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We consider an evasion differential game of many pursuers and one evader with integral
constraints in the plane. The game is described by simple equations. Each component of the control
functions of players is subjected to integral constraint. Evasion is said to be possible if the state
of the evader does not coincide with that of any pursuer. Strategy of the evader is constructed
based on controls of the pursuers with lag. A sufficient condition of evasion from many pursuers
is obtained and an illustrative example is provided.

1. Introduction

1.1. Related Works

Among a large number of papers devoted to differential games with integral constraints
(see, e.g., [1–14]), a few works are dedicated to evasion games with integral constraints (see,
e.g., [1, 4, 7, 12]). Note that integral constraints arise if we consider constraints on energy,
resources, and so forth. In [1], an evasion differential game was considered. In the paper [1],
the dynamics of the object z(t) is given by the equation

ż = Az − u + v, z(0) = z0, (1.1)

where z ∈ R
n, A is a constant matrix, and u and v are control parameters of the

pursuer and evader, respectively. The control functions u(t)and v(t) of the pursuer and
evader,respectively, are defined as measurable functions satisfying conditions

∫∞

0
|u(t)|2dt ≤ ρ2,

∫∞

0
|v(t)|2dt ≤ σ2. (1.2)
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The terminal set M is a subspace of R
n. By definition evasion is possible if z(t) /∈ M, t ≥ 0. In

this work Pontryagin’s method was extended to the evasion game with integral constraints
and sufficient conditions of evasion from any initial position were obtained.

In [4], a differential game described by (1.1) was studied. The control functions u(t)
and v(t) satisfy conditions (1.2). Evasion is said to be possible if z(t) /∈ M, whereM = ∪m

i=1Mi,
Mi are subspaces of R

n. The pursuers’ purpose is to take the point z(t) onto the terminal set
M; the evader’s one, to guarantee evasion from the setM. By definition, l-escape is possible if
|z(t)| ≥ l(t) > 0, t ≥ 0 for some function l(t). Sufficient conditions for l-escape were obtained.

In the book [12] (chapter 11), linear evasion differential game with integral constraints
was examined. The game is described by the equation

ż = Az − Bu + Cv, z(0) = z0, (1.3)

where z ∈ R
n, A, B, and C are constant matrices and u and v are control parameters of

the pursuer and evader, respectively. The control functions u(t) and v(t) of the pursuer and
evader are subjected to the conditions (1.2). The terminal set M is a subspace of R

n. By
definition evasion is possible if z(t) /∈ M, t ≥ 0. Some sufficient conditions of evasion were
obtained.

In [5], a differential game of countably many pursuers and one evader is described by
the following infinite system of differential equations:

żik = −λkzik − uik + vk, zik(t0) = z0ik, k = 1, 2, . . . , (1.4)

which was studied in the Hilbert space l2r+1, where

zik, uik, vk, t0, z
0
ik ∈ R, z0i =

(
z0i1, z

0
i2, . . .

)
∈ l2r+1, z0i /= 0, (1.5)

ui = (ui1, ui2, . . .) is the control parameter of ith pursuer, i = 1, 2, . . ., and v = (v1, v2, . . .) is that
of the evader. The control functions of the players are subject to integral constraints

∫T

t0

‖ui(t)‖2dt ≤ ρ2i ,

∫T

t0

‖v(t)‖2dt ≤ σ2, ‖v(t)‖ =

( ∞∑
k=1

λrkv
2
k(t)

)1/2

, T > 0. (1.6)

Avoidance of contact is said to be possible in the game with the initial position z0 =
{z01, z02, . . . , z0m, . . .}, z0i ∈ l2r+1, if zi(t) = (zi1(t), zi2(t), . . .)/= 0, for all t ∈ [0, T] and i = 1, 2, . . .. It
was proven that if σ2 >

∑∞
k=1 ρ

2
k
, then avoidance of contact is possible in the game from any

initial position z0 = {z01, . . . , z0m, . . .}, z0i ∈ l2r+1, z
0
i /= 0, i = 1, 2, . . . .

The work [7] deals with the evasion differential game of m pursuers x1, . . . , xm and
one evader y described by equations

ẋi = ui, xi(0) = xi0, ẏ = v, y(0) = y0, xi0 /=y0, i = 1, . . . , m. (1.7)
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The game occurs in the plane and the following conditions:

∫∞

0
|ui(s)|2ds ≤ ρ2i , i = 1, . . . , m,

∫∞

0
|v(s)|2ds ≤ σ2 (1.8)

are imposed on control functions of the players. The main result of the paper is as follow: if
ρ21 + ρ22 + · · · + ρ2m ≤ σ2, then evasion is possible. The important point to note here is the fact
that if ρ21 + ρ22 + · · · + ρ2m > σ2, then pursuit can be completed [13].

It should be noted that in all of these works, an integral constraint was imposed on the
whole control function of each player, such as

∫∞

0
|v(s)|2ds ≤ σ2. (1.9)

However, in contrast to other works, in the present paper, we study a differential game
with integral constraints imposed on each coordinate of control functions (see the constraints
(1.12)-(1.13)).

At first glance, the inequalities ρ21i+ρ
2
2i+ · · ·+ρ2mi > σ2

i , i = 1, 2 seem to be the conditions
for completing pursuit. It turns out, as shown in the example, evasion is possible from some
initial positions even though these inequalities hold.

1.2. Statement of the Problem

In R
2, we consider an evasion differential game of many pursuers x1, . . . , xm and one evader

y described by the equations

ẋi = ui, xi(0) = xi0, i = 1, . . . , m, (1.10)

ẏ = v, y(0) = y0, (1.11)

and assume that x0
i /=y0, x0

i = (x0
i1, x

0
i2), i = 1, . . . , m, y0 = (y0

1 , y
0
2).

Definition 1.1. A measurable function ui(t) = (ui1(t), ui2(t)), t ≥ 0 is called an admissible
control of the pursuer xi if

∫∞

0
|ui1(s)|2ds ≤ ρ2i1,

∫∞

0
|ui2(s)|2ds ≤ ρ2i2, (1.12)

where ρi1, ρi2, i = 1, . . . , m are given positive numbers.

Definition 1.2. Ameasurable function v(t) = (v1(t), v2(t)), t ≥ 0 is called an admissible control
of the evader y if

∫∞

0
|v1(s)|2ds ≤ σ2

1 ,

∫∞

0
|v2(s)|2ds ≤ σ2

2 , (1.13)

where σ1 and σ2 are given positive numbers.
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Definition 1.3. A function of the form

V (t) =

{
0, 0 ≤ t ≤ ε,

f(u1(t − ε), . . . , um(t − ε)), t > ε
(1.14)

is called a strategy of the evader, where ε is a positive number, f : R
2m → R

2 is a continuous
function, and u1(t), . . . , um(t), t ≥ 0 are admissible controls of the pursuers.

Definition 1.4. We say that evasion is possible from the initial position (x0
1, x

0
2, . . . , x

0
m, y

0) in
the game (1.10)–(1.13) if there exists a strategy of the evader V such that xi(t)/=y(t), t ≥ 0,
i = 1, . . . , m for any admissible controls of the pursuers.

We can now state the evasion problem.

Problem 1. Find conditions for all initial positions (x0
1, x

0
2, . . . , x

0
m, y

0) and parameters σ1, σ2,
ρi1, ρi2, i = 1, . . . , m which guarantee evasion in the game (1.10)–(1.13).

This is the main problem to be investigated in the present paper. It should be noted
that, in the evasion game, the pursuers use arbitrary admissible controls u1(t), . . . , um(t), t ≥
0, and the evader uses a strategy. By Definition 1.3 this strategy is constructed based on values
u1(t − ε), . . . , um(t − ε).

After the proof of the main result (Theorem 2.1) we will give illustrative examples.
For the initial positions, which do not satisfy hypotheses of the theorem, we will show that
pursuit can be completed. Therefore, at first we have to give a definition for “pursuit can be
completed”. To this end we need to define strategies of the pursuers.

Definition 1.5. A Borel measurable function Ui(v) = (Ui1(v), Ui2(v)), Ui : R
2 → R

2 is called
a strategy of the pursuer xi if for any control of the evader v(t), t ≥ 0 and the inequalities

∫∞

0
|Ui1(v(s))|2ds ≤ ρ2i1,

∫∞

0
|Ui2(v(s))|2ds ≤ ρ2i2 (1.15)

hold.

Definition 1.6. We say that pursuit can be completed from the initial position
(x0

1, x
0
2, . . . , x

0
m, y

0) in the game (1.10)–(1.13) if there exist strategies of the pursuers Ui,
i = 1, . . . , m such that for any admissible control of the evader the equality xi(τ) = y(τ) holds
at some i ∈ {1, . . . , m} and τ ≥ 0.

Note that in the pursuit game, the pursuers use strategies and the evader uses any
admissible control v(t) (see Definition 1.6). According to Definition 1.5 at current time t the
pursuers use v(t) to construct their strategies.

2. Main Result

The main result of the paper is formulated as follows.
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Theorem 2.1. Assume the following conditions hold.

(1) There exists a subset I of the set {1, . . . , m} such that
∑
i∈I

ρ2i1 ≤ σ2
1 ,

∑
i∈J

ρ2i2 ≤ σ2
2 , J = {1, . . . , m} \ I. (2.1)

(2) y0
1 /∈ [x′

1, x
′′
1], y

0
2 /∈ [x′

2, x
′′
2], where

x′
1 = min

i∈I
x0
i1, x′′

1 = max
i∈I

x0
i1, x′

2 = min
i∈J

x0
i2, x′′

2 = max
i∈J

x0
i2. (2.2)

Then evasion is possible in the game (1.10)–(1.13).

Proof. Let ρ = (
∑m

i=1
∑2

j=1 ρ
2
ij)

1/2
, and let ε, ε < 1/(4ρ2)min{(y0

1−x′′
1)

2, (y0
2−x′′

2)
2}, be a positive

number. We construct a strategy for the evader as follows:

v1(t) =
y0
1 − x0

k1∣∣y0
1 − x0

k1

∣∣
{
0, 0 ≤ t ≤ ε,(∑

i∈I u
2
i1(t − ε)

)1/2
, t > ε,

(2.3)

v2(t) =
y0
2 − x0

l2∣∣y0
2 − x0

l2

∣∣
⎧⎨
⎩
0, 0 ≤ t ≤ ε,(∑

i∈J u
2
i2(t − ε)

)1/2
, t > ε,

(2.4)

where u1(t), . . . , um(t), t ≥ 0 are any admissible controls of the pursuers, and k ∈ I and
l ∈ J are arbitrary numbers. The pursuers use any admissible controls and the evader uses
the strategy (2.3) and (2.4). We’ll prove that evasion is possible. We examine the case y0

1 >
x′′
1, y0

2 > x′′
2. Other cases such as

y10 > x′′
1, y20 < x′

2; y10 < x′
1, y20 > x′′

2 ; y10 < x′
1, y20 < x′

2 (2.5)

can also be considered similarly. It follows from the inequalities y0
1 > x′′

1, y0
2 > x′′

2 that y
0
1 > x0

k1,
y0
2 > x0

l2, and so

y0
1 − x0

k1∣∣y0
1 − x0

k1

∣∣ = 1,
y0
2 − x0

l2∣∣y0
2 − x0

l2

∣∣ = 1. (2.6)

Then (2.3) and (2.4) take the following form:

v1(t) =

{
0, 0 ≤ t ≤ ε,(∑

i∈I u
2
i1(t − ε)

)1/2
, t > ε,

(2.7)

v2(t) =

⎧⎨
⎩
0, 0 ≤ t ≤ ε,(∑

i∈J u
2
i2(t − ε)

)1/2
, t > ε.

(2.8)
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First, we show that evasion is possible on the time interval [0, ε]. Let t ∈ [0, ε]. Then for any
i ∈ I we have:

y1(t) − xi1(t) = y0
1 +
∫ t

0
v1(s)ds − x0

i1 −
∫ t

0
ui1(s)ds

≥ y0
1 − x′′

1 −
t∫

0

|ui1(s)|ds ≥ y0
1 − x′′

1 − ρ
√
t

≥ y0
1 − x′′

1 − ρ
√
ε ≥ 1

2

(
y0
1 − x′′

1

)
> 0,

(2.9)

since by choice of ε, ρ
√
ε < (1/2)(y0

1 − x′′
1).

We now show that evasion is possible on (ε, ∞). If t ∈ (ε, ∞), then according to (2.7)
for any i ∈ I we have:

y1(t) − xi1(t) = y0
1 +
∫ t

ε

v1(s)ds − x0
i1 −
∫ t

0
ui1(s)ds

≥ y0
1 − x′′

1 +
∫ t

ε

√∑
i∈I

u2
i1(s − ε)ds −

∫ t

0
ui1(s)ds

≥ y0
1 − x′′

1 +
∫ t−ε

0

√∑
i∈I

u2
i1(s)ds −

(∫ t−ε

0
+
∫ t

t−ε

)
|ui1(s)|ds

≥ y0
1 − x′′

1 −
∫ t

t−ε
|ui1(s)|ds ≥ y0

1 − x′′
1 −

√
ερ

≥ 1
2

(
y0
1 − x′′

1

)
> 0.

(2.10)

Thus, evasion from the pursuers xi, i ∈ I, is possible. Similarly, according to (2.8) for any
j ∈ J we obtain that

y2(t) − xi2(t) ≥ y0
2 − x′′

2 −
√
ερ ≥ 1

2

(
y0
2 − x′′

2

)
> 0, t ≥ 0. (2.11)

This completes the proof of the theorem.
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Example 2.2. We consider two differential games of two pursuers and one evader described
by the equations

ẋi = ui, xi(0) = x0
i ,

∫∞

0
u2
ij(s)ds ≤ ρ2ij , (2.12)

ẏ = v, y(0) = y0,

∫∞

0
v2
j (s)ds ≤ σ2

j , i, j = 1, 2. (2.13)

(A) In the first differential game, ρ211 = 4, ρ212 = 1, ρ221 = 1, ρ222 = 4, σ2
1 = σ2

2 = 1, and
hence the sets I = {2}, J = {1} satisfy the first hypothesis of the theorem. Initial
positions of the players x0

1, x
0
2, and y0, where x0

1 /=y0, x0
2 /=y0, are assumed to be

any points in the plane. It is not difficult to verify that the second hypothesis of the
theorem holds, if x0

21 /=y0
1, and x0

12 /=y0
2 since x

′
1 = x′′

1 = x0
21, x

′
2 = x′′

2 = x0
12. Therefore,

for this case conclusion of the theorem is true and hence from such initial positions
evasion is possible. Note that the meaning of the condition x0

21 /=y0
1, x

0
12 /=y0

2 is that
the initial position of the evader y0 doesn’t lie on the horizontal and vertical lines
passing through the points x0

1 and x0
2, respectively.

We now construct the strategy for the evader, which guarantees the evasion. Let
u1(t), u2(t), t ≥ 0 be any admissible controls of the pursuers. According to (2.3) and (2.4)
the strategy of the evader takes the following form:

v1(t) =

{
0, 0 ≤ t ≤ ε,

ξ|u21(t − ε)|, t > ε,
v2(t) =

{
0, 0 ≤ t ≤ ε,

η|u12(t − ε)|, t > ε,
(2.14)

where

ξ =
y0
1 − x0

21∣∣y0
1 − x0

21

∣∣ , η =
y0
2 − x0

12∣∣y0
2 − x0

12

∣∣ . (2.15)

For this example, ρ = (ρ211 + ρ212 + ρ221 + ρ222)
1/2 and ε satisfies the following conditions:

ε <
1
4ρ2

min
{(

y0
1 − x0

21

)2
,
(
y0
2 − x0

12

)2}
. (2.16)

According to the theorem if x0
21 /=y0

1 , x
0
12 /=y0

2, then the strategy of the evader (2.14) guarantees
the evasion.

However, the theorem gives no information if either x0
21 = y0

1 or x0
12 = y0

2 since the
second hypothesis of the theorem is not satisfied for these cases. We’ll show that in each of



8 Journal of Applied Mathematics

these cases pursuit can be completed in the game (2.12) and (2.13) (see Definitions 1.5 and
1.6). In the case x0

21 = y0
1, define the strategies of the pursuers as follows:

u11(t) = 0, u12(t) = 0, t ≥ 0,

u21(t) = v1(t),
(2.17)

u22(t) =

⎧⎨
⎩

1
θ

(
y0
2 − x0

22

)
+ v2(t), 0 ≤ t ≤ θ,

0, t > θ,
(2.18)

where θ = |y0
2 − x0

22|
2.

In the case x0
12 = y0

2, define the strategies of the pursuers as follows:

u21(t) = 0, u22(t) = 0, t ≥ 0,

u11(t) =

⎧⎨
⎩

1
θ1

(
y0
1 − x0

11

)
+ v1(t), 0 ≤ t ≤ θ1,

0, t > θ1,

u12(t) = v2(t),

(2.19)

where θ1 = |y0
1 − x0

11|
2.

We consider the case x0
21 = y0

1. The case x0
12 = y0

2 can be analyzed in a similar fashion.
Admissibility of the strategy (2.17) and (2.18) follows from the following relations:

∫∞

0
|u22(t)|2dt =

∫θ

0
|u22(t)|2dt +

∫∞

θ

|u22(t)|2dt

=
∫θ

0

(
1
θ

(
y0
2 − x0

22

)
+ v2(t)

)2

dt

=
∫θ

0

(
1
θ2

∣∣∣y0
2 − x0

22

∣∣∣2 + 2
θ

(
y0
2 − x0

22

)
v2(t) + |v2(t)|2

)
dt

=
1
θ

∣∣∣y0
2 − x0

22

∣∣∣2 + 2
θ

∫θ

0

(
y0
2 − x0

22

)
v2(t)dt +

∫θ

0
|v2(t)|2dt

≤ 1 +
2
θ

∣∣∣y0
2 − x0

22

∣∣∣ ·
∫θ

0
|v2(t)|dt + σ2

2

≤ 2 +
2
θ

∣∣∣y0
2 − x0

22

∣∣∣ ·
√∫θ

0
12dt

√∫θ

0
|v2(t)|2dt

≤ 2 +
2σ2

2√
θ

∣∣∣y0
2 − x0

22

∣∣∣ = 4.

(2.20)
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Here, we used the Cauchy-Schwartz inequality. Next, we show that x2(θ) = y(θ), that is,
pursuit will be completed by the pursuer x2 at the time θ. We have

x21(t) = x0
21 +
∫ t

0
u21(s)ds = y0

1 +
∫ t

0
v1(s)ds = y1(t) (2.21)

for all t ≥ 0. In particular, x21(θ) = y1(θ). In addition,

x22(θ) = x0
22 +
∫θ

0
u22(s)ds = x0

22 +
∫θ

0

(
1
θ

(
y0
2 − x0

22

)
+ v2(s)

)
ds

= y0
2 +
∫θ

0
v2(s)ds = y2(θ).

(2.22)

Hence, x22(θ) = y2(θ). Thus x2(θ) = y(θ).

(B) Consider an example of a differential game described by (2.12) and (2.13), for which
the second hypothesis of the theorem is not satisfied. Let ρ211 = 2, ρ212 = 1, ρ221 =
2, ρ222 = 1, σ2

1 = σ2
2 = 2, x0

1 = (0,−1), x0
2 = (0, 1), y0 = (0, a), where −1 < a < 1.

Let the strategies of the pursuers be defined by formulas

u11(t) = u21(t) = v1(t), u12(t) = 1, u22(t) = −1, t ≥ 0. (2.23)

We show that pursuit is completed by the time t = 1. Indeed, for all t ≥ 0 we have

xi1(t) = x0
i1 +
∫ t

0
ui1(s)ds =

∫ t

0
v1(s)ds = y1(t), i = 1, 2. (2.24)

What is left is to show that xi2(τ) = y2(τ) for some i ∈ {1, 2} and τ, 0 < τ ≤ 1.
It follows from the relations

x12(0) < y2(0) < x22(0),

x12(1) = x0
12 +
∫1

0
u12(s)ds = −1 +

∫1

0
1ds = 0,

x22(1) = x0
22 +
∫1

0
u22(s)ds = 1 +

∫1

0
(−1)ds = 0

(2.25)

that one of the equalities x12(τ) = y(τ) or x22(τ) = y(τ) holds at some τ, 0 ≤ τ ≤ 1. According
to (2.24), xi1(τ) = y1(τ) and therefore one of the equalities x1(τ) = y(τ) or x2(τ) = y(τ) holds
and hence pursuit is completed at τ . Thus, if the initial position of the evader is in the line
segment (x0

1, x
0
2) then pursuit can be completed by the time t = 1.
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3. Conclusion

We have studied a simple motion evasion differential game with integral constraints on
control functions of the players. Unlike the traditional integral constraints, in the present
paper the integral constraint is imposed on each component of control functions of the
players. Under certain conditions, we have proven that the evasion is possible, that is, we
have obtained a sufficient condition of evasion. The problem is open for further investigation
if the hypotheses of the theorem are not satisfied. Further studies can be done to obtain
complete solution for the evasion problem (1.10)–(1.13).
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