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We construct a new type of q-Genocchi numbers and polynomials with weight α and weak weight
β : G(α,β)

n,q , G
(α,β)
n,q (x), respectively. Some interesting results and relationships are obtained.

1. Introduction

The Genocchi numbers and polynomials possess many interesting properties and are arising
in many areas of mathematics and physics. Recently, many mathematicians have studied in
the area of the q-Genocchi numbers and polynomials (see [1–13]). In this paper, we construct
a new type of q-Genocchi numbers G(α,β)

n,q and polynomials G(α,β)
n,q (x) with weight α and weak

weight β.
Throughout this paper, we use the following notations. By Zp, we denote the ring

of p-adic rational integers, Qp denotes the field of p-adic rational numbers, Cp denotes the
completion of algebraic closure of Qp, N denotes the set of natural numbers, Z denotes
the ring of rational integers, Q denotes the field of rational numbers, C denotes the set of
complex numbers, and Z

+ = N ∪ {0}. Let νp be the normalized exponential valuation of Cp

with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways such
as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one
normally assume that |q| < 1. If q ∈ Cp, we normally assumes that |q − 1|p < p−(1/p−1) so that
qx = exp(x log q) for |x|p ≤ 1. Throughout this paper, we use the notation

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (1.1)

cf. [1–13].



2 Journal of Applied Mathematics

Hence, limq→ 1[x] = x for any x with |x|p ≤ 1 in the present p-adic case. For

f ∈ UD
(
Zp

)
=
{
f | f : Zp −→ Cp is uniformly differentiable function

}
, (1.2)

the fermionic p-adic q-integral on Zp is defined by Kim as follows:

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x, (1.3)

cf. [3–6].
If we take f1(x) = f(x + 1) in (1.1), then we easily see that

qI−q
(
f1
)
+ I−q

(
f
)
= [2]qf(0). (1.4)

From (1.4), we obtain

qnI−q
(
fn
)
+ (−1)n−1I−q

(
f
)
= [2]q

n−1∑

l=0

(−1)n−1−lqlf(l), (1.5)

where fn(x) = f(x + n) (cf. [3–6]).
As-well-known definition, the Genocchi polynomials are defined by

F(t) =
2t

et + 1
= eGt =

∞∑

n=0

Gn
tn

n!
,

F(t, x) =
2t

et + 1
ext = eG(x)t =

∞∑

n=0

Gn(x)
tn

n!
.

(1.6)

with the usual convention of replacing Gn(x) by Gn(x). In the special case, x = 0, Gn(0) = Gn

are called the n-th Genocchi numbers (cf. [1–11]).
These numbers and polynomials are interpolated by the Genocchi zeta function and

Hurwitz-type Genocchi zeta function, respectively.

ζG(s) = 2
∞∑

n=1

(−1)n
ns

,

ζG(s, x) = 2
∞∑

n=0

(−1)n
(n + x)s

.

(1.7)

Our aim in this paper is to define q-Genocchi numbers G(α,β)
n,q and polynomials G(α,β)

n,q (x) with
weight α and weak weight β. We investigate some properties which are related to q-Genocchi
numbers G(α,β)

n,q and polynomials G(α,β)
n,q (x) with weight α and weak weight β. We also derive

the existence of a specific interpolation function which interpolates q-Genocchi numbers
G

(α,β)
n,q and polynomials G(α,β)

n,q (x)with weight α and weak weight β at negative integers.
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2. q-Genocchi Numbers and Polynomials with
Weight α and Weak Weight β

Our primary goal of this section is to define q-Genocchi numbers G
(α,β)
n,q and polynomials

G
(α,β)
n,q (x) with weight α and weak weight β. We also find generating functions of q-Genocchi

numbers G(α,β)
n,q and polynomials G(α,β)

n,q (x)with weight α and weak weight β.

For α ∈ Z and q ∈ Cp with |1 − q|p ≤ 1, q-Genocchi numbers G(α,β)
n,q are defined by

G
(α,β)
n,q = n

∫

Zp

[x]n−1qα dμ−qβ(x). (2.1)

By using p-adic q-integral on Zp, we obtain

n

∫

Zp

[x]n−1qα dμ−qβ(x) = n lim
N→∞

1
[
pN
]
−qβ

pN−1∑

x=0
[x]n−1qα

(
−qβ
)x

= n[2]qβ
(

1
1 − qα

)n−1n−1∑

l=0

(
n − 1

l

)

(−1)l 1
1 + qαl+β

= n[2]qβ
∞∑

m=0
(−1)mqβm[m]n−1qα .

(2.2)

By (2.1), we have

G
(α,β)
n,q = n[2]qβ

∞∑

m=0
(−1)mqβm[m]n−1qα . (2.3)

From the above, we can easily obtain that

F
(α,β)
q (t) =

∞∑

n=0

G
(α,β)
n,q

tn

n!

= t[2]qβ
∞∑

m=0
(−1)mqβme[m]qα t.

(2.4)

Thus, q-Genocchi numbers G(α,β)
n,q with weight α and weak weight β are defined by means of

the generating function

F
(α,β)
q (t) = t[2]qβ

∞∑

m=0
(−1)mqβme[m]qα t. (2.5)

Using similar method as above, we introduce q-Genocchi polynomials G(α,β)
n,q (x) with

weight α and weak weight β.
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G
(α,β)
n,q (x) are defined by

G
(α,β)
n,q (x) = n

∫

Zp

[
x + y

]n−1
qα dμ−qβ

(
y
)
. (2.6)

By using p-adic q-integral, we have

G
(α,β)
n,q (x) = n[2]qβ

(
1

1 − qα

)n−1 n−1∑

l=0

(
n − 1

l

)

(−1)lqαxl 1
1 + qαl+β

. (2.7)

By using (2.6) and (2.7), we obtain

F
(α,β)
q (t, x) =

∞∑

n=0

G
(α,β)
n,q (x)

tn

n!
= t[2]qβ

∞∑

m=0
(−1)mqβme[m+x]qα t. (2.8)

Remark 2.1. In (2.8), we simply see that

lim
q→ 1

F
(α,β)
q (t, x) = 2t

∞∑

m=0
(−1)me(m+x)t

=
2t

1 + et
ext

= F(t, x).

(2.9)

Since [x + y]qα = [x]qα + qαx[y]qα , we easily obtain that

G
(α,β)
n+1,q(x) = (n + 1)

∫

Zp

[
x + y

]n
qαdμ−qβ

(
y
)

= q−αx
n+1∑

k=0

(
n + 1

k

)

[x]n+1−kqα qαxkG
(α,β)
k,q

= q−αx
(
[x]qα + qαxG

(α,β)
q

)n+1

= (n + 1)[2]qβ
∞∑

m=0
(−1)mqβm[x +m]nqα .

(2.10)

Observe that, if q → 1, then G
(α,β)
n,q → Gn and G

(α,β)
n,q (x) → Gn(x).

By (2.7), we have the following complement relation.

Theorem 2.2. Property of complement

G
(α,β)
n,q−1(1 − x) = (−1)n−1qα(n−1)G(α,β)

n,q (x). (2.11)

By (2.7), we have the following distribution relation.
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Theorem 2.3. For any positive integerm (=odd), one has

G
(α,β)
n,q (x) =

[2]qβ

[2]qβm
[m]n−1qα

m−1∑

i=0
(−1)iqβiG(α,β)

n,qm

(
i + x

m

)
, n ∈ Z

+. (2.12)

By (1.5), (2.1), and (2.6), one easily sees that

m[2]qβ
n−1∑

l=0

(−1)n−1−lqβl[l]m−1
qα = qβnG

(α,β)
m,q (n) + (−1)n−1G(α,β)

m,q . (2.13)

Hence, we have the following theorem.

Theorem 2.4. Letm ∈ Z
+.

If n ≡ 0 (mod 2), then

qβnG
(α,β)
m,q (n) −G

(α,β)
m,q = m[2]qβ

n−1∑

l=0

(−1)l+1qβl[l]m−1
qα . (2.14)

If n ≡ 1 (mod 2), then

qβnG
(α,β)
m,q (n) +G

(α,β)
m,q = m[2]qβ

n−1∑

l=0

(−1)lqβl[l]m−1
qα . (2.15)

From (1.4), one notes that

[2]qβ t = qβ
∫

Zp

te[x+1]qα tdμ−qβ(x) +
∫

Zp

te[x]qα tdμ−qβ(x)

=
∞∑

n=0

(

qβ
∫

Zp

n[x + 1]n−1qα dμ−qβ(x) +
∫

Zp

n[x]n−1qα dμ−qβ(x)

)
tn

n!

=
∞∑

n=0

(
qβG

(α,β)
n,q (1) +G

(α,β)
n,q

) tn

n!
.

(2.16)

Therefore, we obtain the following theorem.

Theorem 2.5. For n ∈ Z
+, one has

qβG
(α,β)
n,q (1) +G

(α,β)
n,q =

⎧
⎨

⎩

[2]qβ , if n = 1,

0, if n/= 1.
(2.17)

By Theorem 2.4 and (2.10), we have the following corollary.
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Corollary 2.6. For n ∈ Z
+, one has

qβ−α
(
qαG

(α,β)
q + 1

)n
+G

(α,β)
n,q =

⎧
⎨

⎩

[2]qβ , if n = 1,

0, if n/= 1.
(2.18)

with the usual convention of replacing (G(α,β)
q )n by G(α,β)

n,q .

3. The Analogue of the Genocchi Zeta Function

By using q-Genocchi numbers and polynomials withweight α andweakweight β, q-Genocchi
zeta function and Hurwitz q-Genocchi zeta functions are defined. These functions interpolate
the q-Genocchi numbers and q-Genocchi polynomials with weight α and weak weight β,
respectively. In this section, we assume that q ∈ C with |q| < 1. From (2.4), we note that

dk+1

dtk+1
F
(α,β)
q (t)

∣∣∣∣∣
t=0

= (k + 1)[2]qβ
∞∑

m=0
(−1)mqβm[m]kqα

= G
(α,β)
k+1,q, (k ∈ N).

(3.1)

By using the above equation, we are now ready to define q-Genocchi zeta functions.

Definition 3.1. Let s ∈ C. We define

ζ
(α,β)
q (s) = [2]qβ

∞∑

n=1

(−1)nqβn
[n]sqα

. (3.2)

Note that ζ(α,β)q (s) is a meromorphic function on C. Note that, if q → 1, then ζ
(α,β)
q (s) =

ζ(s)which is the Genocchi zeta functions. Relation between ζ
(α,β)
q (s) and G

(α,β)
k,q

is given by the
following theorem.

Theorem 3.2. For k ∈ N, we have

ζ
(α,β)
q (−k) =

G
(α,β)
k+1,q

k + 1
. (3.3)
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Observe that ζ(α,β)q (s) function interpolates G(α,β)
k,q

numbers at nonnegative integers. By using (2.3),
one notes that

dk+1

dtk+1
F
(α,β)
q (t, x)

∣
∣
∣
∣
∣
t=0

= (k + 1)[2]qβ
∞∑

m=0
(−1)mqβm[x +m]kqα

= G
(α,β)
k+1,q(x), (k ∈ N),

(3.4)

(
d

dt

)k+1
( ∞∑

n=0

G
(α,β)
n,q (x)

tn

n!

)∣∣
∣
∣
∣
t=0

= G
(α,β)
k+1,q(x), for k ∈ N. (3.5)

By (3.2) and (3.5), we are now ready to define the Hurwitz q-Genocchi zeta functions.

Definition 3.3. Let s ∈ C. We define

ζ
(α,β)
q (s, x) = [2]qβ

∞∑

n=0

(−1)nqβn
[n + x]sqα

. (3.6)

Note that ζ(α,β)q (s, x) is a meromorphic function on C.

Remark 3.4. It holds that

lim
q→ 1

ζ
(α,β)
q (s, x) = 2

∞∑

n=0

(−1)n
(n + x)s

. (3.7)

Relation between ζ
(α)
q (s, x) and G

(α)
k,q

(x) is given by the following theorem.

Theorem 3.5. For k ∈ N, one has

ζ
(α,β)
q (−k, x) =

G
(α,β)
k+1,q(x)

k + 1
. (3.8)

Observe that ζ(α,β)q (−k, x) function interpolates G(α,β)
k,q

(x) numbers at nonnegative integers.
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