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We consider a system of nonlinear equations F(x) = 0. A new iterative method for solving
this problem numerically is suggested. The analytical discussions of the method are provided
to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution
with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the
theoretical aspects using the programming package Mathematica.

1. Preliminaries

In this work, we consider the following system of nonlinear equations:

F(x) = 0, (1.1)

wherein the function F is F(x) = (f1(x), f2(x), . . . , fn(x))
T and the functions f1(x), f2(x), . . .,

fn(x) are the coordinate functions, [1].
There are many approaches to solve the system (1.1). One of the best iterative methods

to challenge this problem is Newton’s method. This method starts with an initial guess x(0)

and after k updates and by considering a stopping criterion satisfies (1.1).
To find an update per full cycle of such fixed point methods, the linear system(s)

involved in the process should be solved by direct or indirect methods. In terms of com-
putational point of view, when dealing with large-scale systems arising from the discretiza-
tion of nonlinear PDEs or integral equations, solving the system of linear equations by a direct
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method such as LU decomposition is not that easy. Hence, it seems reasonable to solve the
linearized system approximately using iterative methods such as GMRES. In this way, one
of such approaches may be categorized as an inexact method [2]. For example, Newton’s
method to solve (1.1) can be written in the form below:

x(k+1) = x(k) + s(k), k = 0, 1, 2, . . . ,

F ′
(
x(k)
)
s(k) = −F

(
x(k)
)
,

(1.2)

and it could be seen in the inexact form by considering η(k) which satisfies

∥∥∥F ′
(
x(k)
)
s(k) + F

(
x(k)
)∥∥∥ ≤ η(k)

∥∥∥F
(
x(k)
)∥∥∥, (1.3)

with

η(k) ∈ [0, 1), (1.4)

as the forcing term [3].
A benefit of Newton’s method is that the obtained sequence converges quadratically

if the initial estimate is close to the exact solution. However, there are some downsides of the
method. One is the selection of the initial guess. A good initial guess can lead to convergence
in a couple of steps. To improve the initial guess, several ideas can be found in the literature;
see, for example, [4–6].

In what follows, we assume that F(x) is a smooth function of x in the open convex set
D ⊆ R

n. There are plenty of other solvers to tackle the problem (1.1); see, for example, [7–
10]. Among such methods, the third-order iterative methods like the Halley and Chebyshev
methods [11] are considered less practically from a computational point of view because
they need to compute the expensive second-order Frechet derivatives in contrast to the
quadratically convergent method (1.2), in which the first-order Frechet derivative needs to
be calculated.

Let us now review some of the most current methods for solving (1.1). In 2012, Sharma
et al. in [12] presented the following quadratically convergent method:

y(k) = x(k) − 2
3
F ′
(
x(k)
)−1

F
(
x(k)
)
,

x(k+1) = x(k) − 1
2

[
−I + 9

4
F ′
(
y(k)
)−1

F ′
(
x(k)
)

+
3
4
F ′
(
x(k)
)−1

F ′
(
y(k)
)]

F ′
(
x(k)
)−1

F
(
x(k)
)
.

(1.5)
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The fourth-order method of Soleymani (the first two steps of relation (11) in [13]) for
systems of nonlinear equations is as follows:

y(k) = x(k) − 2
3
F ′
(
x(k)
)−1

F
(
x(k)
)
,

x(k+1) = x(k) −
[
I − 3

8

(
I −
(
F ′
(
y(k)
)−1

F ′
(
x(k)
) )2

)]
F ′
(
x(k)
)−1

F
(
x(k)
)
.

(1.6)

As could be seen, (1.5) and (1.6) include the evaluations F(x(k)), F ′(x(k)), and F ′(y(k)).
The primary goal of the present paper is to achieve both high order of convergence

and low computational load in order to solve (1.1) with a special attention to the matter of
efficiency index. Hence, we propose a new iterative method with sixth-order convergence to
find both real and complex solutions. The new proposed method needs not the evaluation of
the second-order Frechet derivative.

The rest of this paper is prepared as follows. In Section 2, the construction of the novel
scheme is offered. Section 3 includes its analysis of convergence behavior, and it shows the
suggested method has sixth order. Section 4 contains a discussion on the efficiency of the
iterative method. This is followed by Section 5 where some numerical tests will be furnished
to illustrate the accuracy and efficiency of the method. Section 6 ends the paper, where a
conclusion of the study is given.

2. The Proposed Method

This section contains the new method of this paper. We aim at having an iteration method
to have high order of convergence with an acceptable efficiency index. Hence, in order to
reach the sixth order of convergence without imposing the computation of further Frechet
derivatives, we consider a three-step structure using a Jarratt-type method as the predictor,
while the corrector step would be designed as if no new Frechet derivative has been used.
Thus, we should use F ′(x(k)) and F ′(y(k)) in the third step, and hence we could suggest the
following iteration method:

y(k) = x(k) − 2
3
F ′
(
x(k)
)−1

F
(
x(k)
)
,

z(k) = x(k) −
[
23
8
I − 3F ′

(
x(k)
)−1

F ′
(
y(k)
)
+
9
8

(
F ′
(
x(k)
)−1

F ′
(
y(k)
))2
]
F ′
(
x(k)
)−1

F
(
x(k)
)
,

x(k+1) = z(k) −
[
5
2
I − 3

2
F ′
(
x(k)
)−1

F ′
(
y(k)
)]

F ′
(
x(k)
)−1

F
(
z(k)
)
.

(2.1)
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Per computing step of the newmethod (2.1), for not large-scale problems, we may use
the LU decomposition to prevent the computation of the matrix inversion which is costly.
Simplifying method (2.1) for the sake of implementation yields in

y(k) = x(k) − 2
3
V (k),

z(k) = x(k) −
[
23
8
I − 3M(k) +

9
8

(
M(k)

)2]
V (k),

x(k+1) = z(k) −
[
5
2
I − 3

2
M(k)

]
W (k),

(2.2)

wherein F ′(x(k))V (k) = F(x(k)), F ′(x(k))M(k) = F ′(y(k)), and F ′(x(k))W (k) = F(z(k)).
Now the implementation of (2.2) depends on the involved linear algebra problems.

For large-scale problems, one may apply the GMRES iterative solver which is well known for
its efficiency for large sparse linear systems.

Remark 2.1. The interesting point in (2.2) is that three linear systems should be solved per
computing step, but all have the same coefficient matrix. Hence, one LU factorization per full
cycle is needed, which reduces the computational load of the method when implementing.

We are about to prove the convergence behavior of the proposed method (2.2) using
n-dimensional Taylor expansion. This is illustrated in the next section. An important remark
on the error equation in this case comes next.

Remark 2.2. In the next section, e(k) = x(k)−x∗ is the error in the kth iteration and e(k+1) = Le(k)
p

+
O(e(k)

p+1
) is the error equation, where L is a p-linear function, that is, L ∈ L(Rn,Rn, . . . ,Rn) and

p is the order of convergence. Observe that e(k)
p

= (e(k), e(k), . . . , e(k)).

3. Convergence Analysis

Let us assess the analytical convergence rate of method (2.2) in what follows.

Theorem 3.1. Let F : D ⊆ R
n → R

n be sufficiently Frechet differentiable at each point of an open
convex neighborhood D of x∗ ∈ R

n, that is a solution of the system F(x) = 0. Let one suppose that
F ′(x) is continuous and nonsingular in x∗. Then, the sequence {x(k)}k≥0 obtained using the iterative
method (2.2) converges to x∗ with convergence rate six, and the error equation reads

e(k+1) =
1
9

(
6C2

2 − C3

)(
45C3

2 − 9C3C2 + C4

)
e(k)

6
+O
(
e(k)

7)
. (3.1)

Proof. Let F : D ⊆ R
n → R

n be sufficiently Frechet differentiable in D. By using the notation
introduced in [14], the qth derivative of F at u ∈ R

n, q ≥ 1, is the q-linear function F(q)(u) :
R

n × · · · × R
n → R

n such that F(q)(u)(v1, . . . , vq) ∈ R
n. It is well known that, for x∗ + h ∈ R

n
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lying in a neighborhood of a solution x∗ of the nonlinear system F(x) = 0, Taylor expansion
can be applied and we have

F(x∗ + h) = F ′(x∗)

⎡
⎣h +

p−1∑
q=2

Cqh
q

⎤
⎦ +O(hp), (3.2)

where Cq = (1/q!)[F ′(x∗)]−1F(q)(x∗), q ≥ 2. We observe that Cqh
q ∈ R

n since F(q)(x∗) ∈ L(Rn ×
· · · × R

n,Rn) and [F ′(x∗)]−1 ∈ L(Rn). In addition, we can express F ′ as

F ′(x∗ + h) = F ′(x∗)

⎡
⎣I +

p−1∑
q=2

qCqh
q−1

⎤
⎦ +O(hp), (3.3)

wherein I is the identity matrix of the same order to the Jacobian matrix. Note that qCqh
q−1 ∈

L(Rn). From (3.2) and (3.3) we obtain

F
(
x(k)
)
= F ′(x∗)

[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4 + C5e
(k)5 + C6e

(k)6
]
+O
(
e(k)

7)
, (3.4)

F ′
(
x(k)
)
= F ′(x∗)

[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4 + 6C6e

(k)5
]
+O
(
e(k)

6)
, (3.5)

where Ck = (1/k!)[F ′(x∗)]−1F(k)(x∗), k = 2, 3, . . ., and e(k) = x(k) − x∗. From (3.5), we have

[
F ′
(
x(k)
)]−1

=
[
I +X1e

(k) +X2e
(k)2 +X3e

(k)3 + · · ·
][
F ′(x∗)

]−1 +O
(
e(k)

6)
, (3.6)

where X1 = −2C2, X2 = 4C2
2 − 3C3, X3 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4, . . .. Note that based on
Remark 2.2. e(k)

p
is a singular matrix, not a vector. Then,

[
F ′
(
x(k)
)]−1

F
(
x(k)
)
= e(k) − C2e

(k)2 + 2
(
C2

2 − C3

)
e(k)

3
+
(
−4C3

2 + 4C2C3 + 3C3C2 − 3C4

)
e(k)

4

+
(
8C4

2 − 20C2
2C3 + 6C2

3 + 10C2C4 − 4C5

)
e(k)

5

+
(
−16C5

2 + 52C3
2C3 − 33C2C

2
3 − 28C2

2C4 + 17C3C4 + 13C2C5 − 5C6

)
e(k)

6

+O
(
e(k)

7)
,

(3.7)

and the expression for y(k) is

y(k) = x∗ +
1
3
e(k) +

2
3
C2e

(k)2 − 4
3

(
C2

2 − C3

)
e(k)

3

+
(
2C4 − 8

3
C2C3 − 2C3C2 + 8C3

2

)
e(k)

4
+O
(
e(k)

5)
.

(3.8)
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The Taylor expansion of the Jacobian matrix F ′(y(k)) is

F ′
(
y(k)
)
= F ′(x∗)

[
I + 2C2

(
y(k) − x∗

)
+ 3C3

(
y(k) − x∗

)2

+ 4C4

(
y(k) − x∗

)3
5C5

(
y(k) − x∗

)4]
+O
(
e(k)

5)

= F ′(x∗)
[
I +N1e

(k) +N2e
(k)2 +N3e

(k)3
]
+O
(
e(k)

4)
,

(3.9)

where N1 = (2/3)C2, N2 = (4/3)C2
2 + (1/3)C3, and N3 = −(8/3)C2(C2

2 − C3) + (4/3)C3C2 +
(4/27)C4. Therefore,

23
8
I − 3F ′

(
x(k)
)−1

F ′
(
y(k)
)
+
9
8

(
F ′
(
x(k)
)−1

F ′
(
y(k)
))2

= I + C2e
(k) +

(
−C2

2 + 2C3

)
e(k)

2
+
(
−4C3

2 − 2C2C3 +
26
9
C4

)
e(k)

3
+O
(
e(k)

4)
.

(3.10)

From an analogous reasoning as in (3.9), we obtain

z(k) − x∗ =
(
5C3

2 − C2C3 +
1
9
C4

)
e(k)

4
+
(
−36C4

2 + 32C2
2C3 − 2C2

3 −
20
9
C2C4 +

8
27

C5

)
e(k)

5

+
2
27

(
2295C5

2 − 3537C3
2C3 + 633C2

2C4 − 99C3C4

+ 9C2

(
99C2

3 − 5C5

)
7C6

)
e(k)

6
+O
(
e(k)

7)
.

(3.11)

Hence, taking into account (3.11), it will be easy to write the Taylor series of F(z(k)) as follows:

F
(
z(k)
)
=

1
9

(
45C3

2 − 9C2C3 + C4

)
F ′(x∗)e(k)

4

− 2
27

(
86C4

2 − 144C2
2C3 + 27C2

3 + 30C2C4

− 4C5)F ′(x∗)e(k)
5
+O
(
e(k)

6)
.

(3.12)
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We now should find the Taylor series at the third step of (2.2), thus using (3.6) and (3.12), we
have

F ′
(
x(k)
)−1

F
(
z(k)
)
=
(
5C3

2 − C2C3 +
1
9
C4

)
e(k)

4

+
(
−46C4

2 + 34C2
2C3 − 2C2

3 −
22
9
C2C4 +

8
27

C5

)
e(k)

5

+
(
262C5

2 − 345C3
2C3 + 73C2C

2
3 +

466
9

C2
2C4 − 23

3
C3C4

− 106
27

C2C5 +
14
27

C6

)
e(k)

6
+O
(
e(k)

7)
.

(3.13)

By using (3.13), we could have

[
5
2
I − 3

2
F ′
(
x(k)
)−1

F ′
(
y(k)
)]

F ′
(
x(k)
)−1

F
(
z(k)
)

=
(
5C3

2 − C2C3 +
C4

9

)
e(k)

4
+
(
−36C4

2 + 32C2
2C3 − 2C2

3 −
20
9
C2C4 +

8
27

C5

)
e(k)

5

+
(
140C5

2 − 251C3
2C3 + 65C2C

2
3 +

416
9

C2
2C4 − 65

9
C3C4 − 10

3
C2C5 +

14
27

C6

)
e(k)

6
+O
(
e(k)

7)
.

(3.14)

Combining the error equation terms (3.14) and (3.11) in the iteration method (2.2) will
end in the final error equation (3.1), which shows that the new method has sixth order of
convergence for solving systems of nonlinear equations.

4. Concerning the Efficiency Index

Now we assess the efficiency index of the new iterative method in contrast to the existing
methods for systems of nonlinear equations. In the iterativemethod (2.2), three linear systems
based on LU decompositions are needed to obtain the sixth order of convergence. The point
is that for applying to large-scale problems one may solve the linear systems by iterative
solvers and the number of linear systems should be in harmony with the convergence rate.
For example, the method of Sharma et al. (1.5) requires three different linear systems for large
sparse nonlinear systems, that is, the same with the new method (2.2), but its convergence
rate is only 4, which clearly shows that method (2.2) is better than (1.5).

Now let us invite the number of functional evaluations to obtain the classical efficiency
index for different methods. The iterative method (2.2) has the following computational cost
(without the index k): n evaluations of scalar functions for F(x), n evaluations of scalar
functions F(z), n2 evaluations of scalar functions for the Jacobian F ′(x), and n2 evaluations of
scalar functions for the Jacobian F ′(y).

We now provide the comparison of the classical efficiency indices for methods (1.2),
(1.5), and (1.6) alongside the new proposed method (2.2). The plot of the index of efficiencies
according to the definition of the efficiency index of an iterative method, which is given by
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Table 1: Comparison of efficiency indices for different methods.

Iterative methods (1.2) (1.5) (1.6) (2.2)

Number of steps 1 2 2 3
Rate of convergence 2 4 4 6
Number of functional
evaluations n + n2 n + 2n2 n + 2n2 2n + 2n2

The classical efficiency
index 21/(n+n

2) 41/(n+2n
2) 41/(n+2n

2) 61/(2n+2n
2)

Number of LU
factorizations 1 2 2 1

Cost of LU factorizations
(based on flops) 2n3/3 4n3/3 4n3/3 2n3/3

Cost of linear systems
(based on flops)

(
2n3/3

)
+ 2n2 (

10n3/3
)
+ 2n2 (

7n3/3
)
+ 2n2 (

5n3/3
)
+ 4n2

Flops-like efficiency
index 21/((2n

3/3)+3n2+n) 41/((10n
3/3)+4n2+n) 41/((7n

3/3)+4n2+n) 61/((5n
3/3)+6n2+2n)

2 4 6 8 10

1.05

1.1

1.15

(a)

12 14 16 18 20

1.002

1.003

1.004

1.005

1.006

(b)

Figure 1: The plot of the (traditional) efficiency indices for different methods ((a), for n = 2, . . . , 10 and (b),
for n = 11, . . . , 20).

E = p1/C, where p is the order of convergence and C stands for the total computational
cost per iteration in terms of the number of functional evaluations, is given in Figure 1. A
comparison over the number of functional evaluations of some iterative methods is also
illustrated in Table 1. Note that both (1.5) and (1.6) in this way have the same classical
efficiency index.

In Figures 1 and 2, the colors yellow, black, purple, and red stand for methods (1.6),
(1.2), (1.5), and (2.2), respectively. It is clearly obvious that the newmethod (2.2) for any n ≥ 2
has dominance with respect to the traditional efficiency indices on the other well-known and
recent methods.

As was positively pointed out by the second referee, taking into account only the
number of evaluations for scalar functions cannot be the effecting factor for evaluating the
efficiency of nonlinear solvers. The number of scalar products, matrix products, decomposi-
tion LU of the first derivative, and the resolution of the triangular linear systems are of great
importance in assessing the real efficiency of such schemes. Some extensive discussions on
this matter can be found in the recent literature [15, 16].

To achieve this goal, we in what follows consider a different way. Let us count the
number of matrix quotients, products, summations, and subtractions along with the cost of
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2 4 6 8 10
1

1.01

1.02

1.03

1.04
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1.0003

12 14 16 18 20

1.0001

1.0002

1.0004

1.0005

1.0006

(b)

Figure 2: The plot of the flops-like efficiency indices for different methods ((a), for n = 2, . . . , 10 and (b),
for n = 11, . . . , 20).

Table 2: Results of comparisons for different methods in Example 5.1.

Iterative methods (1.2) (1.5) (1.6) (2.2)
Number of iterations 13 7 7 6
Residual norm 3.03 × 10−108 2.44 × 10−162 0 6.54 × 10−137

Number of functional evaluations 3120 3255 3255 2830
Time 1.59 1.76 1.79 1.51

solving two triangular systems, that is, based on flops (the real cost of solving systems of
linear equations). In this case, we remark that the flops for obtaining the LU factorization
are 2n3/3, and to solve two triangular system, the flops would be 2n2. Note that if the right-
hand side is a matrix, the cost (flops) of the two triangular systems is 2n3, or roughly n3

as considered in this paper. Table 1 also reveals the comparisons of flops and the flops-like
efficiency index. Note that to the best of the authors’ knowledge, such an index has not been
given in any other work. Results of this are reported in Table 1 and Figure 2 as well. It is
observed that the new scheme again competes all the recent or well-known iterations when
comparing the computational efficiency indices.

5. Numerical Testing

We employ here the second-order method of Newton (1.2), the fourth-order scheme of
Sharma et al. (1.5), the fourth-order scheme of Soleymani (1.6), and the proposed sixth-
order iterative method (2.2) to compare the numerical results obtained from these methods
in solving test nonlinear systems. In this section, the residual norm along with the number
of iterations in Mathematica 8 [17] is reported in Tables 2-3. The computer specifications
are Microsoft Windows XP Intel(R), Pentium(R) 4 CPU, 3.20GHz with 4GB of RAM. In
numerical comparisons, we have chosen the floating point arithmetic to be 256 using the
command SetAccuarcy[expr, 256] in the written codes. The stopping criterion (for the first
two examples) is the residual norm of the multivariate function to be less than 1 · E − 150,
that is, ||F(x(k))|| ≤ 10−150. Note that for some iterative methods if their residual norms at the
specified iteration exceed the bound of 10−200, we will consider that such an approximation is
the exact solution and denoted the residual norm by 0 in some cells of the tables. We consider
the test problems as follows.
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Example 5.1. As the first test, we take into account the following hard system of 15 nonlinear
equations with 15 unknowns having a complex solution to reveal the capability of the new
scheme in finding (n-dimensional) complex zeros:

5x1 − 2x2 + 8xx4
3 − 5x3

6 + 2xx10
7 − x2

9 + xx2
11 − 10x13 + x2

14 − 2x2
15 = 0,

5x1 + 2 + 3x3
2 + 7x4

3 − 2x3
6 + 2xx10

9 + 2xx11
12 − 10x13x14 − x2

15 = 0,

x2
1 + 2x2 + 2xx4

3 − 5x3
6 − x5x6x7x8x9x10 + x11 − x13 + x14 + x3

15 = 0,

2xx5
1 − xx2

6 − 3x4 + 2x5 − 7x2
8 − 2xx12

10 + x13 + x2
15 − 10x2

14 = 0,

2xx1
10 + 2x2 + 3x3

2 − 5x5
3 − 2x6 + 2xx9

8 + x2
13 + 10x14 − x2

15 = 0,

10x2
1 + x2 + x3 − 5x3

6 − 4x9 − 2x8 − 4x10 + 2x2
12 − xx14

13 + 2x2
15 = 0,

−2x2
1 − 2x4 + 10x2

3 − 100x4
5x6x9x10 + 3x12 − 2xx14

13 + 10x3
15 = 0,

2xx2
4 + 2x2 − 5x3

1 + 2x7 − 2xx10
8 − 5x2

11 + x12 − 2x14 + 10x3
15 = 0,

x2 − x2 + x10
1 + 3x3

1 − 15x2
5 + x4x7 + x8 + x9 − 2x10 − x11x

3
12 + x15 = 0,

10x1 + x2
3 + x2

4 − 5x2
5 + 10xx8

6 + 2x9 − x7 − 2x2
2 + x12 − 2xx14

13 + 2x3
15 = 0,

x1x2 + 10xx4
3 − 5x5 − 100x6 − 2xx8

10 − 10x9 + xx12
11 − 2x13 − 4x2

14 + x15 = 0,

2x4 + x3
2 + 7x4

3 − 20x3
6 + 2xx10

9 − 101xx11
12 − 3x13 − 10x14 − x2

15 = 0,

2x2
1 − x7 + 2 + x3

4 + 7x4
3 − 20x3

6 + xx10
9 + 2xx11

12 − x13x14 − x2
15 = 0,

30x1 − x5 + 2 + x3
3 + 7x2

2 − 2x6 + 2xx10
9 + 10x12 − 20x13x14 − 3x2

15 = 0,

−x1 + 2 + 7xx4
3 − x3

2 + xx10
9 + 3xx10

12 − 2x13x14 − 2x2
15 = 0,

(5.1)

where its complex solution up to 10 decimal places is as follows: x∗ ≈ (1.981336305 +
0.983441720i, 3.409384824 − 0.764284796i, 1.813731796 − 0.637692532i, 3.491727320 +
0.872252620i, 6.550770690 − 0.907243589i, 1.336919493 − 1.019442606i, 79.096785866 +
48.25743733i, 3.082975105 + 0.835126126i, 5.320491462 − 1.520266411i, 0.000020217 +
0.000010961i, 0.013114096 + 0.08934367440i, 13.79912588 − 26.64001284i, 1.144969346 +
2.175231550i, −2.699288335 − 6.949621654i, −3.302042978 − 0.005478294i)T .

In this test problem, the approximate solution up to 2 decimal places can be con-
structed based on a line search method for obtaining robust initial value as follows: x∗ ≈
(1.98+ 0.98I, 3.40− 0.76I,1.81− 0.63I, 3.49+ 0.87I, 6.55− 0.90I,1.33− 1.01I, 79.10+ 48.26I,3.08+
0.83I, 5.32−1.52I, 0.02+0.01I, 0.00+0.1I, 13.80−26.64I,1.14+2.17I,−2.69−6.94I,−3.30+0.00I)T .
The results for this test problem are given in Table 2.

Results in Table 2 show that the new scheme can be considered for complex solutions
of hard nonlinear systems as well. In this test, we have used the LU decomposition, when
dealing with linear systems.
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Table 3: Results of comparisons for different methods in Example 5.2 when n = 99.

Iterative methods (1.2) (1.5) (1.6) (2.2)
Number of iterations 9 4 4 4
Residual norm 0 1.57 × 10−101 7.63 × 10−112 0
Number of functional evaluations 89100 78804 78804 79200
Time 1.12 1.58 2.64 1.20

Example 5.2. In order to tackle with large-scale nonlinear systems, we have included this
example in this work:

xixi+1 − 1 = 0, i = 1, 2, . . . , n − 1,

xnx1 − 1 = 0,
(5.2)

where its solution is the vector x∗ = (1, . . . , 1)T for odd n, and its first Frechet derivative has
the following sparse pattern:

J(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x2 x1 0 · · · 0
0 x3 x2 · · · 0
...

. . . . . . . . .
...

0
. . . 0 xn−2 xn−1

xn 0 0 0 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.3)

We report the numerical results for solving Example 5.2 in Table 3 based on the initial
value x0 = Table [2., {i, 1, 99}]. The case for 99 × 99 is considered. In Table 3, the new scheme
is good in terms of the obtained residual norm in a few number of iterations.

Throughout the paper, the computational time has been reported by the command
AbsoluteTiming[]. The mean of 5 implementations is listed as the time. In the following
example, we consider the application of such nonlinear solvers when challenging hard
nonlinear PDEs or nonlinear integral equations, some of such applications have also been
given in [18–20].

Example 5.3. Consider the following nonlinear system of Volterra integral equations:

y1(x) = f1(x) +
∫x

0

[
y1(s)y2(s)

]
ds,

y2(x) = f2(x) +
∫x

0

[
y2
1(s)y

2
2(s)
]
ds,

(5.4)

where f1(x) = cos(x) − (1/2)sin2(x), f2(x) = sin(x) − x. In order to solve this nonlinear
problem, there are many methods. Recently, Samadi and Tohidi [21] showed that the spectral
method is a much more reliable treatment in solving such problems. In fact, they discussed
that traditional solvers will require very fine grid point which may cause obtaining large-
scale (ill-conditioned) nonlinear systems of equations after implementation to find the final
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Table 4: Results of comparisons for different methods in Example 5.3 when n = 8.

Iterative methods (1.2) (1.5) (1.6) (2.2)
Number of iterations 8 5 5 4
Residual norm 2.47 × 10−7 3.40 × 10−16 1.26 × 10−16 4.47 × 10−10

Number of functional evaluations 576 680 680 576
Time 0.03 0.03 0.03 0.015

solution. As a remedy, they presented a stable Legendre collocation method for solving
systems of Volterra integral equations (SVIEs) of the second kind. Hence, now by applying
the same procedure in [21] and by considering N = 3, and 5 digits at the first part of the
process, the following nonlinear system of eight equations (5.5) will be attained where its
solutions vector is {0.9975 . . ., 0.946 . . ., 0.783 . . ., 0.597 . . ., 0.0693 . . ., 0.324 . . ., 0.62 . . ., 0.80 . . .}.

Numerical results for this example are reported in Table 4. We again used 256-digit
floating point in our calculations but the stopping criterion is the residual norm to be accurate
for seven decimal places at least, that is to say, ||F(x(k))|| ≤ 10−7. The starting values are
chosen as (−10, . . . ,−10)T . In this case, we only report the time of solving the system (5.4)
by the iterative methods and do not include the computational time of spectral method to
first discretize (5.4).

The aim of the above example was twofold, first to show the clear reduction in
number of steps in solving practical problems and also to reveal the fact that the proposed
iterative method could be applied on inexact systems as well. By the word inexact, we mean
the coefficients of the nonlinear systems are not integer and they are some number with
floating arithmetic in essence, which itself may cause some round-off errors. We observe
from Tables 2–4 that not only the order of convergence but also the number of new functional
evaluations and operations is important in order to obtain new efficient iterative methods to
solve nonlinear systems of equations.

− 0.99518 + x1 − 0.11056x1x5 + 0.035818x2x5 − 0.017053x3x5 + 0.0048022x4x5 + 0.035818x1x6

− 0.014033x2x6 + 0.0067323x3x6 − 0.0018999x4x6 − 0.017053x1x7 + 0.0067323x2x7

− 0.0032313x3x7 + 0.00091202x4x7 + 0.0048022x1x8 − 0.0018999x2x8 + 0.00091202x3x8

− 0.00025742x4x8,

− 0.89354 + x2 − 0.17166x1x5 − 0.015764x2x5 − 0.0015117x3x5 + 0.0007561x4x5 − 0.015764x1x6

− 0.1751x2x6 + 0.037366x3x6 − 0.0095897x4x6 − 0.0015117x1x7 +0.037366x2x7 − 0.010818x3x7

+ 0.0028453x4x7 + 0.0007561x1x8 − 0.0095897x2x8 + 0.0028453x3x8 − 0.00075075x4x8,

− 0.59102 + x3 − 0.17325x1x5 − 0.0028122x2x5 + 0.0095642x3x5 − 0.00075441x4x5

− 0.0028122x1x6 − 0.31532x2x6 − 0.03736x3x6 + 0.0015064x4x6 + 0.0095642x1x7

− 0.03736x2x7 − 0.15105x3x7 + 0.015772x4x7 − 0.00075441x1x8 + 0.0015064x2x8

+ 0.015772x3x8 − 0.0023316x4x8,
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− 0.27581 + x4 − 0.17375x1x5 − 0.00089146x2x5 + 0.0018833x3x5 − 0.0048034x4x5

− 0.00089146x1x6 − 0.32288x2x6 − 0.0067382x3x6 + 0.017042x4x6 + 0.0018833x1x7

− 0.0067382x2x7 − 0.31209x3x7 − 0.035814x4x7 − 0.0048034x1x8 + 0.017042x2x8

− 0.035814x3x8 − 0.063427x4x8,

0.00006 − 0.11056x2
1 +0.071636x1x2 − 0.014033x2

2 − 0.034105x1x3 +0.013465x2x3 − 0.0032313x2
3

+ 0.0096044x1x4 − 0.0037998x2x4 + 0.001824x3x4 − 0.00025742x2
4 + x5 − 0.11056x2

5

+ 0.071636x5x6 − 0.014033x2
6 − 0.034105x5x7 + 0.013465x6x7 − 0.0032313x2

7 + 0.0096044x5x8

− 0.0037998x6x8 + 0.001824x7x8 − 0.00025742x2
8,

0.00596 − 0.17166x2
1 − 0.031527x1x2 − 0.1751x2

2 − 0.0030234x1x3 + 0.074732x2x3 − 0.010818x2
3

+ 0.0015122x1x4 − 0.019179x2x4 + 0.0056905x3x4 − 0.00075075x2
4 − 0.17166x2

5 + x6

− 0.031527x5x6 − 0.1751x2
6 − 0.0030234x5x7 + 0.074732x6x7 − 0.010818x2

7 + 0.0015122x5x8

− 0.019179x6x8 + 0.0056905x7x8 − 0.00075075x2
8,

0.04901 − 0.17325x2
1 − 0.0056243x1x2 − 0.31532x2

2 + 0.019128x1x3 − 0.074719x2x3 − 0.15105x2
3

− 0.0015088x1x4 + 0.0030128x2x4 + 0.031544x3x4 − 0.0023316x2
4 − 0.17325x2

5 − 0.0056243x5x6

− 0.31532x2
6 + x7 + 0.019128x5x7 − 0.074719x6x7 − 0.15105x2

7 − 0.0015088x5x8 +0.0030128x6x8

+ 0.031544x7x8 − 0.0023316x2
8,

0.12861 − 0.17375x2
1 − 0.0017829x1x2 − 0.32288x2

2 + 0.0037666x1x3 − 0.013476x2x3 − 0.31209x2
3

− 0.0096067x1x4 + 0.034085x2x4 − 0.071628x3x4 − 0.063427x2
4 − 0.17375x2

5 − 0.0017829x5x6

− 0.32288x2
6 + 0.0037666x5x7 − 0.013476x6x7 − 0.31209x2

7 + x8 − 0.0096067x5x8 +0.034085x6x8

− 0.071628x7x8 − 0.063427x2
8.

(5.5)

6. Conclusions

In this paper, an efficient iterative method for finding the real and complex solutions of
nonlinear systems has been presented. We have supported the proposed iteration by a
mathematical proof through the n-dimensional Taylor expansion. This let us analytically find
the sixth order of convergence. Per computing step, the method is free from second-order
Frechet derivative.

A complete discussion on the efficiency index of the new schemewas given. Neverthe-
less, the efficiency index is not the only aspect to take into account: the number of operations
per iteration is also important; hence, we have given the comparisons of efficiencies based
on the flops and functional evaluations. Some different numerical tests have been used to
compare the consistency and stability of the proposed iteration in contrast to the existing
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methods. The numerical results obtained in Section 5 reverified the theoretical aspects of the
paper. In fact, numerical tests have been performed, which not only illustrate the method
practically but also serve to check the validity of theoretical results we had derived.

Future studies could focus on two aspects, one to extend the order of convergence
alongside the computational efficiency and second to present some hybrid algorithm based
on convergence guaranteed methods (at the beginning of the iterations) to ensure being in
the trust region to apply the high-order methods.
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