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Process capability analysis has been widely applied in the field of quality control to monitor the
performance of industrial processes. In practice, lifetime performance index CL is a popular means
to assess the performance and potential of their processes, where L is the lower specification limit.
This study will apply the large-sample theory to construct a maximum likelihood estimator (MLE)
of CL with the progressive first-failure-censored sampling plan under the Weibull distribution.
The MLE of CL is then utilized to develop a new hypothesis testing procedure in the condition of
known L.

1. Introduction

Effectively managing and measuring the business operational process is widely seen as a
means of ensuring business survival through reduced time to market, increased quality,
and reduced costs. Process capability analysis is an effective means of measuring process
performance and potential capability. In the manufacturing industry, process capability
indices are utilized to assess whether product quality meets the required level. For
instance, Montgomery [1] (or Kane [2]) proposed the process capability index CL (or
CPL) for evaluating the lifetime performance of electronic components, where L is the
lower specification limit, since the lifetime of electronic components exhibits the larger-
the-better quality characteristic of time orientation. Tong et al. [3] constructed a uniformly
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minimum variance unbiased estimator (UMVUE) of CL under an exponential distribution.
Moreover, the UMVUE of CL is then utilized to develop the hypothesis testing procedure.
The purchasers can then employ the testing procedure to determine whether the lifetime
of electronic components adheres to the required level. Manufacturers can also utilize this
procedure to enhance process capability. Hong et al. [4] also constructed a maximum
likelihood estimator (MLE) of CL with the type II right censored sample under a pareto
distribution. Moreover, the MLE estimator of CL is then utilized to develop a hypothesis
testing procedure. Themanagers can then employ the testing procedure to assess the business
performance. Lee et al. [5, 6] also constructed an MLE of CL under the Burr XII distribution
with progressively type II right censored sample and the Gompertz distributionwith the first-
failure-censored sample, respectively. Moreover, the MLE of CL is then utilized to develop a
hypothesis testing procedure. The managers can then employ the testing procedure to assess
the quality performance of product.

In this study, process capability analysis is also utilized to assess product quality. The
lifetime performance index CL is also utilized to measure product quality with the Weibull
distribution based on the progressive first-failure-censored sampling plan. The Weibull
distribution is useful in a great variety of applications, particularly as a model for product
life. It has also been used as the distribution of strength of certain materials. It is named
after Weibull [7], who popularized its use among engineers. One reason for its popularity
is that it has a great variety of shapes. This makes it extremely flexible in fitting data, and
it empirically fits many kinds of data (see Nelson [8]). The Weibull distribution includes the
exponential and the Rayleigh distributions as special cases. The exponential and the Rayleigh
distributions have been recognized as a useful model for the analysis of lifetime data. The
Weibull distribution family has played an important role in the analysis of lifetime data. The
probability density function (p.d.f.) and the cumulative distribution function (c.d.f.) of the
Weibull distribution are as follows, respectively,

fX(x) =
β

αβ
xβ−1 exp

[
−
(x
α

)β]
, x > 0, α > 0, β > 0, (1.1)

FX(x) = 1 − exp
[
−
(x
α

)β]
, x > 0, α > 0, β > 0. (1.2)

The parameter β is called the shape parameter, and the parameter α is called the scale
parameter. For the special case β = 1, the Weibull distribution is the simple exponential
distribution. For the special case β = 2, the Weibull distribution is the Rayleigh distribution.
In addition, for 3 ≤ β ≤ 4, the shape of the Weibull distribution is close to that of the normal
distribution (see Nelson [8]).

In life testing experiments, the experimenter may not always be in a position to
observe the life times of all the products (or items) put on test. This may be because of
time limitation and/or other restrictions (such as money, material resources, mechanical
or experimental difficulties) on data collection. Therefore, censored samples may arise in
practice. In this study, we consider the case of progressive first-failure-censored sampling
plan. The progressive first-failure-censored sampling plan is the combination of first-failure-
censored sampling plan and progressively type II right censored sampling plan. Owing to,
sometimes the lifetime of a product is quite long. Thus, a right type II censored sample plan
for such a product can be too long. Johnson [9] proposed the first-failure-censored sampling
plan in which the experimenter can decide to group the test units into several sets (each set
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is an assembly of test units), and then run all the test units simultaneously until the first
failure in each group. Such plans are usually feasible when test facilities are scarce but test
material is relatively cheap. Balasooriya [10] examined the failure-censored sampling plan for
the 2-parameter exponential distribution based on testing r random samples, each of size n,
one after the other. That procedure is based on exact results, and only the first failure time of
each sample is needed. The Balasooriya sampling plan is compared with traditional sampling
plans using a sample of size r · n (see Wu et al. [11]). The first-failure-censored sampling
plan has an advantage in terms of shorter test time and a saving of resources. Note that a
first-failure-censoring scheme is terminated when the first failure in each set is observed. If
an experimenter desires to remove some sets of test units before observing the first failures
in these sets, the above-described scheme will not be of use to the experimenter. The first-
failure-censored sampling plan does not allow for sets to be removed from the test at the
points other than the final termination point. However, this allowance will be desirable when
some sets of the surviving units in the experiment that are removed early on can be used for
some other tests. As in the case of accidental breakage of experimental units or loss of contact
with individuals under study, the loss of test units at points other than the termination point
may also be unavoidable (see Wu and Kuş [12]). Therefore, we also consider the case of the
progressively type II right censoring in this study. Progressive type II right censoring is a
useful scheme in which a specific fraction of individuals at risk may be removed from the
experiment at each of several ordered failure times (see Fernández [13]). The experimenter
can remove units from a life test at various stages during the experiments, possibly resulting
in a saving of costs and time (see Sen [14]). Therefore, the progressive first-failure-censored
sampling plan has an advantage in terms of shorter test time, a saving of resources, and
in which a specific fraction of individuals at risk may be removed from the experiment at
each of several ordered failure times. The progressive first-failure-censored sampling plan is
illustrated as follows.

Suppose that m is the number of failures observed before termination and n
independent groups with k items within each group are put in a life test. R1 groups and
the group in which the first failure is observed are randomly removed from the test as soon
as the first failure (sayX1) has occurred, R2 groups and the group in which the second failure
is observed are randomly removed from the test as soon as the first failure (say X2) has
occurred, and finally Rm (m ≤ n) groups and the group in which the mth failure is observed
are randomly removed from the test as soon as the mth failure (say Xm) has occurred. Then
X1 ≤ X2 ≤ · · · ≤ Xm are called the progressive first-failure-censored order statistics with
censoring scheme R = (R1, R2, . . . , Rm). It is clear that n = m + R1 + R2 + · · · + Rm. The
familiar complete, type II right censored, first-failure-censored, and progressively type II right
censored samples are special cases of the progressive first-failure-censored sampling plan.
Note that if R1 = R2 = · · · = Rm = 0, then the progressive first-failure-censored sampling plan
reduces to the first-failure-censored sampling plan. If k = 1, then the progressive first-failure-
censored sampling plan reduces to the progressively type II right censored sampling plan.
If k = 1 and R1 = R2 = · · · = Rm = 0, then n = m and the progressive first-failure-censored
sampling plan reduces to the complete sampling plan. If k = 1, R1 = R2 = · · · = Rm−1 = 0, and
Rm = n −m, then the progressive first-failure-censored sampling plan reduces to type II right
censored sampling plan (see Wu and Kuş [12]).

Hong et al. [4], and Lee et al. [5, 6] proposed the data transformation method to
construct a MLE of CL. In this study, the large sample in place of the data transformation
method. Under the assumption of Weibull distribution, the main aim of this paper will apply
the large-sample theory to construct an MLE of CL with the progressive first-failure-censored
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sampling plan. The MLE of CL is then utilized to develop a new hypothesis testing procedure
in the condition of known L. The new testing procedure can be employed by managers
to assess whether the lifetime of products adheres to the required level in the condition of
known L.

The rest of this paper is organized as follows. Section 2 introduces some properties of
the lifetime performance index for lifetime of product with theWeibull distribution. Section 3
discusses the relationship between the lifetime performance index and conforming rate.
Section 4 then presents theMLE of the lifetime performance index and its statistical properties
with Weibull distribution based on the progressive first-failure-censored sampling plan.
Section 5 will apply the large-sample theory to develop a new hypothesis testing procedure
for the lifetime performance index. One numerical example and concluding remarks are
made in Sections 6 and 7, respectively.

2. The Lifetime Performance Index

Suppose that the lifetime (in years) of products may be modeled by a Weibull distribution.
Let X denote the lifetime of such a product and X has the Weibull distribution with the
p.d.f. as given in (1.1). Clearly, a longer lifetime implies a better product quality. Hence, the
lifetime is a larger-the-better-type quality characteristic. The lifetime is generally required to
exceed L unit times to both be economically profitable and satisfy customers. Montgomery
[1] developed a capability index CL for properly measuring the larger-the-better quality
characteristic. CL is defined as follows:

CL =
μ − L

σ
, (2.1)

where the process mean is μ, the process standard deviation is σ, and L is the lower
specification limit.

To assess the lifetime performance of products, CL can be defined as the lifetime
performance index. Under X has the Weibull distribution and there are several important
properties, as follows.

(i) The lifetime performance index CL can be rewritten as

CL =
μ − L

σ
=

α Γ
(
1/β + 1

) − L√
α2Γ

(
2/β + 1

) − α2Γ2
(
1/β + 1

) ,

CL <
Γ
(
1/β + 1

)
√
Γ
(
2/β + 1

) − Γ2
(
1/β + 1

) ,
(2.2)

where the process mean μ = E(X) = α Γ(1/β + 1), the process standard deviation

σ =
√
Var(X) =

√
α2Γ(2/β + 1) − α2Γ2(1/β + 1), L is the lower specification limit,

and the gamma function Γ(λ) =
∫∞
0 yλ−1e−ydy for λ > 0.
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(ii) The failure rate function rX(x) is defined by

rX(x) =
fX(x)

1 − FX(x)
=

(
β/αβ

)
xβ−1 exp

[
−(x/α)β

]

exp
[
−(x/α)β

] =
β

αβ
xβ−1, x > 0, α > 0, β > 0. (2.3)

When the mean α Γ(1/β + 1)(> L), then the lifetime performance index CL > 0.
From (2.2) and (2.3), we can see that, for example, as given β > 0, the larger α (i.e.,
the larger the mean α Γ(1/β + 1)), then the smaller the failure rate and the lager
the lifetime performance index CL. Therefore, the lifetime performance index CL

reasonably and accurately represents the lifetime performance of new product.

3. The Conforming Rate

If the lifetime of a product X exceeds the lower specification limit L, then the product
is defined as a conforming product. The ratio of conforming products is known as the
conforming rate and can be defined as

Pr = P(X > L) =
∫∞

L

β

αβ
xβ−1 exp

[
−
(x
α

)β]
dx

= exp

⎧⎨
⎩−

[
Γ
(
1
β
+ 1
)
− CL

√
Γ
(
2
β
+ 1
)
− Γ2

(
1
β
+ 1
)]β⎫⎬

⎭ ,

(3.1)

where CL < Γ(1/β + 1)/
√
Γ(2/β + 1) − Γ2(1/β + 1) and β > 0.

Obviously, a strictly increasing relationship exists between conforming rate Pr and the
lifetime performance index CL with given β. Since a one-to-one mathematical relationship
exists between the conforming rate Pr and the lifetime performance index CL, therefore,
utilizing the one-to-one relationship between Pr and CL, lifetime performance index can be a
flexible and effective tool, not only for evaluating product quality, but also for estimating the
conforming rate Pr . For given β and CL, the conforming rate Pr can calculated by (3.1).

4. Maximum Likelihood Estimator of Lifetime Performance Index

In lifetime testing experiments of products, the experimenter may not always be in a
position to observe the lifetimes of all the items on test due to time limitation and/or other
restrictions (such as money, material resources, mechanical or experimental difficulties) on
data collection. In this study, we consider the case of the progressive first-failure-censored
sampling plan. The progressive first-failure-censored sampling plan has an advantage in
terms of shorter test time, a saving of resources, and in which a specific fraction of individuals
at risk may be removed from the experiment at each of several ordered failure times.
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Let X denote the lifetime of such a product, and X has a Weibull distribution with
the p.d.f. fX(x) as (1.1) and c.d.f. FX(x) as (1.2). X1, X2, . . . , Xm are the progressively first-
failure-censored order statistics from the Weibull distribution with censoring scheme R =
(R1, R2, . . . , Rm). Since the joint p.d.f. of X1, X2, . . . , Xm is given as follows:

f(X1, X2, . . . , Xm)

= ckm
m∏
j=1

f
(
Xj

)[
1 − F

(
Xj

)]k(Rj+1)−1

= ckm
m∏
j=1

⎧⎨
⎩

β

αβ
X

β−1
j

{
exp

[
−
(
Xj

α

)β
]}k(Rj+1)

⎫⎬
⎭, 0 < X1 ≤ X2 ≤ · · · ≤ Xm < ∞,

(4.1)

where c = n(n −R1 − 1)(n −R1 −R2 − 2) · · · (n −R1 −R2 − · · · −Rm−1 −m + 1), so, the likelihood
function is

L
(
α, β

)
= ckm

m∏
j=1

⎧⎨
⎩

β

αβ
X

β−1
j

{
exp

[
−
(
Xj

α

)β
]}k(Rj+1)

⎫⎬
⎭. (4.2)

The log-likelihood function is

lnL
(
α, β

)
= ln ckm +m ln β −mβ lnα +

(
β − 1

) m∑
j=1

lnXj − k
m∑
j=1

(
Rj + 1

)(Xj

α

)β

. (4.3)

Assuming that α and β are both unknown, the differentiation of (4.3) with respect to α and β
yields

∂ lnL
(
α, β

)
∂α

= −mβ

α
+ k

m∑
j=1

(
Rj + 1

)
X

β

j βα
−β−1,

∂ lnL
(
α, β

)
∂β

=
m

β
−m lnα +

m∑
j=1

lnXj − k
m∑
j=1

(
Rj + 1

)(Xj

α

)β

ln
(
Xj

α

)
.

(4.4)

The maximum likelihood estimator (MLE) α̂ of α and the MLE β̂ of β can be derived by
solving the equations

−mβ̂

α̂
+ k

m∑
j=1

(
Rj + 1

)
X

β̂

j β̂α̂
−β̂−1 = 0, (4.5)

m

β̂
−m ln α̂ +

m∑
j=1

lnXj − k
m∑
j=1

(
Rj + 1

)(Xj

α̂

)β̂

ln
(
Xj

α̂

)
= 0. (4.6)
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By (4.5), the MLE α̂ of α is given by

α̂ =

⎡
⎢⎣k

∑m
j=1
(
Rj + 1

)
X

β̂

j

m

⎤
⎥⎦

1/β̂

. (4.7)

The substitution of (4.7) into (4.6) yields the equation

1

β̂
+

1
m

m∑
j=1

lnXj −
∑m

j=1
(
Rj + 1

)
X

β̂

j lnXj

∑m
j=1
(
Rj + 1

)
X

β̂

j

= 0. (4.8)

By (4.8), the MLE β̂ of β can be found by Newton’s method.
By using the invariance of MLE (see Zehna [15]), the MLE of CL can be written as

ĈL =
α̂ Γ

(
1/β̂ + 1

)
− L√

α̂2Γ
(
2/β̂ + 1

)
− α̂2Γ2

(
1/β̂ + 1

) , ĈL <
Γ
(
1/β̂ + 1

)
√
Γ
(
2/β̂ + 1

)
− Γ2

(
1/β̂ + 1

) , (4.9)

where the MLEs α̂ and β̂ can be found by Newton’s method with (4.7) and (4.8).
The asymptotic normal distribution for the ĈL can be obtained in large-sample theory.

From the log-likelihood function in (4.3), we have

∂2 lnL
(
α, β

)
∂α2

=
mβ

α2
− kβ

(
β + 1

)
α2

m∑
j=1

(
Rj + 1

)(Xj

α

)β

,

∂2 lnL
(
α, β

)
∂α ∂β

=
−m
α

+
k

α

m∑
j=1

(
Rj + 1

)(Xj

α

)β[
β ln

(
Xj

α

)
+ 1
]
,

∂2 lnL
(
α, β

)
∂β2

=
−m
β2

− k
m∑
j=1

(
Rj + 1

)(Xj

α

)β[
ln
(
Xj

α

)]2
.

(4.10)

And the Fisher information matrix is given by

I
(
α, β

)
=

⎡
⎢⎢⎢⎢⎣
−E
(

∂2 lnL
(
α, β

)
∂α2

)
−E
(

∂2 lnL
(
α, β

)
∂α ∂β

)

−E
(

∂2 lnL
(
α, β

)
∂α ∂β

)
−E
(

∂2 lnL
(
α, β

)
∂β2

)

⎤
⎥⎥⎥⎥⎦. (4.11)

Under some mild regularity conditions (see Theorem 5.2.2 of Sen and Singer [16]), (α̂, β̂)
is asymptotically bivariately normal distribution with mean (α, β) and covariance matrix

I−1(α, β), that is, (α̂, β̂) D→ N((α, β), I−1(α, β)).



8 Journal of Applied Mathematics

Let

CL =
α Γ

(
1/β + 1

) − L√
α2Γ

(
2/β + 1

) − α2Γ2
(
1/β + 1

) ≡ h
(
α, β

)
. (4.12)

By using the delta method (see Casella and Berger [17, page 245, Theorem 5.5.28]), we have

ĈL − CL
D−→ N

⎛
⎝0,

[
∂h
(
α, β

)
∂α

,
∂h
(
α, β

)
∂β

]
I−1
(
α, β

)[∂h(α, β)
∂α

,
∂h
(
α, β

)
∂β

]T⎞
⎠. (4.13)

And by using Theorem 5.6.1 of Sen and Singer [16] (or Lawless [18, page 549]),

(
ĈL − CL

)2

Var
(
h
(
α̂, β̂

)) D−→ χ2
1, (4.14)

where

Var
(
h
(
α̂, β̂

))
=

[
∂h
(
α, β

)
∂α

,
∂h
(
α, β

)
∂β

]
α=α̂
β=β̂

I−1
(
α̂, β̂

)[∂h(α, β)
∂α

,
∂h
(
α, β

)
∂β

]T
α=α̂
β=β̂

,

∂h
(
α, β

)
∂α

=
L

α2
√
Γ
(
2/β + 1

) − Γ2
(
1/β + 1

) ,

∂h
(
α, β

)
∂β

=
−β−2Γ(1/β + 1

)
Ψ
(
1/β + 1

)
√
Γ
(
2/β + 1

) − Γ2
(
1/β + 1

)

− β−2
[
αΓ
(
1/β + 1

) − L
][−Γ(2/β + 1

)
Ψ
(
2/β + 1

)
+ Γ2

(
1/β + 1

)
Ψ
(
1/β + 1

)]
α
[
Γ
(
2/β + 1

) − Γ2
(
1/β + 1

)]3/2 ,

(4.15)

the digamma function Ψ(x) = Γ′(x)/Γ(x), x > 0, and the observed information matrix

I
(
α̂, β̂

)
=

⎡
⎢⎢⎢⎣
−∂

2 lnL
(
α, β

)
∂α2

−∂
2 lnL

(
α, β

)
∂α ∂β

−∂
2 lnL

(
α, β

)
∂α ∂β

−∂
2 lnL

(
α, β

)
∂β2

⎤
⎥⎥⎥⎦

α=α̂
β=β̂

. (4.16)
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5. Testing Procedure for the Lifetime Performance Index

Construct a statistical testing procedure to assess whether the lifetime performance index
adheres to the required level. Assuming that the required index value of lifetime performance
is larger than c, where c denotes the target value, the null hypothesis H0 : CL ≤ c and the
alternative hypothesis H1 : CL > c are constructed.

Firstly, by using ĈL, the MLE of CL as the test statistic, the rejection region can be
expressed as {ĈL > C0}. Given the specified significance level α∗, the critical value C0 can be
calculated as follows:

Sup
{CL≤c}

P
(
ĈL > C0

)
≤ α∗,

=⇒ P

⎛
⎜⎜⎝ ĈL − CL√

Var
(
h
(
α̂, β̂

)) >
C0 − CL√

Var
(
h
(
α̂, β̂

)) | CL ≤ c

⎞
⎟⎟⎠ ≤ α∗,

=⇒ P

⎛
⎜⎜⎝ ĈL − CL√

Var
(
h
(
α̂, β̂

)) >
C0 − CL√

Var
(
h
(
α̂, β̂

)) | CL = c

⎞
⎟⎟⎠ = α∗,

=⇒ P

⎛
⎜⎜⎝ ĈL − c√

Var
(
h
(
α̂, β̂

)) >
C0 − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠ = α∗,

=⇒ P

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ĈL − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2

>

⎛
⎜⎜⎝ C0 − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2⎞
⎟⎟⎠ = α∗,

=⇒ P

⎛
⎜⎜⎝
⎛
⎜⎜⎝ ĈL − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2

≤

⎛
⎜⎜⎝ C0 − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2⎞
⎟⎟⎠ = 1 − α∗,

(5.1)

where

Var
(
h
(
α̂, β̂

))
=
[
∂h(α, β)

∂α
,
∂h(α, β)

∂β

]
α=α̂
β=β̂

I−1
(
α̂, β̂

)[∂h(α, β)
∂α

,
∂h(α, β)

∂β

]T
α=α̂
β=β̂

(5.2)

and under

CL = c,

⎛
⎜⎜⎝ ĈL − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2

D−→ χ2
(1). (5.3)
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From (5.1), by utilizing CHIINV(1 − α∗) function which represents the lower 100(1 − α∗)th
percentile of χ2

(1), then

⎛
⎜⎜⎝ C0 − c√

Var
(
h
(
α̂, β̂

))

⎞
⎟⎟⎠

2

= CHIINV(1 − α∗) (5.4)

is obtained. Thus, the following critical value can be derived:

C0 = c +
√
Var

(
h
(
α̂, β̂

)) √
CHIINV(1 − α∗), (5.5)

where c and α∗ denote the target value and the specified significance level, respectively.
The managers can then employ the one-sided hypothesis testing to determine whether

the lifetime performance index adheres to the required level. The proposed testing procedure
about CL can be organized as follows.

Step 1. Determine the lower lifetime limit L for products and performance index value c;
then the testing null hypothesis H0 : CL ≤ c and the alternative hypothesis H1 : CL > c are
constructed.

Step 2. Specify a significance level α∗.

Step 3. Calculate the value of test statistic

ĈL =
α̂ Γ

(
1/β̂ + 1

)
− L√

α̂2Γ
(
2/β̂ + 1

)
− α̂2Γ2

(
1/β̂ + 1

) , ĈL <
Γ
(
1/β̂ + 1

)
√
Γ
(
2/β̂ + 1

)
− Γ2

(
1/β̂ + 1

) , (5.6)

where the MLEs α̂ and β̂ can be found by Newton’s method with (4.7) and (4.8).

Step 4. Obtain the critical value

C0 = c +
√
Var

(
h
(
α̂, β̂

)) √
CHIINV(1 − α∗), (5.7)

where

Var
(
h
(
α̂, β̂

))
=

[
∂h
(
α, β

)
∂α

,
∂h
(
α, β

)
∂β

]
α=α̂
β=β̂

I−1
(
α̂, β̂

)[∂h(α, β)
∂α

,
∂h
(
α, β

)
∂β

]T
α=α̂
β=β̂

(5.8)

and c and α∗ denote the target value and the specified significance level.
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Step 5. The decision rule of statistical test is provided as follows.
If ĈL > C0, it is concluded that the lifetime performance index of product meets the

required level.
Based on the proposed testing procedure, the lifetime performance of products is easy

to assess. One numerical example of the proposed testing procedure is given in Section 6, and
the numerical examples illustrate the use of the testing procedure.

6. Numerical Examples

In this section, we propose the new hypothesis testing procedure to one simulated large-
sample data set. Example 6.1 considered is a simulated large-sample data with k = 5, n = 50,
and m = 30 from a Weibull distribution.

Example 6.1. The following data are the progressive first-failure-censored sample of a
computer generated from aWeibull distribution with p.d.f. as given in (1.1) and α = 40, β = 1,
L = 4, CL = 0.9. The simulated progressive first-failure-censored sample and the simulated
progressive first-failure-censored scheme are given as follows:

{xi, i = 1, . . . , 30}={0.10971, 0.11117, 0.78476, 1.27366, 1.30471, 1.78242, 1.85144,
1.88851, 2.70589, 2.93703, 3.53395, 3.65632, 3.76333, 4.10132, 4.50531, 4.94733, 5.06265, 7.04528,
7.52044, 8.08150, 9.07310, 9.27218, 10.6786, 11.7043, 12.4732, 13.1637, 13.8520, 13.9263, 14.7226,
19.5564}, R=(0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 3, 0, 0, 5, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1), k = 5,
n = 50, and m = 30.

Then, we also state the proposed testing procedure about CL as follows.

Step 1. The lower lifetime limit L is assumed to be 4 by the simulation condition L = 4,
that is, if the lifetime of a product exceeds 4, then the product is defined as a conforming
product. To deal with the product managers’ concerns regarding operational performance,
the conforming rate Pr of operational performances is required to exceed 80 percent. By the
simulation condition β = 1 and (3.1), theCL value of the operational performances is required
to exceed 0.78. Thus, the performance index value is set at c = 0.78. The testing hypothesis
H0 : CL ≤ 0.78 versus H1 : CL > 0.78 is constructed.

Step 2. Specify a significance level α∗ = 0.05.

Step 3. Calculate the value of test statistic

ĈL =
α̂ Γ

(
1/β̂ + 1

)
− L√

α̂2Γ
(
2/β̂ + 1

)
− α̂2Γ2

(
1/β̂ + 1

)

=
40.3104Γ(1/1.17825 + 1) − 4√

40.31042Γ(2/1.17825 + 1) − 40.31042Γ2(1/1.17825 + 1)

= 1.30537,

(6.1)

where the MLEs α̂ = 40.3104 and β̂ = 1.17825 can be found by Newton’s method with (4.7)
and (4.8).
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Step 4. Obtain the critical value

C0 = 0.78 +
√
Var(h(40.3104, 1.17825))

√
CHIINV(1 − 0.05)

= 0.78 +
√
0.013501 ×

√
3.841

= 1.00774,

(6.2)

according to

I0
−1(40.3104, 1.17825) =

[
0.025631 1.29510
1.29510 98.9497

]−1
=
[
115.206 −1.50786
−1.50786 0.029842

]
,

[
∂h(α, β)

∂α
,
∂h(α, β)

∂β

]
α̂=40.3104
β̂= 1.17825

= [0.003057811, 0.81798],

Var(h(40.3104, 1.17825)) = [0.003057811, 0.81798]
[
115.206 −1.50786
−1.50786 0.029842

] [
0.003057811
0.81798

]

= 0.013501,
(6.3)

the target value c = 0.78, and the significance level α∗ = 0.05.

Step 5. Because ĈL = 1.30537 > C0 = 1.00774, so we do reject to the null hypothesis H0 : CL ≤
0.78. Thus, we can conclude that the lifetime performance index of product does meet the
required level.

7. Conclusions

Process capability analysis has been widely applied in the field of quality control to monitor
the performance of industrial processes. In practice, lifetime performance index CL is a
popular means to assess the performance and potential of their processes, where L is the
lower specification limit. Moreover, in life testing experiments, the experimenter may not
always be in a position to observe the life times of all the businesses (or items) put on test.
This may be because of time limitation and/or other restrictions (such as money, material
resources, mechanical or experimental difficulties) on data collection. Therefore, censored
samples may arise in practice. The progressive first-failure-censored sampling plan has an
advantage in terms of shorter test time, a saving of resources, and in which a specific fraction
of individuals at risk may be removed from the experiment at each of several ordered failure
times. The familiar complete, type II right censored, first-failure-censored, and progressively
type II right censored samples are special cases of the progressive first-failure-censored
sampling plan. The Weibull distribution has been recognized as a useful model for the
analysis of lifetime data. So, we consider the case of the progressive first-failure-censored
sampling plan, and our study applied the large-sample theory to construct an MLE of CL

under the Weibull distribution. Moreover, the MLE of CL is utilized to develop a new testing
procedure for the performance index of products. The new hypothesis testing procedure
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is a quality performance assessment system in Enterprise Resource Planning (ERP). The
managers can then employ the new testing procedure to determine whether the lifetime
performance of products adheres to the required level. The managers can also utilize this
procedure to enhance product process capability.
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