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The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates
subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane
bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive
of the present study was initiated by the fact that metal plates of ships and ship-shaped
offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads
arising from cargo or water pressure, together with inplane axial loads or inplane bending
moments, but the current practice of the maritime industry usually applies some simplified design
methods assuming that the non-uniform pressure distribution in the plates can be replaced by
an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating
that the current plate design methods of the maritime industry may be inappropriate when the
non-uniformity of lateral pressure loads becomes more significant.

1. Introduction

Ships and ship-shaped offshore structures are composed of metal plate elements, and the
accurate computation of nonlinear behavior of the plate elements in deck, bottom and
side shells up to the ultimate limit state is a basic requirement for the structural safety
assessment. The plate elements in ships and ship-shaped offshore structures are generally
subjected to combined inplane and lateral pressure loads. Inplane loads include biaxial
compression/tension, biaxial inplane bending and edge shear, as shown in Figure 1, which
are mainly induced by overall hull girder bending and/or torsion of the vessel. Lateral
pressure loads are due to water pressure and/or cargo. In rough weather, roll and/or pitch
motions of vessels are typical as shown in Figure 2, and, subsequently, the distribution
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Figure 1: In-plane load components applied in a plate element.

Figure 2: Roll motion of a vessel causing nonuniformity of lateral pressure load distribution in the hull
cross-section.

of lateral pressure loads often becomes non-uniform as shown in Figure 3. For simplicity,
however, the maritime industry usually applies a simplified design method in which the
non-uniform distribution of lateral pressure loads is replaced by an equivalence of uniformly
distributed lateral pressure loads with an average magnitude of applied pressure loads.

A large number of studies have been available in the literature, for example [1–6]. In
the present paper, a mathematical algorithm is derived to analyze the elastic large deflection
behavior, including buckling and postbuckling response, of plate elements under combined
inplane and lateral pressure loads noted previously, with the emphasis on the non-uniformly
distributed lateral pressure loads. The Galerkin method is applied to solve the nonlinear
governing differential equations of elastic large deflection plate theory for plate elements.
In the literature, the studies of metal plate buckling are also available, for example [7–13].
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Figure 3: Non-uniformly distributed lateral pressure loads in a plate element.

2. Elastic Large Deflection Analysis

The elastic large deflection behavior of a plate element with initial imperfections can be
analyzed by solving two differential equations, one representing the equilibrium condition
and the other representing the compatibility condition [5]:
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(2.2)

Once the Airy stress function F is defined, the membrane stress components at a certain
position inside the plate may be expressed as follows:
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To apply the Galerkin method for solving the nonlinear governing differential equations, the
added deflection w and initial deflection wo are assumed as follows:

w =
M∑
m=1

N∑
n=1

Amnfm(x)gn
(
y
)
, (2.4)

wo =
M∑
m=1

N∑
n=1

Aomnfm(x)gn
(
y
)
, (2.5)

where fm(x) and gn(y) are functions which satisfy the boundary conditions for the plate.Amn

and Aomn are unknown and known deflection coefficients, respectively.
Equations (2.4) and (2.5) are substituted into (2.2) to obtain the stress function F. In

this case, the particular solution FP of the stress function can be expressed as follows:

FP =
R∑
r=1

S∑
s=1

Krspr(x)qs
(
y
)
, (2.6)

where the coefficients Krs will be second-order functions with regard to the unknown
deflection coefficients Amn.

With the homogeneous solution FH of the stress function which satisfies the applied
loading condition, the complete stress function F may be given by

F = FH +
R∑
r=1

S∑
s=1

Krspr(x)qs
(
y
)
. (2.7)

To compute the unknown coefficientsAmn, the Galerkin method is applied to the equilibrium
equation (2.1), resulting in the following equation:

∫∫∫
v

Φfr(x)gs
(
y
)
dvol = 0, r = 1, 2, 3, . . . , s = 1, 2, 3, . . . (2.8)

Equations (2.4), (2.5), and (2.7) into (2.8), and performing the integration over the whole
volume of the plate, a set of third-order simultaneous equations with regard to the unknown
coefficients Amn will be obtained.

3. Application to the Elastic Large Deflection Analysis of Simply
Supported Plates

In the present paper, the procedure described in [5] is applied. It is assumed that the
plate element is simply supported along the four edges where support members such
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as longitudinal stiffeners and transverse frames are located. The simply supported edge
conditions for the plates should satisfy the following conditions

w = 0,
∂2w

∂y2
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∂2w

∂x2
= 0 at y = 0, b, (3.1a)

w = 0,
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= 0 at x = 0,a. (3.1b)

To satisfy the boundary condition, the added deflection function w and the initial deflection
wo can be assumed in Fourier series:
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whereAmn andAomn are the unknown and the known coefficients, respectively. The condition
of combined loads, namely biaxial loads, biaxial inplane bending and edge shear and lateral
pressure loads are given as follows:
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For simplicity in expressing the various functions, the following abbreviations are involving
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To find the stress function F which should satisfy (2.2), (3.2) and (3.3) are substituted into
(2.2) and the following equation yields:
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A particular solution FP for the Airy stress function can be obtained as follows:
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Equation (3.7) is substituted into (2.2), the coefficients B1, B2, B3 and B4, as follows:
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Equation (3.8) is substituted into (3.7), and a particular solution FP is obtained as follows:
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By considering the condition of load application, the homogeneous solution FH for the stress
function is given by

FH = (σxav + σrx)
y2

2
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(
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)y2
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)
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The Airy stress function F is then expressed by the sum of the particular and homogeneous
solution as follows:

F = FP + FH. (3.11)

To compute the unknown coefficientsAmn, the Galerkin method is applied to (2.1) as follows:
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Substitution of (3.11) into (2.1) and then (2.1) to (3.12) after a derivation, a set of third order
simultaneous equations for the unknown deflection coefficients Amn is obtained, as follows:
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(3.13)

where q = lateral pressure loads, and the coefficients R1 to R16 and F1 to F5 are given in
Appendix.

In (3.13), lateral pressure q will take the following form in general.

q =
p4 − p1

a
x +

p2 − p1
b

y +
p1 − p2 + p3 − p4

ab
xy + p1. (3.14)

When uniform pressure loads are applied, that is, with p1 = p2 = p3 = p4, q = p1 is taken as
constant value.
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Figure 4: Configuration of the initial deflection in the plate.

4. Applied Examples and Discussion

Some applied examples are now presented. A simply supported rectangular plate of a×b×t =
1660mm × 830 × 16mm under uniaxial compression and lateral pressure loads is considered,
in which lateral pressure loads are applied first, followed by the monotonical application
of axial compressive loads. The elastic modulus and Poisson’s ratio are E = 205.8GPa and
ν = 0.3. The elastic buckling strength σxE of this plate under uniaxial compression in the x
direction is determined as follows:

σxE = k
π2E

12(1 − ν2)

(
t

b

)2

, (4.1)

where k = buckling coefficient which is taken as k= 4.
Also, the lateral pressure loads are taken as p1 = p2 = pa and p3 = p4 = pb in the present

examples. The initial deflection of the plate is selected as follows (see Figure 4):

w0 = A021 sin
2πx
a

sin
πy

b
, (4.2)

where A021 = 0.05t.
The added deflection of the plate due to applied loads can be expressed as follows.

w =
M∑
m=1

N∑
n=1

Amn sin
mπx

a
sin

nπy

b
. (4.3)

In the present study, the maximum number of amplitudes in the shorter direction of the plate
is assumed as N = 1, but that in the longer direction of the plate is varied to investigate the
best selection of M in terms of the accuracy and efficiency of the computations.

Figures 5(a) to 5(d) present the relation between the axial compressive loads versus
total deflection at the center of the plate, that is, at x = a/2 and y = b/2, where the magnitude
of lateral pressure loads and the maximum number of deflection amplitudes are varied. It
is found that M = 5 may be sufficient enough in terms of accuracy and efficiency of the
resulting computations. Table 1 represents the deformed shapes of the plate with different
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Figure 5: Continued.
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Figure 5: (a) The axial compressive load versus total deflection curves at pa = pb = 0.1MPa. (b) The
axial compressive load versus total deflection curves at pa = 0.1MPa and pb = 0.15MPa. (c) The
axial compressive load versus total deflection curves at pa = 0.1MPa and pb = 0.2MPa. (d) The axial
compressive load versus total deflection curves at pa = 0.1MPa and pb = 0.3MPa.

magnitudes or shapes of lateral pressure loadswhen σxav/σxE = 0 or 1.2 whereM = 5 is taken.
It is observed that the deflection modes of the plate are changed due to the application of
axial compressive loads. This is because the plate tends to deflect as per the original buckling
pattern associated with axial compressive loads.

Figure 6 presents a comparison of the elastic large deflection responses of the plate
between non-uniform and uniform pressure loads, the latter being taken as the average value
of the pressure loads as per the current practice of the maritime industry.

It is found that the current practice of the maritime industry with an average
magnitude of applied pressure loads underestimates the lateral deflection of the plate
compared to the real condition of the pressure load application, that is, with a non-uniform
distribution. The difference between the two cases becomes larger and larger as the non-
uniformity of lateral pressure loads becomes more significant.

The underestimation of the plate deflection due to external pressure loads gives rise
to the overestimation of plate strength performance which may lead to unsafe design at
optimistic side.

5. Concluding Remarks

The aim of the present paper has been to analyze the elastic large deflection behavior of
metal plates subject to combined inplane and lateral pressure loads. When lateral pressure
loads applied in plate elements are non-uniform, the current practice of themaritime industry
applies some simplified design methods in which the non-uniform pressure distribution in
the plates is replaced by an equivalence of uniform pressure distribution.

In the present paper, the Galerkin method was used to solve the nonlinear governing
differential equations of plate elements under non-uniformly distributed lateral pressure
loads in addition to inplane loads. Some applied examples are presented, demonstrating that
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Table 1: Deformed shapes of the plate whenM = 5.

pa
(MPa)

pb
(MPa) σxav/σxE = 0.0 σxav/σxE = 1.2

0.1 0.1

0.1 0.15

0.1 0.2

0.1 0.3

0.1 0.4

the current practice of the maritime industry, that is, with an average magnitude of applied
pressure loads as an equivalence, results in a great underestimation of lateral deflection
calculations when the non-uniformity of lateral pressure loads becomes more significant. The
underestimation of the plate deflection may lead to unsafe design of plates at optimistic side.

Thin plates buckle in elastic regime, while stocky plates may buckle in elastic-plastic
or plastic regime. The present paper deals with elastic behavior only, and further studies are
then recommended to take into account the effect of plasticity which is dominant in thick
plates. Also, it is highly desirable for practical design purpose to develop a simpler method
or design formulation.
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Figure 6: The axial compressive loads versus total deflection at x = 3a/4 and y = b/2.

Appendix

The coefficients R1 to R16 and F1 to F5 are given as follows:

F1
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i, j,m, n
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∫ t

0
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(
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R1
(
i, j,m, n, k, l, r, s

)
=

(m + k)2s2 + (n + l)2r2[
(m + k)2 + α2(n + l)2

]ml(nk −ml)

×
∫ t

0

∫b

0

∫a

0
cx(m + k)cy(n + l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,
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R2
(
i, j,m, n, k, l, r, s

)
=

(m + k)2s2 + (n − l)2r2[
(m + k)2 + α2(n − l)2

]ml(nk +ml)

×
∫ t

0

∫b

0

∫a

0
cx(m + k)cy(n − l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R3
(
i, j,m, n, k, l, r, s

)
=

(m − k)2s2 + (n + l)2r2[
(m − k)2 + α2(n + l)2

]ml(nk +ml)

×
∫ t

0

∫b

0

∫a

0
cx(m − k)cy(n + l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R4
(
i, j,m, n, k, l, r, s

)
=

(m − k)2s2 + (n − l)2r2[
(m − k)2 + α2(n − l)2

]ml(nk −ml)

×
∫ t

0

∫b

0

∫a

0
cx(m − k)cy(n − l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R5
(
i, j,m, n, k, l, r, s

)
=

(m + k)(n + l)[
(m + k)2 + α2(n + l)2

]2mlrs(nk −ml)

×
∫ t

0

∫b

0

∫a

0
sx(m + k)sy(n + l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R6
(
i, j,m, n, k, l, r, s

)
=

(m + k)(n − l)[
(m + k)2 + α2(n − l)2

]2mlrs(nk +ml)

×
∫ t

0

∫b

0

∫a

0
sx(m + k)sy(n − l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R7
(
i, j,m, n, k, l, r, s

)
=

(m − k)(n + l)[
(m − k)2 + α2(n + l)2

]2mlrs(nk +ml)

×
∫ t

0

∫b

0

∫a

0
sx(m − k)sy(n + l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R8
(
i, j,m, n, k, l, r, s

)
=

(m − k)(n − l)[
(m − k)2 + α2(n − l)2

]2mlrs(nk −ml)

×
∫ t

0

∫b

0

∫a

0
sx(m − k)sy(n − l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R9
(
i, j,m, n, k, l, r, s

)
=

(m + k)2s2 + (n + l)2r2[
(m + k)2 + α2(n + l)2

](nk −ml)2

×
∫ t

0

∫b

0

∫a

0
cx(m + k)cy(n + l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,
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R10
(
i, j,m, n, k, l, r, s

)
=

(m + k)2s2 + (n − l)2r2[
(m + k)2 + α2(n − l)2

] (nk +ml)2

×
∫ t

0

∫b

0

∫a

0
cx(m + k)cy(n − l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R11
(
i, j,m, n, k, l, r, s

)
=

(m − k)2s2 + (n + l)2r2[
(m − k)2 + α2(n + l)2

] (nk +ml)2

×
∫ t

0

∫b

0

∫a

0
cx(m − k)cy(n + l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R12
(
i, j,m, n, k, l, r, s

)
=

(m − k)2s2 + (n − l)2r2[
(m − k)2 + α2(n − l)2

] (nk −ml)2

×
∫ t

0

∫b

0

∫a

0
cx(m − k)cy(n − l)sx(r)sy(s)sx(i)sy

(
j
)
dxdydz,

R13
(
i, j,m, n, k, l, r, s

)
=

(m + k)(n + l)[
(m + k)2 + α2(n + l)2

]2 rs(nk −ml)2

×
∫ t

0

∫b

0

∫a

0
sx(m + k)sy(n + l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R14
(
i, j,m, n, k, l, r, s

)
=

(m + k)(n − l)[
(m + k)2 + α2(n − l)2

]2 rs(nk +ml)2

×
∫ t

0

∫b

0

∫a

0
sx(m + k)sy(n − l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R15
(
i, j,m, n, k, l, r, s

)
=

(m − k)(n + l)[
(m − k)2 + α2(n + l)2

]2 rs(nk +ml)2

×
∫ t

0

∫b

0

∫a

0
sx(m − k)sy(n + l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz,

R16
(
i, j,m, n, k, l, r, s

)
=

(m − k)(n − l)[
(m − k)2 + α2(n − l)2

]2 rs(nk −ml)2

×
∫ t

0

∫b

0

∫a

0
sx(m − k)sy(n − l)cx(r)cy(s)sx(i)sy

(
j
)
dxdydz.

(A.1)

Nomenclature

a: Length of the plate
b: Breadth of the plate
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D: Plate bending rigidity(= Et3/12(1 − ν2))
E: Young’s modulus
F: Airy’s stress function
M,N: Maximum half-wave number of the

assumed added deflection function in
the x and y directions

Mx: In-plane bending moment in the x
direction (= σbxt)

My: In-plane bending moment in the y
direction (= σbyt)

p: Lateral (out-of-plane) pressure load on
the surface area

Px: Axial force in the x direction (= σxavbt)
Py: Axial force in the y direction (= σyavat)
t: Thickness of the plate
w: (Added) deflection of the plate due to

the action of external loads
wo: Initial deflection of the plate
wt: Total deflection of the plate
z: Axis direction normal to the xy plane
α: Aspect ratio of the plate ( = a/b)
ν: Poisson’s ratio
σbx,σby: Bending stresses in the x and y

directions
σx,σy: Normal stresses in the x and y directions
σxav,σyav: Mean stresses in the x and y directions
τ = τxy: Shear stress.
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