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The purpose of this paper is to introduce the modified Halpern-type iterative method by the
generalized f -projection operator for finding a common solution of fixed-point problem of a totally
quasi-φ-asymptotically nonexpansivemapping and a system of equilibrium problems in a uniform
smooth and strictly convex Banach space with the Kadec-Klee property. Consequently, we prove
the strong convergence for a common solution of above two sets. Our result presented in this paper
generalize and improve the result of Chang et al., (2012), and some others.

1. Introduction

In 1953, Mann [1] introduced the following iteration process which is now known as Mann’s
iteration:

xn+1 = αnxn + (1 − αn)Txn, (1.1)

where T is nonexpansive, the initial guess element x1 ∈ C is arbitrary, and {αn} is a sequence
in [0, 1]. Mann iteration has been extensively investigated for nonexpansive mappings. In an
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infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence (see
[2, 3]).

Later, in 1967, Halpern [4] considered the following algorithm:

x1 ∈ C, xn+1 = αnx1 + (1 − αn)Txn, ∀n ≥ 0, (1.2)

where T is nonexpansive. He proved the strong convergence theorem of {xn} to a fixed point
of T under some control condition {αn}. Many authors improved and studied the result of
Halpern [4] such as Qin et al. [5], Wang et al. [6], and reference therein.

In 2008-2009, Takahashi and Zembayashi [7, 8] studied the problem of finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions
of an equilibrium problem in the framework of the Banach spaces.

On the other hand, Li et al. [9] introduced the following hybrid iterative scheme for
approximation fixed points of relatively nonexpansive mapping using the generalized f-
projection operator in a uniformly smooth real Banach space which is also uniformly convex.
They obtained strong convergence theorem for finding an element in the fixed point set of T .

Recently, Ofoedu and Shehu [10] extended algorithm of Li et al. [9] to prove a strong
convergence theorem for a common solution of a system of equilibrium problem and the set
of common fixed points of a pair of relatively quasi-nonexpansive mappings in the Banach
spaces by using generalized f-projection operator. Chang et al. [11] extended and improved
Qin and Su [12] to obtain a strong convergence theorem for finding a common element of the
set of solutions for a generalized equilibrium problem, the set of solutions for a variational
inequality problem, and the set of common fixed points for a pair of relatively nonexpansive
mappings in a Banach space.

Very recently, Chang et al. [13] extended the results of Qin et al. [5] and Wang
et al. [6] to consider a modification to the Halpern-type iteration algorithm for a total
quasi-φ-asymptotically nonexpansive mapping to have the strong convergence under a limit
condition only in the framework of Banach spaces.

The purpose of this paper is to be motivated and inspired by the works mentioned
above, we introduce a modified Halpern-type iterative method by using the new hybrid
projection algorithm of the generalized f-projection operator for solving the common
solution of fixed point for totally quasi-φ-asymptoically nonexpansive mappings and the
system of equilibrium problems in a uniformly smooth and strictly convex Banach space
with the Kadec-Klee property. The results presented in this paper improve and extend the
corresponding ones announced by many others.

2. Preliminaries and Definitions

Let E be a real Banach space with dual E∗, and let C be a nonempty closed and convex subset
of E. Let {θi}i∈Γ : C × C → R be a bifunction, where Γ is an arbitrary index set. The system of
equilibrium problems is to find x ∈ C such that

θi
(
x, y

) ≥ 0, i ∈ Γ, ∀y ∈ C. (2.1)
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If Γ is a singleton, then problem (2.1) reduces to the equilibrium problem, which is to find x ∈ C
such that

θ
(
x, y

) ≥ 0, ∀y ∈ C. (2.2)

A mapping T from C into itself is said to be nonexpansive if

∥
∥Tx − Ty∥∥ ≤ ∥

∥x − y∥∥, ∀x, y ∈ C. (2.3)

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)with kn → 1
as n → ∞ such that

∥
∥Tnx − Tny∥∥ ≤ kn

∥
∥x − y∥∥, ∀x, y ∈ C. (2.4)

T is said to be total asymptotically nonexpansive if there exist nonnegative real sequences νn, μn
with νn → 0, μn → 0 as n → ∞ and a strictly increasing continuous function ϕ : R

+ → R
+

with ϕ(0) = 0 such that

∥∥Tnx − Tny∥∥ ≤ ∥∥x − y∥∥ + νnψ
(∥∥x − y∥∥) + μn, ∀x, y ∈ C, ∀n ≥ 1. (2.5)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the fixed point set of T ;
that is, F(T) = {x ∈ C : Tx = x}. A point p in C is called an asymptotic fixed point of T if C
contains a sequence {xn} which converges weakly to p such that limn→∞‖xn − Txn‖ = 0. The
asymptotic fixed point set of T is denoted by F̂(T).

The normalized duality mapping J : E → 2E
∗
is defined by J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 =

‖x‖2, ‖x∗‖ = ‖x‖}. If E is a Hilbert space, then J = I, where I is the identity mapping. Consider
the functional defined by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y

∥∥2
, (2.6)

where J is the normalized duality mapping and 〈·, ·〉 denote the duality pairing of E and E∗.
If E is a Hilbert space, then φ(y, x) = ‖y − x‖2. It is obvious from the definition of φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ(y, x) ≤ (∥∥y

∥∥ + ‖x‖)2, ∀x, y ∈ E. (2.7)

A mapping T from C into itself is said to be φ-nonexpansive [14, 15] if

φ
(
Tx, Ty

) ≤ φ(x, y), ∀x, y ∈ C. (2.8)

T is said to be quasi-φ-nonexpansive [14, 15] if F(T)/= ∅ and

φ
(
p, Tx

) ≤ φ(p, x), ∀x ∈ C, p ∈ F(T). (2.9)
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T is said to be asymptotically φ-nonexpansive [15] if there exists a sequence {kn} ⊂ [0,∞)with
kn → 1 as n → ∞ such that

φ
(
Tnx, Tny

) ≤ knφ
(
x, y

)
, ∀x, y ∈ C. (2.10)

T is said to be quasi-φ-asymptotically nonexpansive [15] if F(T)/= ∅ and there exists a sequence
{kn} ⊂ [0,∞)with kn → 1 as n → ∞ such that

φ
(
p, Tnx

) ≤ knφ
(
p, x

)
, ∀x ∈ C, p ∈ F(T), ∀n ≥ 1. (2.11)

T is said to be totally quasi-φ-asymptotically nonexpansive, if F(T)/= ∅ and there exist
nonnegative real sequences νn, μn with νn → 0, μn → 0 as n → ∞ and a strictly increasing
continuous function ϕ : R

+ → R
+ with ϕ(0) = 0 such that

φ
(
p, Tnx

) ≤ φ(p, x) + νnϕ
(
φ
(
p, x

))
+ μn, ∀n ≥ 1, ∀x ∈ C, p ∈ F(T). (2.12)

A mapping T from C into itself is said to be closed if for any sequence {xn} ⊂ C such that
limn→∞xn = x0 and limn→∞Txn = y0, then Tx0 = y0.

Alber [16] introduced the generalized projectionΠC : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y); that is, ΠCx = x, where x
is the solution of the minimization problem:

φ(x, x) = inf
y∈C

φ
(
y, x

)
. (2.13)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(y, x) and the strict monotonicity of the mapping J (see, e.g., [16–20]). If E is a Hilbert space,
then φ(x, y) = ‖x−y‖2 andΠC becomes the metric projection PC : H → C. IfC is a nonempty,
closed, and convex subset of a Hilbert space H, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces, and consequently, it is not available in more general Banach
spaces. Later, Wu and Huang [21] introduced a new generalized f-projection operator in
the Banach space. They extended the definition of the generalized projection operators and
proved some properties of the generalized f-projection operator. Next, we recall the concept
of the generalized f-projection operator. Let G : C × E∗ → R ∪ {+∞} be a functional defined
by

G
(
y,�

)
=
∥∥y

∥∥2 − 2〈y,�〉 + ‖�‖2 + 2ρf
(
y
)
, (2.14)

where y ∈ C, � ∈ E∗, ρ is positive number, and f : C → R ∪ {+∞} is proper, convex, and
lower semicontinuous. From the definition of G, Wu and Huang [21] proved the following
properties:

(1) G(y,�) is convex and continuous with respect to� when y is fixed;

(2) G(y, �) is convex and lower semicontinuous with respect to y when � is fixed.
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Definition 2.1. Let E be a real Banach space with its dual E∗. Let C be a nonempty, closed, and
convex subset of E. We say that πf

C : E∗ → 2C is a generalized f-projection operator if

π
f

C� =
{
u ∈ C : G(u,�) = inf

y∈C
G
(
y,�

)
, ∀� ∈ E∗

}
. (2.15)

ABanach space Ewith norm ‖·‖ is called strictly convex if ‖(x+y)/2‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x /=y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is called smooth if the limit limt→ 0((‖x+ ty‖−‖x‖)/t) exists for each x, y ∈ U. It is also
called uniformly smooth if the limit exists uniformly for all x, y ∈ U. The modulus of smoothness
of E is the function ρE : [0,∞) → [0,∞) defined by ρE(t) = sup{(‖x + y‖ + ‖x − y‖)/2 − 1 :
‖x‖ = 1, ‖y‖ ≤ t}. The modulus of convexity of E (see [22]) is the function δE : [0, 2] → [0, 1]
defined by δE(ε) = inf{1 − ‖(x + y)/2‖ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}. In this paper
we denote the strong convergence and weak convergence of a sequence {xn} by xn → x and
xn ⇀ x, respectively.

Remark 2.2. The basic properties of E, E∗, J , and J−1 (see [18]) are as follows.

(i) If E is an arbitrary Banach space, then J is monotone and bounded.

(ii) If E is a strictly convex, then J is strictly monotone.

(iii) If E is a smooth, then J is single valued and semicontinuous.

(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

(v) If E is reflexive smooth and strictly convex, then the normalized duality mapping J
is single valued, one-to-one, and onto.

(vi) If E is a reflexive strictly convex and smooth Banach space and J is the duality
mapping from E into E∗, then J−1 is also single valued, bijective, and is also the
duality mapping from E∗ into E, and thus JJ−1 = IE∗ and J−1J = IE.

(vii) If E is uniformly smooth, then E is smooth and reflexive.

(viii) E is uniformly smooth if and only if E∗ is uniformly convex.

(ix) If E is a reflexive and strictly convex Banach space, then J−1 is norm-weak∗-
continuous.

Remark 2.3. If E is a reflexive, strictly convex, and smooth Banach space, then φ(x, y) = 0, if
and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From (2.6), we have
‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one has Jx = Jy.
Therefore, we have x = y (see [18, 20, 23] for more details).

Recall that a Banach space E has the Kadec-Klee property [18, 20, 24], if for any
sequence {xn} ⊂ E and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as n → ∞.
It is well known that if E is a uniformly convex Banach space, then E has the Kadec-Klee
property.

We also need the following lemmas for the proof of our main results.

Lemma 2.4 (see Change et al. [25]). Let C be a nonempty, closed, and convex subset of a uniformly
smooth and strictly convex Banach space E with the Kadec-Klee property. Let T : C → C be a closed
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and total quasi-φ-asymptotically nonexpansive mapping with nonnegative real sequence νn and μn
with νn → 0, μn → 0 as n → ∞ and a strictly increasing continuous function ζ : R

+ → R
+ with

ζ(0) = 0. If μ1 = 0, then the fixed point set F(T) is a closed convex subset of C.

Lemma 2.5 (see Wu and Hung [21]). Let E be a real reflexive Banach space with its dual E∗ and C
a nonempty, closed, and convex subset of E. The following statement hold:

(1) πf

C� is a nonempty, closed and convex subset of C for all� ∈ E∗;

(2) if E is smooth, then for all� ∈ E∗, x ∈ πf

C� if and only if

〈x − y, � − Jx〉 + ρf(y) − ρf(x) ≥ 0, ∀y ∈ C; (2.16)

(3) if E is strictly convex and f : C → R∪{+∞} is positive homogeneous (i.e., f(tx) = tf(x)
for all t > 0 such that tx ∈ C where x ∈ C), then πf

C� is single-valued mapping.

Lemma 2.6 (see Fan et al. [26]). Let E be a real reflexive Banach space with its dual E∗ and C be a
nonempty, closed and convex subset of E. If E is strictly convex, then πf

C� is single valued.

Recall that J is single-valued mapping when E is a smooth Banach space. There exists
a unique element � ∈ E∗ such that � = Jx where x ∈ E. This substitution in (2.14) gives

G
(
y, Jx

)
=
∥∥y

∥∥2 − 2〈y, Jx〉 + ‖x‖2 + 2ρf
(
y
)
. (2.17)

Now we consider the second generalized f projection operator in Banach space (see
[9]).

Definition 2.7. Let E be a real smooth Banach space, and let C be a nonempty, closed, and
convex subset of E. We say that Πf

C : E → 2C is generalized f-projection operator if

Πf

Cx =
{
u ∈ C : G(u, Jx) = inf

y∈C
G
(
y, Jx

)
, ∀x ∈ E

}
. (2.18)

Lemma 2.8 (see Deimling [27]). Let E be a Banach space, and let f : E → R ∪ {+∞} be a lower
semicontinuous convex function. Then there exist x∗ ∈ E∗ and α ∈ R such that

f(x) ≥ 〈x, x∗〉 + α, ∀x ∈ E. (2.19)

Lemma 2.9 (see Li et al. [9]). Let E be a reflexive smooth Banach space, and let C be a nonempty,
closed, and convex subset of E. The following statements hold:

(1) Πf

Cx is nonempty, closed and convex subset of C for all x ∈ E;
(2) for all x ∈ E, x̂ ∈ Πf

Cx if and only if

〈x̂ − y, Jx − Jx̂〉 + ρf(y) − ρf(x̂) ≥ 0, ∀y ∈ C; (2.20)

(3) if E is strictly convex, then Πf

C is single-valued mapping.
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Lemma 2.10 (see Li et al. [9]). Let E be a real reflexive smooth Banach space, let C be a nonempty,
closed, and convex subset of E, x ∈ E, and let x̂ ∈ Πf

Cx. Then

φ
(
y, x̂

)
+G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C. (2.21)

Remark 2.11. Let E be a uniformly convex and uniformly smooth Banach space and f(x) = 0
for all x ∈ E, then Lemma 2.10 reduces to the property of the generalized projection operator
considered by Alber [16].

If f(y) ≥ 0 for all y ∈ C and f(0) = 0, then the definition of totally quasi-φ-
asymptotically nonexpansive T is equivalent to if F(T)/= ∅, and there exist nonnegative real
sequences νn, μn with νn → 0, μn → 0 as n → ∞ and a strictly increasing continuous
function ζ : R

+ → R
+ with ζ(0) = 0 such that

G
(
p, Tnx

) ≤ G(p, x) + νnζG
(
p, x

)
+ μn, ∀n ≥ 1, ∀x ∈ C, p ∈ F(T). (2.22)

For solving the equilibrium problem for a bifunction θ : C×C → R, let us assume that
θ satisfies the following conditions:

(A1) θ(x, x) = 0 for all x ∈ C;

(A2) θ is monotone; that is, θ(x, y) + θ(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

θ
(
tz + (1 − t)x, y) ≤ θ(x, y); (2.23)

(A4) for each x ∈ C, y �→ θ(x, y) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗ and define

θ
(
x, y

)
=
〈
Ax, y − x〉, ∀x, y ∈ C. (2.24)

Then, θ satisfies (A1)–(A4). The following result is in Blum and Oettli [28].

Lemma 2.12 (see Blum and Oettli [28]). Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let θ be a bifunction from C ×C to R satisfying (A1)–(A4), and
let r > 0 and x ∈ E. Then, there exists z ∈ C such that

θ
(
z, y

)
+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.25)
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Lemma 2.13 (see Takahashi and Zembayashi [8]). Let C be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E, and let θ be a bifunction from C × C to R

satisfying conditions (A1)–(A4). For all r > 0 and x ∈ E, define a mapping Tθr : E → C as follows:

Tθr x =
{
z ∈ C : θ

(
z, y

)
+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
. (2.26)

Then the following hold:

(1) Tθr is single-valued;

(2) Tθr is a firmly nonexpansive-type mapping [29]; that is, for all x, y ∈ E,

〈Tθr x − Tθr y, JTθr x − JTθr y〉 ≤ 〈Tθr x − Tθr y, Jx − Jy〉; (2.27)

(3) F(Tθr ) = EP(θ);

(4) EP(θ) is closed and convex.

Lemma 2.14 (see Takahashi and Zembayashi [8]). Let C be a closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let θ be a bifunction from C × C to R satisfying (A1)–
(A4), and let r > 0. Then, for x ∈ E and q ∈ F(Tθr ),

φ
(
q, Tθr x

)
+ φ

(
Tθr x, x

)
≤ φ(q, x). (2.28)

3. Main Result

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. For each j = 1, 2, . . . , m, let θj be a bifunction
from C × C to R which satisfies conditions (A1)–(A4). Let S : C → C be a closed totally quasi-φ-
asymptotically nonexpansive mappings with nonnegative real sequences νn, μn with νn → 0, μn →
0 as n → ∞, and a strictly increasing continuous function ψ : R

+ → R
+ with ψ(0) = 0. Let

f : E → R be a convex and lower semicontinuous function with C ⊂ int (D(f)) such that f(x) ≥ 0
for all x ∈ C and f(0) = 0. Assume that F := F(S) ∩ (∩mj=1EP(θj))/= ∅. For an initial point x1 ∈ E

and C1 = C, one define the sequence {xn} by

un = Tθmrm,nT
θm−1
rm−1,nT

θm−2
rm−2,n · · · Tθ1r1,nxn,

zn = J−1(αnJx1 + (1 − αn)JSnun),
Cn+1 = {v ∈ Cn : G(v, Jzn) ≤ G(v, Jun) ≤ G(v, Jx1) + (1 − αn)G(v, Jxn) + ζn},

xn+1 = Πf

Cn+1
x1, n ∈ N,

(3.1)

where {αn} is a sequence in [0, 1], ζn = νn supq∈F ψ(G(q, xn)) + μn and {rj,n} ⊂ [d,∞) for some

d > 0. If limn→∞ αn = 0, then {xn} converges strongly toΠf

Fx0.
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Proof. We split the proof into four steps.

Step 1. First, we show that Cn is closed and convex for all n ∈ N.
Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for all

n ∈ N. For any υ ∈ Cn, we know that G(υ, Jzn) ≤ G(υ, Jxn) + ζn is equivalent to

2〈υ, Jxn − Jzn〉 ≤ ‖xn‖2 − ‖zn‖2 + ζn. (3.2)

So, Cn+1 is closed and convex. Hence by induction Cn is closed and convex for all n ≥ 1.

Step 2. We will show that the sequence {xn} is well defined.
We will show by induction that F ⊂ Cn for all n ∈ N. It is obvious that F ⊂ C1=C.

Suppose that F ⊂ Cn for some n ∈ N. Let q ∈ F, put un = Km
n xn, K

j
n = T

θj
rj,nT

θj−1
rj−1,n . . . T

θ1
r1,n for all

j = 1, 2, 3, . . . , m, K0
n = I, we have that

G
(
q, Jun

)
= &G

(
q, JKm

n xn
) ≤ &G

(
q, Jxn

)
. (3.3)

From (3.3) and Swhich is a totally quasi-φ asymptotically nonexpansive mappings, it follows
that

G
(
q, Jzn

)
= G

(
q, (αnJx1 + (1 − αn)JSnun)

)

=
∥∥q

∥∥2 − 2αn〈q, Jx1〉 − 2(1 − αn)〈q, JSnun〉

+ ‖αnJx1 + (1 − αn)JSnun‖2 + 2ρf
(
q
)

≤ ∥∥q
∥∥2 − 2αn〈q, Jx1〉 − 2(1 − αn)〈q, JSnun〉

+ αn‖Jx1‖2 + (1 − αn)‖JSnun‖2 + 2ρf
(
q
)

= αnG
(
q, Jx1

)
+ (1 − αn)G

(
q, JSnun

)

≤ αnG
(
q, Jx1

)
+ (1 − αn)

(
G
(
q, Jun

)
+ νnψ

(
G
(
q, Jun

))
+ μn

)

≤ αnG
(
q, Jx1

)
+ (1 − αn)G

(
q, Jxn

)
+ νn sup

q∈F
ψ
(
G
(
q, Jxn

))
+ μn

= αnG
(
q, Jx1

)
+ (1 − αn)G

(
q, Jxn

)
+ ζn.

(3.4)

This shows that q ∈ Cn+1 which implies that F ⊂ Cn+1, and hence, F ⊂ Cn for all n ∈ N.
and the sequence {xn} is well defined. From xn = Πf

Cn
x1, we see that

〈xn − q, Jx1 − Jxn〉 + ρf
(
q
) − ρf(xn) ≥ 0, ∀q ∈ Cn. (3.5)

Since F ⊂ Cn for each n ∈ N, we arrive at

〈xn − q, Jx1 − Jxn〉 + ρf
(
q
) − ρf(xn) ≥ 0, ∀q ∈ F. (3.6)

Hence, the sequence {xn} is well defined.
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Step 3. We will show that xn → p ∈ F := F(S) ∩ (∩mj=1EP(θj)).
Let f : E → R is convex and lower semicontinuous function, follows from Lemma 2.8,

there exist x∗ ∈ E∗ and α ∈ R such that

f
(
y
) ≥ 〈

y, x∗〉 + α, ∀y ∈ E. (3.7)

Since xn ∈ Cn ⊂ E, it follows that

G(xn, Jx1) = ‖xn‖2 − 2〈xn, Jx1〉 + ‖x1‖2 + 2ρf(xn)

≥ ‖xn‖2 − 2〈xn, Jx1〉 + ‖x1‖2 + 2ρ〈xn, x∗〉 + 2ρα

= ‖xn‖2 − 2
〈
xn, Jx1 − ρx∗〉 + ‖x1‖2 + 2ρα

≥ ‖xn‖2 − 2‖xn‖
∥
∥Jx1 − ρx∗∥∥ + ‖x1‖2 + 2ρα

=
(‖xn‖ −

∥∥Jx1 − ρx∗∥∥)2 + ‖x1‖2 −
∥∥Jx1 − ρx∗∥∥2 + 2ρα.

(3.8)

For q ∈ F and xn = Πf

Cn
x1, we have

G
(
q, Jx1

) ≥ G(xn, Jx1) ≥
(‖xn‖ −

∥∥Jx1 − ρx∗∥∥)2 + ‖x1‖2 −
∥∥Jx1 − ρx∗∥∥2 + 2ρα. (3.9)

This shows that {xn} is bounded and so is {G(xn, Jx1)}. From the fact that xn+1 = Πf

Cn+1
x1 ∈

Cn+1 ⊂ Cn and xn = Πf

Cn
x1, it follows from Lemma 2.10 that

0 ≤ (‖xn+1−‖xn‖)2 ≤ φ(xn+1, xn) ≤ G(xn+1, Jx1) −G(xn, Jx1). (3.10)

That is, {G(xn, Jx1)} is nondecreasing. Hence, we obtain that limn→∞G(xn, Jx1) exists. Taking
n → ∞, we obtain

lim
n→∞

φ(xn+1, xn) = 0. (3.11)

Since E is reflexive, {xn} is bounded, and Cn is closed and convex for all n ∈ N. Without loss
of generality, we can assume that xn ⇀ p ∈ Cn. From the fact that xn = Πf

Cn
x1, we get that

G(xn, Jx1) ≤ G
(
p, Jx1

)
, ∀n ∈ N. (3.12)

Since f is convex and lower semicontinuous, we have

lim inf
n→∞

G(xn, Jx1) = lim inf
n→∞

{
‖xn‖2 − 2〈xn, Jx1〉 + ‖x1‖2 + 2ρf(xn)

}

≥ ∥∥p
∥∥2 − 2〈p, Jx1〉 + ‖x1‖2 + 2ρf

(
p
)

= G(xn, Jx1).

(3.13)
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By (3.12) and (3.13), we get

G
(
p, Jx1

) ≤ lim inf
n→∞

G(xn, Jx1) ≤ lim sup
n→∞

G(xn, Jx1) ≤ G
(
p, Jx1

)
. (3.14)

That is, limn→∞G(xn, Jx1) = G(p, Jx1); this implies that ‖xn‖ → ‖p‖; by virtue of the Kadec-
Klee property of E, we obtain that

lim
n→∞

xn = p. (3.15)

We also have

lim
n→∞

xn+1 = p. (3.16)

From (3.15), we get that

lim
n→∞

ζn = lim
n→∞

(

νnsup
q∈F

ψ
(
G
(
q, xn

))
+ μn

)

= 0. (3.17)

(a)We show that p ∈ ∩mj=1 EP(θj).
Since xn+1 = Πf

Cn+1
x1 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

G(xn+1, Jun) ≤ αnG(xn+1, Jx1) + (1 − αn)G(xn+1, Jxn) + ζn (3.18)

is equivalent to

φ(xn+1, un) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + ζn. (3.19)

From (3.11), (3.15), and (3.17), it follows that

lim
n→∞

φ(xn+1, un) = 0. (3.20)

From (2.7), we have

(‖xn+1‖ − ‖un‖)2 −→ 0. (3.21)

Since ‖xn+1‖ → ‖p‖, we have

‖un‖ −→ ∥∥p
∥∥ as n −→ ∞. (3.22)

It follow that

‖Jun‖ −→ ∥∥Jp
∥∥ as n −→ ∞. (3.23)
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That is, {‖Jun‖} is bounded in E∗ and E∗ is reflexive; we assume that Jun ⇀ u∗ ∈ E∗. In view
of J(E) = E∗, there exists u ∈ E such that Ju = u∗. It follows that

φ(xn+1, un) = ‖xn+1‖2 − 2〈xn+1, Jyn〉 + ‖un‖2

= ‖xn+1‖2 − 2〈xn+1, Jun〉 + ‖Jun‖2.
(3.24)

Taking lim infn→∞ on both sides of the equality above and ‖ · ‖ is the weak lower
semicontinuous, it yields that

0 ≥ ∥
∥p

∥
∥2 − 2〈p, u∗〉 + ‖u∗‖2

=
∥
∥p

∥
∥2 − 2〈p, Ju〉 + ‖Ju‖2

=
∥
∥p

∥
∥2 − 2〈p, Ju〉 + ‖u‖2

= φ
(
p, u

)
.

(3.25)

That is, p = u, which implies that u∗ = Jp. It follows that Jun ⇀ Jp ∈ E∗. From (3.23) and
the Kadec-Klee property of E∗ we have Jun → Jp as n → ∞. Note that J−1 : E∗ → E is
norm-weak ∗-continuous; that is, un ⇀ p. From (3.22) and the Kadec-Klee property of E, we
have

lim
n→∞

un = p. (3.26)

For q ∈ F ⊂ Cn, by nonexpansiveness, we observe that

φ
(
q, un

)
= φ

(
q,Km

n xn
)

≤ φ
(
q,Km−1

n xn
)

≤ φ
(
q,Km−2

n xn
)

...

≤ φ
(
q,K

j
nxn

)
.

(3.27)

By Lemma 2.14, we have for j = 1, 2, 3, . . . , m

φ
(
K
j
nxn, xn

)
& ≤ φ(q, xn

) − φ
(
q,K

j
nxn

)
≤ φ(q, xn

) − φ(q, un
)
. (3.28)

Since xn, un → p as n → ∞, we get φ(Kj
nxn, xn) → 0 as n → ∞, for j = 1, 2, 3, . . . , m. From

(2.7), it follow that

(∥∥∥K
j
nxn

∥∥∥ − ‖xn‖
)2 −→ 0. (3.29)
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Since ‖xn‖ → ‖p‖, we also have

∥
∥
∥K

j
nxn

∥
∥
∥ −→ ∥

∥p
∥
∥ as n −→ ∞. (3.30)

Since {Kj
nxn} is bounded andE is reflexive, without loss of generality we assume thatKj

nyn ⇀
h. We know that Cn is closed and convex for each n ≥ 1 it is obvious that h ∈ Cn. Again since

φ
(
K
j
nxn, xn

)
=
∥
∥
∥K

j
nxn

∥
∥
∥
2 − 2

〈
K
j
nxn, Jxn

〉
+ ‖xn‖2, (3.31)

taking lim infn→∞ on the both sides of equality above, we have

0& ≥ ‖h‖2 − 2
〈
h, Jp

〉
+
∥
∥p

∥
∥2 = φ

(
h, p

)
. (3.32)

That is, h = p, for all j = 1, 2, 3, . . . , m; it follow that

K
j
nxn ⇀ p; (3.33)

from (3.30), (3.33), and the Kadec-Klee property, it follows that

lim
n→∞

K
j
nxn = p, ∀j = 1, 2, 3, . . . , m. (3.34)

By using triangle inequality, we have

∥∥∥xn −Kj
nxn

∥∥∥ ≤ ∥∥xn − p
∥∥ +

∥∥∥p −Kj
nun

∥∥∥. (3.35)

Since xn,K
j
nxn → p as n → ∞, we have

lim
n→∞

∥∥∥xn −Kj
nxn

∥∥∥ = 0, ∀j = 1, 2, 3, . . . , m. (3.36)

Again by using triangle inequality, we have

∥∥∥K
j
nxn −Kj−1

n xn
∥∥∥ ≤

∥∥∥K
j
nxn − xn

∥∥∥ +
∥∥∥xn −Kj−1

n xn
∥∥∥. (3.37)

From (3.36), we also have

lim
n→∞

∥∥∥K
j
nxn −Kj−1

n xn
∥∥∥ = 0, ∀j = 1, 2, 3, . . . , m. (3.38)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥∥∥JK
j
nxn − JKj−1

n xn
∥∥∥ = 0, ∀j = 1, 2, 3, . . . , m. (3.39)
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From rj,n > 0, we have ‖JKj
nxn − JKj−1

n xn‖/rj,n → 0 as n → ∞ for all j = 1, 2, 3, . . . , m, and

θj
(
K
j
nyn, y

)
+

1
rj,n

〈y −Kj
nxn, JK

j
nxn − JKj−1

n xn〉 ≥ 0, ∀y ∈ C. (3.40)

By (A2), that

∥
∥
∥y −Kj

nyn
∥
∥
∥

∥
∥
∥JK

j
nyn − JKj−1

n xn
∥
∥
∥

rn
≥ 1
rj,n

〈y −Kj
nxn, JK

j
nyn − JKj−1

n xn〉

≥ − θj
(
K
j
nxn, y

)

≥ θj
(
y,K

j
nxn

)
, ∀y ∈ C,

(3.41)

and K
j
nxn → p as n → ∞, we get θj(y, p) ≤ 0, for all y ∈ C. For 0 < t < 1, define yt =

ty + (1 − t)p, then yt ∈ C which imply that θj(yt, p) ≤ 0. From (A1), we obtain that

0 = θj
(
yt, yt

) ≤ tθj
(
yt, y

)
+ (1 − t)θj

(
yt, p

) ≤ tθj
(
yt, y

)
. (3.42)

We have that θj(yt, y) ≥ 0. From (A3), we have θj(p, y) ≥ 0, for all y ∈ C and j = 1, 2, 3, . . . , m.
That is, p ∈ EP(θj), for all j = 1, 2, 3, . . . , m. This imply that p ∈ ∩mj=1EP(θj).

(b)We show that p ∈ F(S).
Since xn+1 = Πf

Cn+1
x1 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

G(xn+1, Jzn) ≤ αnG(xn+1, Jx1) + (1 − αn)G(xn+1, Jxn) + ζn (3.43)

is equivalent to

φ(xn+1, zn) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn) + ζn. (3.44)

Following (3.11), (3.15), and (3.17), we get that

lim
n→∞

φ(xn+1, zn) = 0. (3.45)

From (2.7), we also have

‖zn‖ −→ ∥∥p
∥∥ as n −→ ∞. (3.46)

It follows that

‖Jzn‖ −→ ∥∥Jp
∥∥ as n −→ ∞. (3.47)
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This implies that {‖Jzn‖} is bounded in E∗. Since E is reflexive and E∗ is also reflexive, we
can assume that Jzn ⇀ z∗ ∈ E∗. In view of the reflexive of E, we see that J(E) = E∗. There
exists z ∈ E such that Jz = z∗. It follows that

φ(xn+1, zn) = ‖xn+1‖2 − 2〈xn+1, Jzn〉 + ‖zn‖2

= ‖xn+1‖2 − 2〈xn+1, Jzn〉 + ‖Jzn‖2.
(3.48)

Taking lim infn→∞ on both sides of the equality above and in view of the weak lower
semicontinuity of norm ‖ · ‖, it yields that

0 ≥ ∥
∥p

∥
∥2 − 2〈p, z∗〉 + ‖z∗‖2

=
∥
∥p

∥
∥2 − 2〈p, Jz〉 + ‖Jz‖2

=
∥∥p

∥∥2 − 2〈p, Jz〉 + ‖z‖2

= φ
(
p, z

)
;

(3.49)

That is p = z, which implies that z∗ = Jp. It follows that Jzn ⇀ Jp ∈ E∗.From (3.47) and
the Kadec-Klee property of E∗ we have Jzn → Jp as n → ∞. Since J−1 : E∗ → E is norm-
weak ∗-continuous, zn ⇀ p as n → ∞. From (3.46) and the Kadec-Klee property of E, we
have

lim
n→∞

zn = p. (3.50)

Since {xn} is bounded, then a mapping S is also bounded. From the condition limn→∞αn = 0,
we have that

‖Jzn − JSnun‖ = lim
n→∞

αn‖Jx1 − JSnun‖ = 0. (3.51)

From (3.47), we get

‖JSnun‖ −→ ∥∥Jp
∥∥ as n −→ ∞. (3.52)

Since J−1 : E∗ → E is norm-weak∗-continuous,

Snun ⇀ p as n −→ ∞. (3.53)

On the other hand, we observe that

∣∣‖Snun‖ −
∥∥p

∥∥∣∣ = ‖J(Snun)‖ −
∥∥Jp

∥∥ ≤ ∥∥J(Snun) − Jp
∥∥. (3.54)

In view of (3.52), we obtain ‖Snun‖ → ‖p‖. Since E has the Kadee-Klee property, we get

Snun −→ p for each n ∈ N. (3.55)
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From Snun → p, we get Sn+1un → p; that is, SSnun → p. In view of closeness of S, we have
Sp = p. This implies that p ∈ F(S). From (a) and (b), it follows that p ∈ ∩mj=1EP(θj) ∩ F(S).

Step 4. We will show that p = Πf

Fx1.

Since F is closed and convex set from Lemma 2.9, we have Πf

Fx1 which is single

valued, denoted by υ. By definition xn = Πf

Cn
x1 and v ∈ F ⊂ Cn, we also have

G(xn, Jx1) ≤ G(υ, Jx1), ∀n ≥ 1. (3.56)

By the definition of G and f , we know that, for each given x, G(ξ, Jx) is convex and lower
semicontinuous with respect to ξ. So

G
(
p, Jx1

) ≤ lim inf
n→∞

G(xn, Jx1) ≤ lim sup
n→∞

G(xn, Jx1) ≤ G(υ, Jx1). (3.57)

From the definition of Πf

Fx1 and since p ∈ F, we conclude that υ = p = Πf

Fx1 and xn → p as
n → ∞. The proof is completed.

Setting νn ≡ 0 and μn ≡ 0 in Theorem 3.1, then we have the following corollary.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. For each j = 1, 2, . . . , m, let θj be a bifunction
from C × C to R which satisfies conditions (A1)–(A4). Let S : C → C be a closed and quasi-φ-
asymptotically nonexpansive mappings, and let f : E → R be a convex and lower semicontinuous
function with C ⊂ int (D(f)) such that f(x) ≥ 0 for all x ∈ C and f(0) = 0. Assume that
F = F(S)∩ (∩mj=1EP(θj))/= ∅. For an initial point x1 ∈ E and C1 = C, we define the sequence {xn} by

un = Tθmrm,nT
θm−1
rm−1,nT

θm−2
rm−2,n · · · Tθ1r1,nxn,

zn = J−1(αnJx1 + (1 − αn)JSnun),
Cn+1 = {v ∈ Cn : G(v, Jzn) ≤ G(v, Jun) ≤ G(v, Jx1) + (1 − αn)G(v, Jxn) + ζn},

xn+1 = Πf

Cn+1
x1, n ∈ N,

(3.58)

where {αn} is a sequence in [0, 1], ζn = νn supq∈F ψ(G(q, xn)) + μn, and {rj,n} ⊂ [d,∞) for some

d > 0. If limn→∞αn = 0, then {xn} converges strongly toΠf

Fx1.

Let E be a real Banach space, and letC be a nonempty closed convex subset of E. Given
a mapping A : C → E∗, let θ(x, y) = 〈Ax, y − x〉 for all x, y ∈ C. Then x∗ ∈ EP(θ) if and only
if 〈Ax∗, y − x∗〉 ≥ 0 for all y ∈ C; that is, x∗ is a solution of the classical variational inequality
problem. The set of this solution is denoted by VI(A,C). For each r > 0 and x ∈ E, we define
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the mapping Tθr x by

Tθr x =
{
z ∈ C : 〈Az, y − z〉 + 1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
. (3.59)

Hence, we obtain the following corollary.

Corollary 3.3. Let C be a nonempty, closed, and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. For each j = 1, 2, . . . , m, let {Aj} be a
continuous monotone mapping of C into E∗. Let S : C → C be a closed totally quasi-φ-asymptotically
nonexpansive mappings with nonnegative real sequences νn, μn with νn → 0, μn → 0 as n → ∞
and a strictly increasing continuous function ψ : R

+ → R
+ with ψ(0) = 0, and let f : E → R be

a convex and lower semicontinuous function with C ⊂ int (D(f)) such that f(x) ≥ 0 for all x ∈ C
and f(0) = 0. Assume that F = F(S) ∩ (∩mj=1VI(Aj,C))/= ∅. For an initial point x1 ∈ E and C1 = C,
one defines the sequence {xn} by

un = Tθmrm,nT
θm−1
rm−1,nT

θm−2
rm−2,n · · · Tθ1r1,nxn,

zn = J−1(αnJx1 + (1 − αn)JSnun),
Cn+1 = {v ∈ Cn : G(v, Jzn) ≤ G(v, Jun) ≤ G(v, Jx1) + (1 − αn)G(v, Jxn) + ζn},

xn+1 = Πf

Cn+1
x1, n ∈ N,

(3.60)

where ζn = νn supq∈F ψ(G(q, xn)) + μn, {αn} is a sequence in [0, 1], and {rj,n} ⊂ [d,∞) for some

d > 0. If limn→∞αn = 0, then {xn} converges strongly toΠf

Fx1.

If f(x) = 0 for all x ∈ E, we haveG(ξ, Jx) = φ(ξ, x) andΠf

Cx = ΠCx. From Theorem 3.1,
we obtain the following corollary.

Corollary 3.4. Let C be a nonempty, closed, and convex subset of a uniformly smooth and strictly
convex Banach space E with the Kadec-Klee property. For each j = 1, 2, . . . , m, let θj be a bifunction
from C × C to R which satisfies conditions (A1)–(A4). Let S : C → C be a closed totally quasi-φ-
asymptotically nonexpansive mappings with nonnegative real sequences νn, μn with νn → 0, μn → 0
as n → ∞ and a strictly increasing continuous function ψ : R

+ → R
+ with ψ(0) = 0. Assume that

F = F(S)∩ (∩mj=1EP(θj))/= ∅. For an initial point x1 ∈ E and C1 = C, we define the sequence {xn} by

un = Tθmrm,nT
θm−1
rm−1,nT

θm−2
rm−2,n · · · Tθ1r1,nxn,

zn = J−1(αnJx1 + (1 − αn)JSnun),
Cn+1 = {v ∈ Cn : G(v, Jzn) ≤ G(v, Jun) ≤ G(v, Jx1) + (1 − αn)G(v, Jxn) + ζn},

xn+1 = ΠCn+1x1, n ∈ N,

(3.61)

where {αn} is a sequence in [0, 1], ζn = νn supq∈F ψ(G(q, xn)) + μn, and {rj,n} ⊂ [d,∞) for some
d > 0. If limn→∞αn = 0, then {xn} converges strongly toΠFx1.
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Remark 3.5. Our main result extends and improves the result of Chang et al. [13] in the
following sense.

(i) From the algorithm we used new method replace by the generalized f-projection
method which is more general than generalized projection.

(ii) For the problem, we extend the result to a common problem of fixed point problems
and equilibrium problems.
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