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Understanding platoon dispersion is critical for the coordination of traffic signal control in an
urban traffic network. Assuming that platoon speed follows a truncated normal distribution,
ranging from minimum speed to maximum speed, this paper develops a piecewise density
function that describes platoon dispersion characteristics as the platoon moves from an upstream
to a downstream intersection. Based on this density function, the expected number of cars in the
platoon that pass the downstream intersection, and the expected number of cars in the platoon
that do not pass the downstream point are calculated. To facilitate coordination in a traffic signal
control system, dispersion models for the front and the rear of the platoon are also derived. Finally,
a numeric computation for the coordination of successive signals is presented to illustrate the
validity of the proposed model.

1. Introduction

At an intersection, lights change from red to green permitting drivers to proceed straight
through the intersection. On urban roads these cars will be traveling at different speeds.
While moving downstream, the platoon spreads out in a long segment and cars do not
uniformly arrive at the next intersection; this is called platoon dispersion. As a platoonmoves
downstream from an upstream intersection at green phase end time, the cars in the platoon
become segmented due to compression and splitting at the downstream intersection’s signal
lights. It is obvious that using platoon dispersion theory to optimize signal timing plans for
traffic signal control could effectively reduce the number of stops and thereby lead to a sharp
decline in pollution emissions and fuel consumption.

However, platoon dispersion makes signal coordination more complicated [1–17].
Previous studies on the diffusion of traffic platoons have adopted one of three standard
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approaches: the wave theory of Lighthill and Whitham [1–3], Pacey’s diffusion theory [4–
9], and Robertson’s recursive platoon dispersion model [10–12]. The first model, also called
the LWR model in the literature of traffic flow theory, needs to have an accurate represen-
tation of the equilibrium flow-density relationship, which makes it unsuitable for practical
applications [13]. The second approach firstly proposes a purely kinematical model to des-
cribe the diffusion of traffic platoons by assuming that the speed of traffic follows a normal
distribution [4]. Its invalid input parameters (viz. the average speed of vehicles and standard
deviation of speed) to calibrate the model make it suitable only for the study of small
changes in traffic cycles [6]. The final model uses field data to derive an empirical method
for predicting platoon behavior and has been widely used in the well-known TRANSYT soft-
ware model, because of its simplicity and good explanatory power for understanding the
qualitative behavior of road traffic [12]. Both Pacey’s and Robertson’s models are probability-
based models with different probability density functions. Seddon [14, 15] concluded in
his series of studies on different models of platoon dispersion that there is little difference
between the Pacey and Robertson methods with regards to accuracy or efficiency. However, a
study byWang et al. [16] concluded that the recursive model gives good results for short dis-
tances, while models using lognormal and normal distributions are better for longer dis-
tances.

As mentioned previously, Pacey’s model is the most successful combination of
theoretical and experimental work on traffic platoons. Most current research based on this
model assumes that platoon speed follows a normal distribution, spreading from negative
infinity to positive infinity. This does not properly reflect the field situation. Grace and Potts
[5] further investigated the density aspect of Pacey’s model. Liu and Yang [6–8] proposed
a method to correct the vehicle startup time loss of Grace’s model. Wang et al. [9] also fur-
ther refined Pacey’s model by considering travel time following a nontransformed normal
distribution.

To address the defects of Pacey’s model, the authors of this paper propose a more
realistic platoon dispersionmodel, which assumes that the velocity of cars follows a truncated
normal distribution, ranging from a minimum speed to a maximum speed [17]. On the basis
of the authors’ previous research, this paper analyzes platoon dispersion characteristics as the
platoonmoves down from an upstream intersection at green phase end time. Finally, numeric
computation applying the model to signal coordination is presented to confirm the model’s
validity.

2. Platoon Dispersion Model

2.1. Assumptions of the Speed Density Function

In Pacey’s model, the cars in a platoon are assumed to move with unchanged speeds (i.e., it
is ideally treated as the average speed of vehicles measured between adjacent intersections).
It is assumed that (a) all the vehicles behind the stop lines uniformly start up after the signal
turns from red to green, (b) a car’s speed is independent of its position in a platoon, and (c)
there is no interaction between cars and a faster car can pass a slower one without hindrance.

A definite value is assigned to the probability that certain cars will have positive speed.
Pacey’s research has proven that car speeds in a platoon are normally distributed with mean
μ and variance σ2, which accounts for the spread of platoons. However, the proportion of cars
with v < vm and v > vf is zero in reality (vm and vf denote minimum speed and maximum
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Figure 1: Spreading of platoon.

speed, resp.). Hence, a speed range in a truncated normal distribution extending from vm

to vf is a much more reasonable assumption. In this case, the speed density function is as
follows:

f ′(v) =

⎧
⎨

⎩

c
1√
2πσ

e−0.5((v−μ)/σ)
2
, vm ≤ v ≤ vf ,

0, others.
(2.1)

Its calculation formula can be expressed as follows:

(a) for v < vm : F ′(v) =
∫vm

−∞ f ′(v)dx = 0;

(b) for vm ≤ v ≤ vf : F ′(v) =
∫v
−∞ f ′(v)dx =

∫v
vm

f ′(v)dx = c[
∫v
−∞(1/

(
√
2πσ))e−0.5((v−μ)/σ)

2
dx − ∫vm

−∞(1/(
√
2πσ))e−0.5((v−μ)/σ)

2
dx] = c[F(v) − F(vm)];

(c) for v > vf : F ′(v) =
∫v
vm

f ′(v)dx =
∫vf

vm
f ′(v)dx = c[F(vf) − F(vm)] = 1.

As the constant c ensures that the accumulated probability of f ′(v) in the range
[vm, vf] equals 1, then 1/c = F(vm ≤ v ≤ vf) = φ(vf/σ − μ/σ) − φ(vm/σ − μ/σ).

2.2. Development of the Platoon Dispersion Model

Assuming that the start time of the upstream signal green phase t equals 0, and the stop bar
location x is 0, then the initial density distribution function k(x, 0) of the queuing vehicles
behind the stop bar at time t = 0 is

k(x, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x ≥ 0,

kj , −a ≤ x ≤ 0,

0, x < −a,
(2.2)

where a is the queue length and kj is the jam density within the queue length.
This paper studies the movement of a platoon from the beginning of a green phase,

until it passes a downstream intersection. As illustrated in Figure 1, the queuing vehicles at
the upstream intersection start traveling at constant speed v from their stop position x − vt ∈
[−a, 0] at the start time of the green phase t = 0. After time t, the number of vehicles having
passed the downstream intersection (real or virtual) and the number that have not past the
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downstream intersection are A(x, t) and B(x, t), respectively. The computation formula is
derived according to the aforementioned physical definition and presented as follows:

A(x, t) =
∫ t·vf

x

k
(
y, t
)
dy,

B(x, t) = kja −A(x, t) =
∫x

tvm−a
k
(
y, t
)
dy,

(2.3)

where k(y, t) is the density of the platoon past y at time t. The density distribution function
k(x, t), at downstream location x at time t, is calculated using the following piecewise
function:

k(x, t) =
∫vf

vm

f ′(v)k(x − vt, 0)dv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x > tvf ∨ x < tvm − a,

kj

∫x/t+a/t

vm

f ′(v)dv, tvm − a ≤ x < tvm,

kj

∫x/t+a/t

x/t

f ′(v)dv, tvm ≤ x ≤ tvf − a,

kj

∫vf

x/t

f ′(v)dv, tvf − a < x ≤ tvf .

(2.4)

Let u = (v − μ)/σ, and the variation coefficient α = σ/μ, as follows:

∫v2

v1

f ′(v)dv = c

∫ (v2−μ)/σ

(v1−μ)/σ

1√
2π

e−0.5u
2
du = c

∫ (tv2/μ−t)/αt

(tv1/μ−t)/αt

1√
2π

e−0.5u
2
du =

c

2
[F(z)]z2z1 , (2.5)

where z2 = (tv2/μ − t)/
√
2αt, z1 = (tv1/μ − t)/

√
2αt, v1 and v2 are constants, and F(z) =

2
∫√2z
0 (1/

√
2π)e−0.5u

2
du = (2/

√
π)
∫z
0 e

−u2
du is the standard normal distribution.

Following (2.4) and (2.5), the calculation formula of k(x, t) is as follows:

k(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x > tvf ∨ x < tvm − a,

ckj

2
[F(z)](x/μ+a/μ−t)/

√
2αt

(tvm/μ−t)/
√
2αt

, tvm − a ≤ x < tvm,

ckj

2
[F(z)](x/μ+a/μ−t)/

√
2αt

(x/μ−t)/√2αt
, tvm ≤ x ≤ tvf − a,

ckj

2
[F(z)]

(tvf/μ−t)/
√
2αt

(x/μ−t)/√2αt
, tvf − a < x ≤ tvf .

(2.6)
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Let G(z) =
∫
F(z)dz = zF(z) + (1/

√
π) exp(−z2); then, based on (2.6), the number of

vehicles
∫x2

x1
k(y, t)dy distributed along the road segment [x1, x2] can be calculated as follows:

∫x2

x1

k
(
y, t
)
dy =

c · kj
2

∫x2

x1

[
F
(
z2
(
y
)) − F

(
z1
(
y
))]

dy

=
ckjμ

√
2αt

2

[∫z2(x2)

z2(x1)
F
(
y
)
dy −

∫z1(x2)

z1(x1)
F
(
y
)
dy

]

=
ckjμ

√
2αt

2

(
[G(z)]z2(x2)

z2(x1)
− [G(z)]z1(x2)

z1(x1)

)
.

(2.7)

Using (2.6) and (2.7), A(x, t) and B(x, t) can be calculated under the following five
scenarios:

(a) for x > tvf : A(x, t) = 0 and B(x, t) =
∫ t·vm

t·vm−a k(y, t)dy +
∫ t·vf−a
t·vm

k(y, t)dy +
∫ t·vf

t·vf−a k(y, t)dy;

(b) for tvf − a < x ≤ tvf : A(x, t) =
∫ t·vf

x k(y, t)dy and B(x, t) =
∫ t·vm

t·vm−a k(y, t)dy +
∫ t·vf−a
t·vm

k(y, t)dy +
∫x
t·vf−a k(y, t)dy;

(c) for tvm ≤ x ≤ tvf − a : A(x, t) =
∫ t·vf−a
x k(y, t)dy +

∫ t·vf

t·vf−a k(y, t)dy and B(x, t) =
∫ t·vm

t·vm−a k(y, t)dy +
∫x
t·vm

k(y, t)dy;

(d) for tvm − a ≤ x < tvm : A(x, t) =
∫ t·vf−a
t·vm

k(y, t)dy +
∫ t·vm

x k(y, t)dy +
∫ t·vf

t·vf−a k(y, t)dy

and B(x, t) =
∫x
t·vm−a k(y, t)dy;

(e) for x < tvm − a : A(x, t) =
∫ t·vm

t·vm−a k(y, t)dy +
∫ t·vf−a
t·vm

k(y, t)dy +
∫ t·vf

t·vf−a k(y, t)dy and
B(x, t) = 0.

The platoon dispersion model proposed in this paper is described in the previous sec-
tion. If x is set as the upstream and downstream signal location, then how dispersion cha-
racteristics of the queuing vehicles at the upstream intersection influence the downstream
green phase start time setup can be quantitatively analyzed, as the platoon moves down from
an upstream intersection at green phase end time to downstream intersection. The results can
be used to calculate the traffic flow parameters used in signal coordination, such as delay stop
and queue length.

3. The Front and Rear of a Platoon in the Dispersion Model

In general, only dispersion behavior at the front and rear of the platoon is important in traffic
signal coordination. When adjacent intersections are not too far apart, fast cars at the rear of
the platoon are unable to get to the front and the slower cars at the front do not have time to
filter back to the rear. Hence, the front and rear of the platoons may be treated separately.
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3.1. Front of the Platoon

A good design of coordinated lights aims at reducing the number of platoon leaders stopped
at the second intersection before its light turns green. The rear does not significantly affect
the front, which helps in the mathematical analysis of the behavior of the front of the platoon.
Using Pacey’s assumptions, the initial density function k(x, 0) of the front of the platoon is
defined by

k(x, 0) =

⎧
⎨

⎩

0, x > 0,

kj , x ≤ 0.
(3.1)

The density of the front of the platoon past x at time t, as obtained from (2.4) and (2.5),
is

k(x, t) = ckj

∫ (tvf/μ−t)/αt

(x/μ−t)/αt

1√
2π

e−0.5y
2
dv

=
ckj

2

[

F

(

z2 =
tvf/μ − t√

2αt

)

− F

(

z1 =
x/μ − t√

2αt

)]

=
ckj

2
[F(z)]z2z1 .

(3.2)

As mentioned previously, cars at the front travel at a range of speeds [μ, vf], leading
to the spread of cars along the section [tμ, tvf]. Hence, the number of cars A(x, t) from the
front of the platoon that have passed the downstream location x at time t can be calculated
under the following three scenarios:

(a) for x ≤ tμ : A(x, t) = ((ckjμ
√
2 αt)/2)[zF((tvf/μ − t)/

√
2αt) −G(z)]

(tvf/μ−t)/
√
2αt)

0 ;

(b) for tμ < x ≤ tvf : A(x, t) = (ckj/2)F((tvf/μ − t)/
√
2αt)(tvf − x) − ((ckjμ

√
2 αt)/

2)[G(z)]
(tvf/μ−t)/

√
2αt)

(x/μ−t)/√2αt)
;

(c) for x > tvf : A(x, t) = 0.

3.2. Rear of the Platoon

Another goal of signal coordination is to reduce the number of stragglers at the rear whomiss
the green phase. Assuming the upstream signal green time ends at time 0, the initial density
function k(x, 0) of the rear of the platoon, according to Pacey’s assumptions, is defined by

k(x, 0) =

⎧
⎨

⎩

0, x < 0,

k2, x ≥ 0,
(3.3)

where k2 ≤ kj is the density near the rear of the platoon.
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Applying a similar limit process to (3.2) to calculate the proportion of the rear of
platoon that has past x at time t, we obtain

k(x, t) = ck2

∫ (x/μ−t)/αt

(tvm/μ−t)/αt

1√
2π

e−0.5y
2
dv

=
ck2
2

[

F

(

z2 =
x/μ − t√

2αt

)

− F

(

z1 =
tvm/μ − t√

2αt

)]

=
ck2
2

[F(z)]z2z1 .

(3.4)

The previous calculations show that the speed of vehicles in the rear of the platoon is
less than μ, which means that these vehicles are spread out along the section [tvm, tμ]. Hence,
the number of cars B(x, t) from the rear that have not passed the downstream location x at
time t can be calculated under the following three scenarios:

(a) for x ≤ tvm : B(x, t) = 0;

(b) for tvm < x ≤ tμ : B(x, t) = ((ck2μ
√
2αt)/2)[G(z)](x/μ−t)/

√
2αt

(tvm/μ−t)/
√
2αt

− (ck2/2)(x −
tvm)F((tvm/μ − t)/

√
2αt);

(c) for x > tμ : B(x, t) = ((ck2μ
√
2αt)/2)[−zF((tvm/μ − t)/

√
2αt) +G(z)]

0
(tvm/μ−t)/

√
2αt.

4. Numerical Calculation

Form proposed model, kj and k2 are not related with diffusion of platoons, which arises
only from the differences in speed between vehicles (kj and k2 only decide how many cars
are spreading along road). Wei et al.’s study shows that the initial flow is approximately a
rectangular pulse with maximum flow Q = kjμ = k2μ [17]. Hence, k(x, t), A(x, t), and B(x, t)
could be replaced by k(x, t)/Q, A(x, t)/Q, and B(x, t)/Q to calibrate the model. Using test
data in Grace and Potts’s paper [5], upstream intersection x = 0 and downstream intersection
x = xd have the following parameters: vm = 10.1m/s, vf = 33.5m/s, μ = 13.4m/s, and
σ = 2m/s. Generally, if the offset of the downstream intersection is set as t0 = xd/μ, then
the queuing vehicles at the upstream intersection, travelling at an average speed, can pass
downstream intersection at the time.

To verify the validity of the proposed model, this paper compares the difference
between the front and rear platoon dispersion characteristics in the proposed model and in
Pacey’s model. Furthermore, the effect of changing parameter α is examined hereinafter, to
quantify how it affects the spreading of the platoon.

4.1. Platoon Density Distribution Function

The difference in the density distribution function between proposed model and Pacey’s
model decides that our model is more realistic than Pacey’s model. In order to prove that,
k(x, t)/Q, which denotes the ratio to the maximum initial flow of density of platoon past x
at time t, is calculated for both the proposed model and Pacey’s model at three time points
t = toμ/vf , to, (toμ + a)/vm under xd = 45μ, and the results are shown in Figure 2.

The following can be concluded based on Figure 2.

(a) The speed density of both Pacey’s model and proposed model follows a normal
distribution, which lead to a situation that there are more vehicles traveling
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Figure 2: Comparison of the proposed model’s and Pacey’s density distribution function k(x, t) under
xd = 45μ.

around the mean speed, and fewer vehicles at higher or lower speeds. The speed
distribution determines the platoon density distribution function. Therefore, the
density in the middle of the platoon is higher than that in the front or rear of the
platoon. As time passes, the platoon becomes more dispersed along the road, and
the hump of the platoon density distribution function becomes less significant.

(b) In the proposed model, the queuing vehicles traveling at different speed v depart
from their stop positions at time 0, and these cars are spreading along the section x ∈
[tvm −a, tvf] at time t. There are the following three stages: if time is t ∈ [0, t0μ/vf],
the front of platoon has not arrived at the downstream intersection x = xd, then
tvf < xd, and k(xd, t) = 0; if time is t ∈ [t0μ/vf , (t0μ + a)/vm], some vehicles are
starting to pass the downstream intersection x = xd, and tvm − a ≤ xd ≤ tvf and
k(xd, t)/= 0; if time is t ∈ [(t0μ + a)/vm,+∞], the rear of the platoon has passed the
downstream intersection location x = xd, and tvm − a > xd and k(xd, t) = 0.

(c) In Pacey’s model, the spread of vehicles in the speed range [vm, vf] during time
period t ∈ [t0μ/vf , (t0μ + a)/vm] is same as proposed model. However, Pacey’s
model assumes that speed is extending within the range [−∞,+∞]. It is impossible
for a vehicle to have a positive infinity speed to travel to downstream infinity or a
negative infinity speed to travel backwards to upstream infinity, which obviously
does not match the field observations. Therefore, the application of Pacey’s model
is limited.

(d) The difference in the speed density between proposed model and Pacey’s model
decides that there are also more cars in the middle of the platoon and fewer cars in
the two tails in the former, compared to the latter.

4.2. Number of Cars at the Front That Have Passed
the Downstream Intersection

If the green phase of the downstream intersection is started at t0 = xd/μ, as cars in the front
of the platoon travel at a speed greater than μ, then the downstream signal needs to turn
green th in advance of t0 to allow more vehicles to pass during the green phase. That is to say,
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the number of cars stopped at the front of platoon is A(xd, to − th). For t0 = 30, 60, 90, 120 and
th = 0, 1, 2, 10, A(xd, to − th)/Q, which denotes the ratio to the maximum initial flow of the
average number of cars stopped at the front of the platoon, is calculated for both the proposed
model and Pacey’s model, and the results are presented in Table 1.

Table 1 shows that as the distance between the successive intersections increases, the
speed range of the front of the platoon [μ + a/t0, vf] increases and A(xd, to) also increases.
Therefore, a higher preset th is needed to allow more cars at the front of platoon to pass the
downstream intersection. The difference in A(xd, to − th) between the proposed model and
Pacey’s model is 4.78%, that is, ((c − 1)/c)100%. The difference is a result of the assumption
in Pacey’s model that the speed spreads from negative infinity to positive infinity, which re-
sults in an accumulated probability in the area of [vm, vf] less than 1.

4.3. Number of Cars at the Rear That Have Not Passed
the Downstream Intersection

It is assumed that the downstream signal green time ends at time t0 = (xd + a)/μ. According
to the platoon dispersion model, the cars at the rear of the platoon are traveling at a speed
lower than μ. Therefore, the green phase needs to be postponed to time tt to allow more
vehicles at the rear of platoon to pass, which means that the number of vehicles not having
passed the downstream signal location is B(xd, tt+t0). For t0 = 30, 60, 90, 120 and tt = 0, 1, 2, 10,
B(xd, tt+t0)/Q, which denotes the ratio to the maximum initial flow of the average number of
cars stopped at the rear of the platoon, is calculated for both the proposed model and Pacey’s
model, and the results are presented in Table 2.

The data in Table 2 show that as the distance between the successive intersections
increases, the speed range of the rear of the platoon, [vm, μ − a/t0, ], increases, and B(xd, to)
also increases. Therefore, a higher preset tt is needed to allow more cars at the rear of platoon
to pass the downstream intersection. As in the analysis of the front of the platoon, the
difference in B(xd, tt + t0) between the proposed model and Pacey’s model is 4.78%, that is,
((c − 1)/c)100%.

4.4. Impact Analysis for Variation Coefficient α

It can be concluded from the previous results that c also determines the deviation of Pacey’s
model from the real situation. f ′(v) of v is affected by σ. As mentioned previously, σ, relative
to c, is affected by α. Hence, α has some influence on the accumulated probability for speed
range [vm, vf]. As α increases, the speed range becomes smaller. This is why the deviation of
Pacey’s model increases with larger values of α.

In addition, α influences the platoon dispersion. A larger α leads to a flatter shape,
and a smaller probability around the average speed area; at the same time, the probability
for both tails becomes larger. As shown in the derivation process of k(x, t), this is determined
by the speed distribution. Thus, the same phenomenon can be seen in the platoon density
distribution. To assess the impact of α on k(x, t), A(x, t)/Q of the front and B(x, t)/Q of the
rear are calculated separately for α = 0.15 and α = 0.20 under xd = 30μ and the results are
shown in Figures 3 and 4. From these figures, we can conclude that as α increases, longer
preset and extension times are separately required to allow the cars at the front and the rear
of the platoon to pass the downstream intersection. These results are consistent with visual
analysis.
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Figure 3: Influence of α on A(x, t) for the front of the platoon.
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Figure 4: Influence of α on B(x, t) for the rear of the platoon.

5. Conclusion

Platoon dispersion is the foundation of coordinating traffic signal control in an urban traffic
network. This paper proposes a new platoon dispersion model which assumes that speed
density follows a truncated normal distribution. This addresses the main defect of Pacey’s
model and matches the field situation. To calibrate proposed model, values of four parame-
ters, namely, the average speed of vehicles, the standard deviation of speed, minimum speed,
and maximum speed, are quantified. Using test data in Grace and Potts’s paper [5] in the
numerical example, there are 4.78% fewer cars travelling in the front and the rear of the pla-
toon between the proposed model and Pacey’s model, and we interpret the results for ap-
plication of coordination of two traffic lights distance xd apart to prove the validity of the
proposed model. Future work needs to focus on proposed model with nonsynchronous
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start-up of all vehicles, validating the model using field data, and on simulation program
development for the application of the proposed model in the timing of signal coordination.
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