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The Gross-Pitaevskii model of spinor Bose-Einstein condensates is studied. Using the abstract
results obtained for infinite dimensional Hamilton system, we establish the mathematical theory
for the model of spinor BEC. Furthermore, three conservative quantities of spinor BEC, that is, the
energy, total particle number and magnetization intensity are also proved.

1. Introduction

After the first remarkable experiments concerning the observation of Bose-Einstein conden-
sate (BEC) in dilute gases of alkali atoms such as 87Rb [1], 23Na [2], and 7Li [3] the interest in
this phenomenon has revived [4, 5]. On the mathematical side, most of the work has con-
centrated on the Gross-Pitaevskii (GP) model of BEC, which is usually referred to as nonlin-
ear Schödinger equation (NLSE) (cf. [6–14] and references therein). There are also many
pieces of the literature on the spinor BEC ([15–19]). In the spinor BEC case, the constituent
bosons have internal degrees of freedom, such as spin, the quantum state, and its properties
becomes more complex [20]. What has made the alkali spinor BEC particularly interesting is
that optical and magnetic fields can be used to probe and manipulate the system.

In [15], Ho shows that in an optical trap the ground states of spin-1 bosons such as
23Na, 39K, and 87Rb can be either ferromagnetic or polar states, depending on the scattering
lengths in different angular momentum channels. In [17], Pu et al. discuss the energy eigen-
states, ground and spin mixing dynamics of a spin-1 spinor BEC for a dilute atomic vapor
confined in an optical trap. Their results go beyond the mean field picture and are developed
within a fully quantized framework. In [19], Zou and Mathis propose a three-step scheme
for generating the maximally entangled atomic Greenberger-Horne-Zeilinger (GHZ) states
in a spinor BEC by using strong classical laser fields to shift atom level and drive single-atom
Raman transition. Their scheme can be directly used to generate the maximally entangled
states between atoms with hyperfine spin 0 and 1.
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In this paper, we want to establish the mathematical theory of the GP model of spinor
BEC in which the internal degrees of freedom of atoms are also under consideration. Further-
more, three conservative quantities of spinor BEC, that is, the energy, total particle number,
and magnetization intensity are also proved.

2. Gross-Pitaevskii Model for Spinor BEC

In this section we derive GP equation for spinor BEC, that is, the following equation:
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We consider the GPmodel for F = 1 spinor BEC. Particles of F = 1 have three quantum
states: magnetic quantum number m = 1, 0,−1. The corresponding wave function of these
three quantum states are denote by

Ψ =
(
ψ1, ψ0, ψ−1

)
. (2.2)

Here the physical meaning of |ψi|2 is the density of m = i particles (i = 1, 0,−1). The cor-
responding Hamilton energy functional of F = 1 spinor BEC is as follows:
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∫
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dx, (2.3)

where m is the boson mass, � is Planck constant, V (·) is the external trapping potential, |Ψ|2
is the density of dilute bosonic atoms, gn is the interaction constant between atoms, and gs is
the spin exchange interaction constant
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, (2.4)



Journal of Applied Mathematics 3

a0 and a2 are the scattering length, and S = Sx�i + Sy�j + Sz�k is the spin operator:
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We adopt the following notations:
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By calculation we can get
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By using Lagrange multiplier theorem, from the Hamilton energy functional E (see
(2.3) and the total particle number

N =
∫

Ω
|Ψ|2dx, Ψ =

(
ψ1, ψ0, ψ−1

)
(2.8)

is conservative, and we can obtain the steady state GP equation of spinor BEC as follows:

μψk =
δ

δψ∗
k

E(Ψ,Ψ∗), k = 1, 0,−1, (2.9)

where μ is the chemical potential. Furthermore, according to general rules of quantum me-
chanics from steady state GP equation, we can get the dynamical model as follows:
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where i =
√−1. From (2.3) and (2.7), we can obtain the concrete expression of (2.10) as (2.1).
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In the spinor BEC gn and gs we have following physical meaning:
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>0, corresponding to the repulsive interaction between atoms,

<0, corresponding to the attractive interaction between atoms,
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(2.11)

3. Equivalent Form of Spinor BEC

Let ψk = ψ1
k
+ iψ2

k
. In this section we will show that GP equation (2.1) is equivalent to the

following quantum Hamilton systems (see [21]):
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On the other hand, it is easy to check that

δF
(
ψ1, ψ2)

δψ2
1

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ−1
∣∣2)

)
ψ2
1

+gs
(
2ψ1

−1ψ
1
0ψ

2
0 − ψ2

−1
(
ψ1
0

)2
+ ψ2

−1
(
ψ2
0

)2
)]

,

δF
(
ψ1, ψ2)

δψ1
1

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ−1
∣∣2)

)
ψ1
1

+gs
(
2ψ2

−1ψ
1
0ψ

2
0 + ψ

1
−1
(
ψ1
0

)2 − ψ1
−1
(
ψ2
0

)2
)]

,

δF
(
ψ1, ψ2)

δψ2
0

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ−1

∣∣2)
)
ψ2
0

+2gs
(
ψ1
1ψ

2
−1ψ

1
0 + ψ

1
−1ψ

2
1ψ

1
0 − ψ1

1ψ
1
−1ψ

2
0 + ψ

2
1ψ

2
−1ψ

2
0

)]
,

δF
(
ψ1, ψ2)

δψ1
0

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ−1

∣∣2)
)
ψ1
0

+2gs
(
ψ1
1ψ

1
−1ψ

1
0 − ψ2

−1ψ
2
1ψ

1
0 + ψ

1
1ψ

2
−1ψ

2
0 + ψ

2
1ψ

1
−1ψ

2
0

)]
,



6 Journal of Applied Mathematics

δF
(
ψ1, ψ2)

δψ2
−1

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ−1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ1
∣∣2)

)
ψ2
−1

+gs
(
2ψ1

1ψ
1
0ψ

2
0 − ψ2

1

(
ψ1
0

)2
+ ψ2

1

(
ψ2
0

)2
)]

,

δF
(
ψ1, ψ2)

δψ1
−1

=
1
�

[(
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ−1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ1
∣∣2)

)
ψ1
−1

+gs
(
2ψ2

1ψ
1
0ψ

2
0 + ψ

1
1

(
ψ1
0

)2 − ψ1
1

(
ψ2
0

)2
)]

.

(3.4)

Consequently, GP equation (2.1) is equivalent to (3.1).

4. Infinite Dimensional Hamilton System

In this section, we consider the following infinite-dimensional Hamilton system

du

dt
= −DvF(u, v),

dv

dt
= DuF(u, v),

u(0) = ϕ, v(0) = ψ,

((u, v) ∈ X1 ×X2) (4.1)

where X ⊂ Xi ⊂ H (i = 1, 2) is dense, X is linear space, X1, X2 is reflexive Banach space,H is
Hilbert space, F : X1 ×X2 → R1 is C1 functional, and DF = (DuF,DvF) is derived operator.

Remark 4.1. Infinite-dimensional Hamilton system (4.1) not only has some kind of beauty
in its own form, but also many equations can be written as (4.1). For example, Schödinger
equation, Weyl equations, and Dirac equations can be written as (4.1). Hence, it is worth to
study the infinite-dimensional Hamilton system (4.1), also see [21].

Definition 4.2. One says (u, v) ∈ X1 ×X2 is a weak solution of Hamilton system (4.1), provided

〈u, ũ〉H + 〈v, ṽ〉H =
∫ t
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for every ũ ∈ X2, ṽ ∈ X1.
Let F : X1 ×X2 → R1 satisfy

||(u, v)||X1×X2
−→ ∞ ⇐⇒ F(u, v) −→ ∞ (or −F(u, v) −→ ∞). (4.3)

Then we have the following existence theorem.
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Theorem 4.3 (see [21]). Assume that F satisfies condition (4.3) andDF : X1×X2 → (X1×X2)
∗ is

weakly continuous, then for any (ϕ, ψ) ∈ X1 × X2, there exists one global weak solution of equation
(4.1)

(u, v) ∈ L∞((0,∞), X1 ×X2). (4.4)

Furthermore, F(u, v) is a conservative quantity for weak solution (u, v), that is,

F(u(t), v(t)) = F
(
ϕ, ψ

)
, ∀t > 0. (4.5)

Proof. We prove the existence of global solution for (4.1) in L∞((0,∞), X1 × X2) by standard
Galerkin method. Choose

{ek | k = 1, 2, . . .} ⊂ X (4.6)

as orthonormal basis of spaceH. Set Xn, X̃n as follows:
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}
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Consider the ordinary equations as follows:
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〉
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(k = 1, . . . , n), (4.8)
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By the theory of ordinary equations, there exists only one local solution of (4.8):

{
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}
, 0 ≤ t ≤ τ. (4.9)

From (4.8) we can obtain the equality
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H

(4.10)
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holds true for any ũn, ṽn ∈ Xn. Moreover, equality
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Putting (ũn, ṽn) = (−dvn/dt, dun/dt) in (4.11), we obtain that
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〉
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〉]
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d
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(4.12)
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)
, (4.13)

where

ϕn =
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〈
ϕ, ek

〉
Hek, ψn =

n∑
k=1

〈
ψ, ek

〉
Hek. (4.14)

From (4.3) and (4.10), we deduce that {(un, vn)}∞n=1 is bounded in L∞((0,∞), X1 ×X2).
Therefore there exists a subsequence; we still write it as {(un, vn)}∞n=1, such that

(un, vn)⇀ (u, v) in X1 ×X2, a. e. t ∈ (0,∞). (4.15)

According to DF : X1 × X2 → (X1 × X2)
∗ being weakly continuous and (4.10), (4.15),

we know the following equality

〈u, ũ〉H + 〈v, ṽ〉H =
∫ t

0
[〈DuF(u, v), ṽ〉 − 〈DvF(u, v), ũ〉]dt +

〈
ϕ, ũ

〉
H +

〈
ψ, ṽ

〉
H

(4.16)

holds true for any ũ, ṽ ∈ ⋃∞
n=1Xn. Since

⋃∞
n=1Xn is dense in X1 and X2, equality (4.16) holds

true for all (ũ, ṽ) ∈ X1 × X2, which implies that (u, v) ∈ L∞((0,∞), X1 × X2) is a global weak
solution of (4.1).

Next, we prove F(u, v) is a conservative quantity for weak solution (u, v). From (4.16),
for all h > 0 we have

〈u(t + h) − u(t), ũ〉H + 〈v(t + h) − v(t), ṽ〉H

=
∫ t+h

t

[〈DuF(u(τ), v(τ)), ṽ〉 − 〈DvF(u(τ), v(τ)), ũ〉]dτ.
(4.17)
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Putting

ũ = −Δhv = −(v(t + h) − v(t)), ṽ = Δhu = u(t + h) − u(t) (4.18)

in (4.17), we obtain that

0 =
1
h

∫ t+h

t

[〈DuF(u(τ), v(τ)),Δhu〉 + 〈DvF(u(τ), v(τ)),Δhv〉]dτ

= F(u(t + h), v(t + h)) − F(u(t), v(t)).
(4.19)

Therefore, F(u, v) is a conservative quantity for weak solution (u, v). The proof is completed.

Theorem 4.4 (see [21]). Let X1, X2 be Hilbert space and F : X1 ×X2 → R be C1 functional. Then
a C1 functional G : X1 × X2 → R is a conservative quantity for the infinite-dimensional Hamilton
system (4.1) if and only if the following equality

〈
δG(u, v)

δu
,
δF(u, v)
δv

〉

X1 ×X2

=
〈
δG(u, v)

δv
,
δF(u, v)

δu

〉

X1 ×X2

(4.20)

holds true for any (u, v) ∈ X1 ×X2.

Proof. Let (u, v) be a solution of (4.1). Then we have

d

dt
G(u, v) =

〈
δG(u, v)

δu
,
du

dt

〉

X1 ×X2

+
〈
δG(u, v)

δv
,
dv

dt

〉

X1 ×X2

= −
〈
δG(u, v)

δu
,
δF(u, v)
δv

〉
+
〈
δG(u, v)

δv
,
δF(u, v)

δu

〉
,

(4.21)

which imply that (d/dt)G(u, v) = 0 if and only if equality (4.20) holds true. The proof is com-
pleted.

5. The Existence of Global Solution of Spinor BEC

In this section we consider the Gross-Pitaevskii equation of spinor BEC (2.10) under the
Dirichlet boundary condition, to wit the following initial boundary problem:

i�
∂Ψ
∂t

=
δ

δΨ∗E(Ψ,Ψ
∗), x ∈ Ω,

Ψ|∂Ω = 0,

Ψ(x, 0) = Ψ0(x),

(5.1)

where Ω ⊂ Rn (1 ≤ n ≤ 3) is a domain. When Ω = Rn, then (5.1) become Cauchy problem. By
applying Theorem 4.3, we can obtain the following theorem.
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Theorem 5.1. Assume that V ∈ L2(Ω) and gn > max{0,−2gs}, then for anyΨ0 ∈ H1(Ω,C3), there
exists one global weak solution of problem (5.1)

Ψ ∈ C0
(
[0,∞), L2

(
Ω,C3

))
∩ L∞

(
(0,∞),H1

(
Ω,C3

))
. (5.2)

Remark 5.2. If gs = 0, then (5.1) reduce to the GP equation of BEC. Theorem 5.1 is also con-
sistent with the experiments in repulsive case. In the situation of repulsive interaction, solu-
tions to the GP equation of BEC are well defined for all times [12, 13, 20], which corresponds
to the emergence of the BEC.

Proof. Let H = L2(Ω, R6),H1 = H1(Ω, R6). Firstly, we need to verify condition (4.3) in
Theorem 4.3. From Section 2, we know that

F
(
ψ1, ψ2

)
=

1
2�

∫

Ω

[
�
2

2m
|∇Ψ|2 + V (x)|Ψ|2 + 1

2
gn|Ψ|4 + 1

2
gs|Ψ∗SΨ|2

]
dx, (5.3)

where Ψ = (ψ1, ψ0, ψ−1), ψk = ψ1
k + iψ

2
k(k = 1, 0,−1), and

|Ψ∗SΨ|2 = ∣∣ψ1
∣∣4 + ∣∣ψ−1

∣∣4 − 2
∣∣ψ1

∣∣2∣∣ψ−1
∣∣2 + 2

∣∣ψ0
∣∣2∣∣ψ1

∣∣2

+ 2
∣∣ψ0

∣∣2∣∣ψ−1
∣∣2 + 2ψ2

0ψ
∗
1ψ

∗
−1 + 2ψ∗

0
2ψ1ψ−1

≤ 2
(∣∣ψ1

∣∣4 + ∣∣ψ0
∣∣4 + ∣∣ψ−1

∣∣4).

(5.4)

Hence, when gn > max{0,−2gs}, we have

∫

Ω
gn|Ψ|4 + gs|Ψ∗SΨ|2dx ≥ λ

∫

Ω
|Ψ|4dx, (5.5)

where λ = gn −max{0,−2gs} > 0. Therefore, we deduce

F
(
ψ1, ψ2

)
−→ ∞ ⇐⇒

∥∥∥
(
ψ1, ψ2

)∥∥∥
H1

−→ ∞, (5.6)

which implies that condition (4.3) holds true.
Next we need to verify the continuous condition in Theorem 4.3. Let operator

DF:H1 → H1 be defined by

〈
DF(Ψ), Ψ̃

〉
=

1
�

∫

Ω

[
�
2

2m
∇Ψ · ∇Ψ̃ + V (x)Ψ · Ψ̃

+gn|Ψ|2Ψ · Ψ̃ + gs(Ψ∗SΨ)Ψ̃∗SΨ̃

]
dx.

(5.7)
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For any Ψ̃ ∈ C∞
0 (Ω, R6) and Ψn ⇀ Φ inH1, we have

lim
n→∞

〈
DF(Ψn), Ψ̃

〉
=
〈
DF(Φ), Ψ̃

〉
. (5.8)

Since C∞
0 (Ω, R6) is dense in H1, equality (5.8) holds true for all Ψ̃ ∈ H1, which implies that

DF : H1 → H1 is weakly continuous.
Therefore, according to Theorem 4.3, there exists a global weak solution of (5.1). The

proof is completed.

6. The Conservative Quantities of Spinor BEC

In this section we will discuss the conservative quantities of spinor BEC. Let E be defined as
(2.3),N,M as follows:

N =
∫

Ω

[∣∣ψ1
∣∣2 + ∣∣ψ0

∣∣2 + ∣∣ψ−1
∣∣2]dx, M =

∫

Ω

[∣∣ψ1
∣∣2 − ∣∣ψ−1

∣∣2]dx. (6.1)

Then by using the same method as the proof of Theorem 4.4, we will prove the following
theorem.

Theorem 6.1. Hamilton energy E, the total particle numberN, and magnetization intensityM are
conservative quantities for problem (5.1).

Proof. Firstly, from (3.1) and (3.2) we can get

1
2�

dE(Ψ,Ψ∗)
dt

=
dF

(
ψ1, ψ2)

dt
=

〈
δF

(
ψ1, ψ2)

δψ1
,
∂ψ1

∂t

〉
+

〈
δF

(
ψ1, ψ2)

δψ2
,
∂ψ2

∂t

〉

=
∑

k=1,0,−1

[〈
δF

(
ψ1, ψ2)

δψ1
k

,
∂ψ1

k

∂t

〉
+

〈
δF

(
ψ1, ψ2)

δψ2
k

,
∂ψ2

k

∂t

〉]

=
∑

k=1,0,−1

[〈
−∂ψ

2
k

∂t
,
∂ψ1

k

∂t

〉
+

〈
∂ψ1

k

∂t
,
∂ψ2

k

∂t

〉]

= 0,

(6.2)

which imply that the energy E is a conservative quantity for problem (5.1).
Secondly, by using (3.3)we can get the following equalities:

dN

dt
=
d

dt

∫

Ω

∑
k=1,0,−1

[∣∣∣ψ1
k

∣∣∣
2
+
∣∣∣ψ2

k

∣∣∣
2
]
dx

= 2
∫

Ω

∑
k=1,0,−1

[
ψ1
k

∂ψ1
k

∂t
+ ψ2

k

∂ψ2
k

∂t

]
dx = 0,

(6.3)

which imply that the total particle numberN is a conservative quantity for problem (5.1).
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At last, we show M is a conservative quantity for problem (5.1). Let X1 = X2 =
H1(Ω, R3), then

E : X1 ×X2 −→ R1 defined by (2.3),

M : X1 ×X2 −→ R1 defined by (6.1)
(6.4)

are both functional. Let ψ1 = (ψ1
1 , ψ

1
0 , ψ

1
−1), ψ

2 = (ψ2
1 , ψ

2
0 , ψ

2
−1). It is easy to check that

δM

δψ1
=
(
2ψ1

1 , 0,−2ψ1
−1
)
,

δM

δψ2
=
(
2ψ2

1 , 0,−2ψ2
−1
)
,

δE

δψ1
=

(
δE

δψ1
1

,
δE

δψ1
0

,
δE

δψ1
−1

)
,

δE

δψ2
=

(
δE

δψ2
1

,
δE

δψ2
0

,
δE

δψ2
−1

)
.

(6.5)

From (2.3) and (2.7), we have

δE

δψ2
1

=

[
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ−1
∣∣2)

]
ψ2
1

+ gs
(
2ψ1

−1ψ
1
0ψ

2
0 − ψ2

−1
(
ψ1
0

)2
+ ψ2

−1
(
ψ2
0

)2
)
,

δE

δψ1
1

=

[
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ−1
∣∣2)

]
ψ1
1

+ gs
(
2ψ2

−1ψ
1
0ψ

2
0 + ψ

1
−1
(
ψ1
0

)2 − ψ1
−1
(
ψ2
0

)2
)
,

δE

δψ2
−1

=

[
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ−1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ1
∣∣2)

]
ψ2
−1

+ gs
(
2ψ1

1ψ
1
0ψ

2
0 − ψ2

1

(
ψ1
0

)2
+ ψ2

1

(
ψ2
0

)2
)
,

δE

δψ1
−1

=

[
− �

2

2m
Δ + V (x) + gn|Ψ|2 + gs

(∣∣ψ−1
∣∣2 + ∣∣ψ0

∣∣2 − ∣∣ψ1
∣∣2)

]
ψ1
−1

+ gs
(
2ψ2

1ψ
1
0ψ

2
0 + ψ

1
1

(
ψ1
0

)2 − ψ1
1

(
ψ2
0

)2
)
.

(6.6)

Combining (6.5), (6.6)with (3.1), (3.2), we can get following equalities:

dM

dt
=

〈
δM

(
ψ1, ψ2)

δψ1
,
∂ψ1

∂t

〉

X1×X2

+

〈
δM

(
ψ1, ψ2)

δψ2
,
∂ψ2

∂t

〉

X1×X2

=

〈
δM

(
ψ1, ψ2)

δψ1
,
δF

δψ2

〉

X1×X2

−
〈
δM

(
ψ1, ψ2)

δψ2
,
δF

δψ1

〉

X1×X2
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=
1
2�

∫

Ω
2

[
ψ1
1
∂E

∂ψ2
1

− ψ1
−1

∂E

∂ψ2
−1

− ψ2
1
∂E

∂ψ1
1

+ ψ2
−1

∂E

∂ψ1
−1

]
dx

=
gs
�

∫

Ω

[
ψ1
1

(
2ψ1

−1ψ
1
0ψ

2
0 − ψ2

−1

((
ψ1
0

)2 −
(
ψ2
0

)2
))

− ψ1
−1

(
2ψ1

1ψ
1
0ψ

2
0 − ψ2

1

((
ψ1
0

)2 −
(
ψ2
0

)2
))

− ψ2
1

(
2ψ2

−1ψ
1
0ψ

2
0 + ψ

1
−1

((
ψ1
0

)2 −
(
ψ2
0

)2
))

+ψ2
−1

(
2ψ2

1ψ
1
0ψ

2
0 + ψ

1
1

((
ψ1
0

)2 −
(
ψ2
0

)2
))]

dx

= 0,

(6.7)

which imply that the magnetization intensityM is a conservative quantity for problem (5.1).
The proof is completed.

Acknowledgments

The authors would like to thank anonymous reviewers for their careful reading and many
valuable comments that greatly improved the presentation of this paper. This work is sup-
ported by NSFC 11171236.

References
[1] M.H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-

Einstein condensation in a dilute atomic vapor,” Science, vol. 269, no. 5221, pp. 198–201, 1995.
[2] K. B. Davis, M. O. Mewes, M. R. Andrews et al., “Bose-Einstein condensation in a gas of sodium

atoms,” Physical Review Letters, vol. 75, no. 22, pp. 3969–3973, 1995.
[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of Bose-Einstein condensation in an

atomic gas with attractive interactions,” Physical Review Letters, vol. 75, no. 9, pp. 1687–1690, 1995.
[4] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press,

Cambridge, UK, 2002.
[5] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation, vol. 116 of International Series of Monographs

on Physics, The Clarendon Press Oxford University Press, Oxford, UK, 2003.
[6] R. Carles, “Remarks on nonlinear Schrödinger equations with harmonic potential,” Annales Henri
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