe−λξ

)2 , φ′′
+(ξ) =

−Kαλ2e−λξ +Kα2λ2e−2λξ
(
1 + αe−λξ

)3 . (2.12)
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By an argument similar to [7, Lemma 3.5], for ρ > 0 such that 1 − 2ρλ > 0, we have

(
g ∗ φ+

)
(ξ) ≥ K

1 + αe−λξ
− Kαλ2ρ2

1 − λ2ρ2 · e−λξ
(
1 + αe−λξ

)2 . (2.13)

Then for sufficiently small ρ > 0 with 2λ2 −Kbλ2ρ2/(1 − λ2ρ2) > 0,

φ′′
+(ξ) − cφ′

+(ξ) + φ+(ξ)
1 − aφ+(ξ) − b

(
g ∗ φ+

)
(ξ)

1 + adφ+(ξ) + bd
(
g ∗ φ+

)
(ξ)

≤ φ′′
+(ξ) − cφ′

+(ξ) + φ+(ξ)
[
1 − aφ+(ξ) − b

(
g ∗ φ+

)
(ξ)

]

≤ −Kαλ2e−λξ +Kα2λ2e−2λξ
(
1 + αe−λξ

)3 − Kcαλe−λξ
(
1 + αe−λξ

)2 +
Kαe−λξ

(
1 + αe−λξ

)2

+
K2bαλ2ρ2

1 − λ2ρ2 · e−λξ
(
1 + αe−λξ

)3

=
Kα2

(
λ2 − cλ + 1

)
e−2λξ −Kα(λ2 + cλ − 1 −Kbλ2ρ2/(1 − λ2ρ2))e−λξ

(
1 + αe−λξ

)3

=
−Kα(2λ2 −Kbλ2ρ2/(1 − λ2ρ2))e−λξ

(
1 + αe−λξ

)3 < 0.

(2.14)

This completes the proof.

Therefore, by Theorem A.2(ii), we have the following result.

Theorem 2.5. For any c > 2, there exists ρ∗(c) > 0 such that, for any ρ < ρ∗(c), (1.1) has an
increasing traveling wave front φ(ξ) that satisfies φ(−∞) = 0, φ(+∞) = K and limξ→−∞φ(ξ)e−λξ =
1.

2.2. The Case g(x, t) = (t/τ2)e−t/τδ(x), τ > 0

It is easy to see that g(x, t) = (t/τ2)e−t/τδ(x) satisfies (H0) and in this case

(
g ∗ φ)(ξ) =

∫+∞

0

s

τ2
e−s/τφ(ξ − cs)ds. (2.15)

The following two lemmas are similar to Lemmas 2.1 and 2.3, and their proofs are
omitted.

Lemma 2.6. For sufficient small τ > 0, f(φ(ξ), (g ∗ φ)(ξ)) satisfies (H∗
1).

Lemma 2.7. For sufficiently largeM ≥ 1, φ−(ξ) is a lower solution of (2.1).

Lemma 2.8. For sufficiently small τ > 0, φ+(ξ) is an upper solution of (2.1).



Journal of Applied Mathematics 7

Proof. Note that, for τ > 0 such that 1 − 2λcτ > 0,

(
g ∗ φ+

)
(ξ)

=
∫+∞

0

s

τ2
e−s/τ

K

1 + αe−λ(ξ−cs)
ds

=
∫+∞

0

1
τ
e−s/τ

K

1 + αe−λ(ξ−cs)
ds − αλce−λξ

∫+∞

0

s

τ
e−s/τ

Ke(λc−1/τ)s
[
1 + αe−λ(ξ−cs)

]2ds

≥ K

1 + αe−λξ
− Kαλcτe−λξ

(1 − λcτ)(1 + αe−λξ)2
− Kαλcτe−λξ

(1 − λcτ)2(1 + αe−λξ)2

=
K

1 + αe−λξ
− Kαλcτe−λξ(2 − λcτ)
(1 − λcτ)2(1 + αe−λξ)2

.

(2.16)

Then for sufficiently small τ > 0 with 2λ2 − bKλcτ(2 − λcτ)/(1 − λcτ)2 > 0,

φ′′
+(ξ) − cφ′

+(ξ) + φ+(ξ)
1 − aφ+(ξ) − b

(
g ∗ φ+

)
(ξ)

1 + adφ+(ξ) + bd
(
g ∗ φ+

)
(ξ)

≤ φ′′
+(ξ) − cφ′

+(ξ) + φ+(ξ)
[
1 − aφ+(ξ) − b

(
g ∗ φ+

)
(ξ)

]

≤ −Kαλ2e−λξ +Kα2λ2e−2λξ
(
1 + αe−λξ

)3 − Kcαλe−λξ
(
1 + αe−λξ

)2 +
Kαe−λξ

(
1 + αe−λξ

)2

+
K2bαλcτe−λξ(2 − λcτ)
(1 − λcτ)2(1 + αe−λξ)3

=
Kα2

(
λ2 − cλ + 1

)
e−2λξ −Kα

(
λ2 + cλ − 1 − bKλcτ(2 − λcτ)/(1 − λcτ)2

)
e−λξ

(
1 + αe−λξ

)3

=
−Kα

(
2λ2 − bKλcτ(2 − λcτ)/(1 − λcτ)2

)
e−λξ

(
1 + αe−λξ

)3 < 0.

(2.17)

This completes the proof.

Now, by Theorem A.2(i), we have the following result.

Theorem 2.9. For any c > 2, there exists τ∗(c) > 0 such that, for any τ < τ∗(c), (1.1) has an
increasing traveling wave front φ(ξ) that satisfies φ(−∞) = 0, φ(+∞) = K and limξ→−∞φ(ξ)e−λξ =
1.



8 Journal of Applied Mathematics

Remark 2.10. Being a careful observation, for these cases where

g(x, t) = δ(t − τ)δ(x), g(x, t) =
1
τ
e−t/τδ(x), g(x, t) =

1
τ
e−t/τ

1√
4πt

e−x
2/4t,

g(x, t) =
t

τ2
e−t/τ

1√
4πt

e−x
2/4t, g(x, t) = δ(t − τ) 1√

4πt
e−x

2/4t

(2.18)

by using the above method, we can get similar results, respectively.

Remark 2.11. In the case a = 0, b = 1, d = 0, (1.1) reduces to

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ u(x, t)
[
1 − (

g ∗ u)(x, t)], (2.19)

which has been studied by many researchers, for example, Ashwin et al. [9], Gourley [10],
and Wu and Zou [3] and references therein. It is easy to see that our results include and
complement those of Ashwin et al. [9], Gourley [10], and Wu and Zou [3].

Remark 2.12. We mention that Ou and Wu [11] obtained the persistence of traveling fronts
of delayed nonlocal reaction-diffusion equations. Their abstract results could be applied to
the model (1.1) to obtain the existence of traveling fronts. But, their results cannot prove the
precise asymptotic behavior of the traveling fronts.

Appendix

In this appendix, we present some general results developed by Wang et al. [8]. Consider the
following reaction-diffusion system with spatiotemporal delays:

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2

+ f
(
u(x, t),

(
g1 ∗ u

)
(x, t), . . . ,

(
gm ∗ u)(x, t)), (A.1)

where x ∈ R, t ≥ 0, D = diag(d1, . . . , dn), di > 0, i = 1, . . . , n, n ∈ N; f ∈ C((Rm+1)n,Rn),
u(x, t) = (u1(x, t), . . . , un(x, t))

T , and

(
gj ∗ u

)
(x, t) =

∫ t

−∞

∫+∞

−∞
gj
(
x − y, t − s)u(y, s)dyds, j = 1, . . . , m, m ∈ N, (A.2)

and the kernel gj(x, t) is any integrable nonnegative function satisfying gj(−x, t) = gj(x, t),∫+∞
0

∫+∞
−∞ gj(y, s)dy ds = 1, and the following assumption:

(H0)
∫+∞
−∞ gj(x, t)dx is uniformly convergent for t ∈ [0, a], a > 0, j = 1, . . . , m. In other
words, if given ε > 0, then there exists M > 0 such that

∫+∞
M gj(x, t)dx < ε for any

t ∈ [0, a].
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Assume u(x, t) = φ(ξ) and ξ = x + ct, and then we can write (A.1) in the following
form:

−Dφ′′(ξ) + cφ′(ξ) = f
(
φ(ξ),

(
g1 ∗ φ

)
(ξ), . . . ,

(
gm ∗ φ)(ξ)), ξ ∈ R. (A.3)

A traveling wave front with a wave speed c > 0 to (A.1) is a function φ ∈ BC2(R,Rn)
and a number c > 0 which satisfy (A.3) and the following boundary condition:

φ(−∞) = 0, φ(+∞) = K = (K1, . . . , Kn)T with Ki > 0, i = 1, . . . , n. (A.4)

In order to tackle the existence of traveling fronts, we need the following monotonicity
conditions and assumptions.

(H∗
1) There exists a matrix γ = diag(γ1, ..., γn)with γi > 0, i = 1, ..., n, such that

f
(
ψ(ξ),

(
g1 ∗ ψ

)
(ξ), . . . ,

(
gm ∗ ψ)(ξ)) + γψ(ξ)

≥ f(φ(ξ), (g1 ∗ φ
)
(ξ), . . . ,

(
gm ∗ φ)(ξ)) + γφ(ξ),

(A.5)

where φ, ψ ∈ C(R,Rn) satisfy 0 ≤ φ(ξ) ≤ ψ(ξ) ≤ K in ξ ∈ R and eγt[ψ(ξ) − φ(ξ)] is
increasing in ξ ∈ R.

(H∗∗
1 ) There exists a matrix γ = diag(γ1, ..., γn)with γi > 0, i = 1, ..., n, such that

f
(
ψ(ξ),

(
g1 ∗ ψ

)
(ξ), . . . ,

(
gm ∗ ψ)(ξ)) + γψ(ξ)

≥ f(φ(ξ), (g1 ∗ φ
)
(ξ), . . . ,

(
gm ∗ φ)(ξ)) + γφ(ξ),

(A.6)

where φ, ψ ∈ C(R,Rn) satisfy 0 ≤ φ(ξ) ≤ ψ(ξ) ≤ K in ξ ∈ R, eγξ[ψ(ξ) − φ(ξ)] is
increasing in ξ ∈ R, and e−γξ[ψ(ξ) − φ(ξ)] is decreasing in ξ ∈ R.

(H2) f(μ1, . . . , μn)/= 0 for 0 < μ < K.

(H3) f(μ1, . . . , μn) = 0when μ = 0 or μ = K.

LetBC[0,K] = {x ∈ BC(R,Rn) : 0 ≤ x(t) ≤ K, t ∈ R}, Y = {φ ∈ BC(R,Rn) : φ′, φ′′ ∈
L∞(R,Rn)} and

Γ∗ =

⎧
⎪⎨

⎪⎩

φ ∈ Y : (i)φ(ξ) is nondecreasing in ξ ∈ R;
(ii) 0 ≤ lim

ξ→−∞
φ(ξ) < K, lim

ξ→+∞
φ(ξ) = K;

(iii) eγξ
[
φ
(
ξ + η

) − φ(ξ)]is increasing in ξ ∈ R for every η > 0

⎫
⎪⎬

⎪⎭
, (A.7)

Γ∗∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ ∈ Y : (i)φ(ξ) is nondecreasing in ξ ∈ R;
(ii) 0 ≤ lim

ξ→−∞
φ(ξ) < K, lim

ξ→+∞
φ(ξ) = K;

(iii) eγξ
[
φ
(
ξ + η

) − φ(ξ)] is increasing in ξ ∈ R and
e−γξ

[
φ
(
ξ + η

) − φ(ξ)] is decreasing in ξ ∈ R for every η > 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (A.8)
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Define an operator F : BC[0,K] → BC(R,Rn) by

F
(
φ
)
(ξ) = f

(
φ(ξ),

(
g1 ∗ φ

)
(ξ), . . . ,

(
gm ∗ φ)(ξ)), ξ ∈ R. (A.9)

Now we give definitions of the lower and upper solutions of (A.3) as follows.

Definition A.1. A continuous function φ : R → R is called an upper solution of (A.3) if φ′ and
φ′′ exist almost everywhere in R and are essentially bounded on R, and if φ satisfies,

−Dφ′′(ξ) + cφ′(ξ) ≥ f(φ(ξ), (g1 ∗ φ
)
(ξ), . . . ,

(
gm ∗ φ)(ξ)), a.e. in R. (A.10)

A lower solution of (A.3) is defined in a similar way by reversing the inequality in (A.10).

Theorem A.2. Assume that (H2), (H3), and (H0) hold. Also assume that φ and ψ, where φ ∈
BC[0,K] ∩ Y with φ/= 0̂, limξ→−∞φ(ξ) = 0 and φ ≤ ψ, are lower and upper solutions of (A.3),
respectively. Then

(i) if (H∗
1) holds, ψ ∈ Γ∗ and eγξ[ψ(ξ) − φ(ξ)] is increasing in ξ ∈ R, then for c > 1 −

min{γidi, i = 1, . . . n}, (A.1) has a traveling wave front φ∗ such that (A.4) holds with
φ ≤ φ∗ ≤ ψ and for a, b ∈ R with a < b,

∥∥ψm − φ∗∥∥
C([a,b],Rn) −→ 0, (A.11)

where

−D(
ψm

)′′ + c
(
ψm

)′ + γψm = Fψm−1 + γψm−1 (m ∈N),

φ ≤ φ∗ ≤ · · · ≤ ψm ≤ · · · ≤ ψ1 ≤ ψ0 = ψ,
(A.12)

(ii) if (H∗∗
1 ) holds, ψ ∈ Γ∗∗, eγξ[ψ(ξ) − φ(ξ)] is increasing in ξ ∈ R and e−γξ[ψ(ξ) − φ(ξ)] is

decreasing in ξ ∈ R, where min{γidi, i = 1, . . . , n} − 1 > 0, then for 0 < c < min{γidi, i =
1, . . . , n} − 1, (A.1) has a traveling wave front φ∗ such that (A.4) holds with φ ≤ φ∗ ≤ ψ
and for a, b ∈ R with a < b, and (A.11) and (A.12) hold.

In particular, if limξ→−∞ψ(ξ) = 0, then ||ψm − φ∗|| → 0.

Acknowledgments

The authors are very grateful to the anonymous referees for careful reading and helpful
suggestions. H.-Q. Zhao is supported by the Scientific Research Program Funded by Shaanxi
Provincial Education Department (no. 12JK0860) and the Specialized Research Fund of
Xianyang Normal University (11XSYK202), and S.-Y. Liu is supported by the NSF of China
(60974082).

References

[1] S. A. Gourley and J. W.-H. So, “Dynamics of a food-limited population model incorporating nonlocal
delays on a finite domain,” Journal of Mathematical Biology, vol. 44, no. 1, pp. 49–78, 2002.



Journal of Applied Mathematics 11

[2] S. A. Gourley, “Wave front solutions of a diffusive delay model for populations of Daphnia magna,”
Computers & Mathematics with Applications, vol. 42, no. 10-11, pp. 1421–1430, 2001.

[3] J. Wu and X. Zou, “Traveling wave fronts of reaction-diffusion systems with delay,” Journal of Dyna-
mics and Differential Equations, vol. 13, no. 3, pp. 651–687, 2001.

[4] S. A. Gourley and M. A. J. Chaplain, “Travelling fronts in a food-limited population model with time
delay,” Proceedings of the Royal Society of Edinburgh A, vol. 132, no. 1, pp. 75–89, 2002.

[5] N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” Journal of
Differential Equations, vol. 31, no. 1, pp. 53–98, 1979.

[6] J. Canosa, “On a nonlinear diffusion equation describing population growth,” International Business
Machines Corporation, vol. 17, pp. 307–313, 1973.

[7] Z.-C. Wang and W.-T. Li, “Monotone travelling fronts of a food-limited population model with
nonlocal delay,” Nonlinear Analysis. Real World Applications, vol. 8, no. 2, pp. 699–712, 2007.

[8] Z.-C. Wang, W.-T. Li, and S. Ruan, “Travelling wave fronts in reaction-diffusion systems with spatio-
temporal delays,” Journal of Differential Equations, vol. 222, no. 1, pp. 185–232, 2006.

[9] P. Ashwin, M. V. Bartuccelli, T. J. Bridges, and S. A. Gourley, “Travelling fronts for the KPP equation
with spatio-temporal delay,” Zeitschrift für Angewandte Mathematik und Physik, vol. 53, no. 1, pp. 103–
122, 2002.

[10] S. A. Gourley, “Travelling front solutions of a nonlocal Fisher equation,” Journal of Mathematical
Biology, vol. 41, no. 3, pp. 272–284, 2000.

[11] C. Ou and J.Wu, “Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,” Journal
of Differential Equations, vol. 235, no. 1, pp. 219–261, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


