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A numerical method for solving the fractional-order logistic differential equation with two
different delays (FOLE) is considered. The fractional derivative is described in the Caputo sense.
The proposed method is based upon Chebyshev approximations. The properties of Chebyshev
polynomials are utilized to reduce FOLE to a system of algebraic equations. Special attention
is given to study the convergence and the error estimate of the presented method. Numerical
illustrations are presented to demonstrate utility of the proposed method. Chaotic behavior is
observed and the smallest fractional order for the chaotic behavior is obtained. Also, FOLE
is studied using variational iteration method (VIM) and the fractional complex transform is
introduced to convert fractional Logistic equation to its differential partner, so that its variational
iteration algorithm can be simply constructed. Numerical experiment is presented to illustrate the
validity and the great potential of both proposed techniques.

1. Introduction

It is known that delay differential equation (DDE) provides a mathematical model for many
systems in different fields such as physical, biological systems in which the rate of change
of the system depends upon their past history [1, 2]. Introduction of delay in the model
enriches its dynamics and allows a precise description of the real life phenomena. DDEs are
proved useful in control systems [3], lasers, traffic models [4], metal cutting, epidemiology,
neuroscience, population dynamics [2], chemical kinetics [1], and so forth. In DDE one
has to provide history of the system over the delay interval [−τ ; 0] as the initial condition.
Due to this reason delay systems are infinite dimensional in nature. Because of infinite
dimensionality the DDEs are difficult to analyse analytically [5] and hence the numerical
solutions play an important role.
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On the other side, ordinary and partial fractional differential equations have been
the focus of many studies due to their frequent appearance in various applications in fluid
mechanics, viscoelasticity, biology, physics and engineering [6]. Consequently, considerable
attention has been given to the solutions of fractional differential equations of physical
interest. Most fractional differential equations do not have exact solutions, so approximate
and numerical techniques [7–12], must be used. Recently, several numerical methods to solve
the fractional differential equations have been given such as variational iteration method [13–
19], homotopy perturbation method [20], Adomian’s decomposition method [21], homotopy
analysis method [22], fractional complex transform [15, 23, 24], and collocation method [25–
31].

Let us describe some necessary definitions and mathematical preliminaries of the
fractional calculus theory required for our subsequent development.

Definition 1.1. The Caputo fractional derivative operator Dα of order α is defined in the
following form:

Dαf(x) =
1

Γ(m − α)

∫x

0

f (m)(t)

(x − t)α−m+1
dt, α > 0, (1.1)

where m − 1 < α ≤ m, m ∈ N, x > 0.
Similar to integer-order differentiation, Caputo fractional derivative operator is a

linear operation:

Dα(λ f(x) + μ g(x)
)
= λ Dαf(x) + μDαg(x), (1.2)

where λ and μ are constants. For the Caputo’s derivative we have [32]:

DαC = 0, C is a constant,

Dαxn =

⎧⎨
⎩
0, for n ∈ N0, n < �α�;
Γ(n + 1)

Γ(n + 1 − α)
xn−α, for n ∈ N0, n ≥ �α�.

(1.3)

We use the ceiling function �α� to denote the smallest integer greater than or equal to α, and
N0 = {0, 1, 2, . . .}. Recall that for α ∈ N, the Caputo differential operator coincides with the
usual differential operator of integer order.

For more details on fractional derivatives definitions and its properties see [32–34].
In this paper, we consider FOLE with two delays of the form:

dαx(t)
dtα

= ρx(t − r1)(1 − x(t − r2)), t > 0, ρ > 0, (1.4)

the parameter α refers to the fractional order of time derivative with 0 < α ≤ 1.
We also assume an initial condition:

x(t) = x0, x0 > 0, t ≤ 0. (1.5)
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This work is motivated by work done by El-Sayed et al. [8]. The stability of the solution, the
existence and the uniqueness of the proposed problem (1.4) are introduced in details in [8].

The main idea of the present work is to apply the Chebyshev collocation method to
discretize (1.4) to get a system of algebraic equations thus greatly simplifying the problem.
Chebyshev polynomials are a well-known family of orthogonal polynomials on the interval
[−1, 1] that have many applications [28, 35]. They are widely used because of their good
properties in the approximation of functions. However, with our best knowledge, very little
work was done to adapt these polynomials to the solution of fractional differential equations.

Khader [25] introduced a new approximate formula of the fractional derivationDαx(t)
and used it to solve numerically the fractional diffusion equation. In this paper, we will
extend this formula to solve the fractional-order logistic equation with two delays (1.4) and
prove the error estimate of the introduced formula.

The organization of this paper is as follows. In the next section, the approximation of
fractional derivative Dαx(t) is obtained. Section 3 summarizes the application of Chebyshev
collocation method to solve (1.4). In Section 4, the procedure of solution using VIM is given.
In Section 5, the use of fractional complex transform is introduced with respect to VIM. Also
a conclusion is given in Section 6.

2. Derivation an Approximate Formula for Fractional Derivatives
Using Chebyshev Series Expansion

The well-known Chebyshev polynomials [35] are defined on the interval [−1, 1] and can be
determined with the aid of the following recurrence formula:

Tn+1(z) = 2zTn(z) − Tn−1(z), T0(z) = 1, T1(z) = z, n = 1, 2, . . . . (2.1)

The analytic form of the Chebyshev polynomials Tn(z) of degree n is given by the following:

Tn(z) = n
[n/2]∑
i=0

(−1)i2n−2 i−1 (n − i − 1)!
(i)! (n − 2 i)!

zn−2i, (2.2)

where [n/2] denotes the integer part of n/2. The orthogonality condition is

∫1

−1

Ti(z) Tj(z)√
1 − z2

dz =

⎧⎪⎪⎨
⎪⎪⎩
π, for i = j = 0;
π

2
, for i = j /= 0;

0, for i /= j.

(2.3)

In order to use these polynomials on the interval [0, L] we define the so called shifted
Chebyshev polynomials by introducing the change of variable z = (2/L)t − 1. The shifted
Chebyshev polynomials are defined as T ∗

n(t) = Tn((2/L)t − 1) = T2n(
√
t/L).
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The analytic form of the shifted Chebyshev polynomial T ∗
n(t) of degree n is given by

the following:

T ∗
n(t) = n

n∑
k=0

(−1)n−k 22k (n + k − 1)!
Lk(2k)! (n − k)!

tk. (2.4)

The function x(t), which belongs to the space of square integrable in [0, L], may be expressed
in terms of shifted Chebyshev polynomials as follows:

x(t) =
∞∑
i=0

ciT
∗
i (t), (2.5)

where the coefficients ci are given by the following:

c0 =
1
π

∫L

0

x(t) T ∗
0 (t)√

Lt − t2
dt, ci =

2
π

∫L

0

x(t) T ∗
i (t)√

Lt − t2
dt, i = 1, 2, . . . . (2.6)

In practice, only the first (m + 1)-terms shifted Chebyshev polynomials are considered. Then
we have the following:

xm(t) =
m∑
i=0

ciT
∗
i (t). (2.7)

Theorem 2.1 (Chebyshev truncation theorem). The error in approximating x(t) by the sum of
its first m terms is bounded by the sum of the absolute values of all the neglected coefficients. If the
following:

xm(t) =
m∑
k=0

ckTk(t), (2.8)

then

ET (m) ≡ |x(t) − xm(t)| ≤
∞∑

k=m+1

|ck|, (2.9)

for all x(t), all m, and all t ∈ [−1, 1].

Proof. The Chebyshev polynomials are bounded by one, that is, |Tk(t)| ≤ 1 for all t ∈ [−1, 1]
and for all k. This implies that the k-th term is bounded by |ck|. Subtracting the truncated
series from the infinite series, bounding each term in the difference, and summing the bounds
gives the theorem.

The main approximate formula of the fractional derivative of x(t) is given in the
following theorem.
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Theorem 2.2. Let x(t) be approximated by Chebyshev polynomials as (2.7) and also suppose α > 0,
then:

Dα(xm(t)) =
m∑

i=�α�

i∑
k=�α�

ciw
(α)
i,k

tk−α, (2.10)

where w(α)
i,k

is given by the following:

w
(α)
i,k = (−1)i−k 22ki(i + k − 1)!Γ(k + 1)

Lk(i − k)!(2 k)!Γ(k + 1 − α)
. (2.11)

Proof. Since the Caputo’s fractional differentiation is a linear operation we have

Dα(xm(t)) =
m∑
i=0

ciD
α(T ∗

i (t)
)
. (2.12)

Employing (1.3), in formula (2.4) we have

Dα T ∗
i (t) = 0, i = 0, 1, ..., �α� − 1, α > 0. (2.13)

Also, for i = �α�, . . . , m, and by using (1.3), in formula (2.4)we get

Dα T ∗
i (t) = i

i∑
k=�α�

(−1)i−k 22k(i + k − 1)!
Lk(i − k)!(2 k)!

Dαtk

= i
i∑

k=�α�
(−1)i−k 22k(i + k − 1)!Γ(k + 1)

Lk(i − k)!(2 k)!Γ(k + 1 − α)
tk−α.

(2.14)

A combination of (2.13), (2.14), and (2.11) leads to the desired result.

Test example

Consider the function x(t) = t2 withm = 3 and α = 1.5, the shifted Chebyshev series of t2 is

t2 =
3
8
T ∗
0 (t) +

4
8
T ∗
1 (t) +

1
8
T ∗
2 (t) + 0T ∗

3 (t). (2.15)

Now, by using (2.10), we obtain

D3/2 t2 =
3∑
i=2

i∑
k=2

ciw
3/2
i,k tk−3/2, (2.16)
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where,

w3/2
2,2 =

16
Γ(3/2)

, w
(3/2)
3,2 =

−96
Γ(3/2)

, w
(3/2)
3,3 =

192
Γ(5/2)

, (2.17)

therefore,

D3/2 t2 = c2 w3/2
2,2 t1/2 + c3 w3/2

3,2 t1/2 + c3 w
(3/2)
3,3 t3/2 =

2
Γ(3/2)

t1/2. (2.18)

Theorem 2.3. The Caputo fractional derivative of order α for the shifted Chebyshev polynomials can
be expressed in terms of the shifted Chebyshev polynomials themselves in the following form:

Dα(T ∗
i (t)

)
=

i∑
k=�α�

k−�α�∑
j=0

Θi,j,kT
∗
j (t), (2.19)

where

Θi,j,k =
(−1)i−k 2i(i + k − 1)!Γ(k − α + 1/2)Lk−α

hjΓ(k + 1/2) (i − k)!Γ
(
k − α − j + 1

)
Γ
(
k + j − α + 1

) , j = 0, 1, . . . . (2.20)

Proof. We concern the properties of the shifted Chebyshev polynomials [35] and expand
tk−α in (2.14) in the following form [36]:

tk−α =
k−�α�∑
j=0

ckjT
∗
j (t), (2.21)

where ckj can be obtained using (2.6), where x(t) = tk−α then,

ckj =
2

hjπ

∫L

0

tk−αT ∗
j (t)√

Lt − t2
dt, h0 = 2, hj = 1, j = 1, 2, . . . . (2.22)

At j = 0 we find, ck0 = (1/π)
∫L
0 (t

k−αT ∗
0 (t)/

√
Lt − t2)dt = (Lk−α/

√
π)(Γ(k − α + 1/2)/Γ(k − α +

1)), also, at any j and using the formulae (2.4) and (2.6)we can find that

ckj =
j√
π

j∑
r=0

(−1)j−r
(
j + r − 1

)
!22r+1Γ(k + r − α + 1/2)Lk−α(

j − r
)
!(2r)!Γ(k + r − α + 1)

, j = 1, 2, 3, . . . , (2.23)

employing (2.14) and (2.21) gives

Dα(T ∗
i (t)

)
=

i∑
k=�α�

k−�α�∑
j=0

Θi,j,kT
∗
j (t), i = �α�, �α� + 1, . . . , (2.24)
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where

Θi,j,k

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
(−1)i−k(i + k − 1)!22k k!Γ(k − α + 1/2)Lk−α

(i − k)! (2k)!
√
π (Γ(k + 1 − α))2

j = 0;

(−1)i−k ij (i + k − 1)! 22k+1 k!√
πΓ(k + 1 − α)(i − k)!(2k)!

×
j∑

r=0

(−1)j−r (
j + r − 1

)
!22rΓ(k + r − α + 1/2)Lk−α(

j − r
)
! (2r)!Γ(k + r − α + 1)

, j = 1, 2, 3, . . . .

(2.25)

After some lengthly manipulation Θi,j,k can put in the following form:

Θi,j,k =
(−1)i−k 2i(i + k − 1)!Γ(k − α + 1/2)Lk−α

hjΓ(k + 1/2) (i − k)!Γ
(
k − α − j + 1

)
Γ
(
k + j − α + 1

) , j = 0, 1, ... , (2.26)

and this completes the proof of the theorem.

Theorem 2.4. The error |ET (m)| = |Dαx(t) − Dαxm(t)| in approximating Dαx(t) by Dαxm(t) is
bounded by the following:

|ET (m)| ≤
∣∣∣∣∣∣

∞∑
i=m+1

ci

⎛
⎝ i∑

k=�α�

k−�α�∑
j=0

Θi,j,k

⎞
⎠

∣∣∣∣∣∣. (2.27)

Proof. A combination of (2.5), (2.7), and (2.19) leads to the following:

|ET (m)| = |Dαx(t) −Dαxm(t)| =
∣∣∣∣∣∣

∞∑
i=m+1

ci

⎛
⎝ i∑

k=�α�

k−�α�∑
j=0

Θi,j,kT
∗
j (t)

⎞
⎠

∣∣∣∣∣∣, (2.28)

but |T ∗
j (t)| ≤ 1, so, we can obtain

|ET (m)| ≤
∣∣∣∣∣∣

∞∑
i=m+1

ci

⎛
⎝ i∑

k=�α�

k−�α�∑
j=0

Θi,j,k

⎞
⎠

∣∣∣∣∣∣ , (2.29)

and subtracting the truncated series from the infinite series, bounding each term in the
difference, and summing the bounds completes the proof of the theorem.
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3. Procedure of Solution for the Fractional-Order Logistic Equation

Consider the FOLE of type given in (1.4). In order to use the Chebyshev collocation method,
we first approximate x(t) as follows:

xm(t) =
m∑
i=0

ciT
∗
i (t). (3.1)

From (1.4), (3.1), and Theorem 2.2 we have

m∑
i=�α�

i∑
k=�α�

ciw
(α)
i,k

tk−α = ρ
m∑
i=0

ciT
∗
i (t − r1)

[
1 −

m∑
i=0

ciT
∗
i (t − r2)

]
. (3.2)

We now collocate (3.2) at (m + 1 − �α�) points tp as follows:

m∑
i=�α�

i∑
k=�α�

ciw
(α)
i,k

tk−αp

= ρ
m∑
i=0

ciT
∗
i

(
tp − r1

)[
1 −

m∑
i=0

ciT
∗
i

(
tp − r2

)]
, p = 0, 1, ..., m − �α�.

(3.3)

For suitable collocation points we use roots of shifted Chebyshev polynomial T ∗
m+1−�α�(t).

Also, by substituting (2.7) in the initial condition (1.5) we can find the following equation:

m∑
i=0

(−1)i ci = x0. (3.4)

Equation (3.3), together with the equation of the initial condition (3.4), give (m + 1) of
nonlinear algebraic equations which can be solved, for the unknown ci, i = 0, 1, . . . , m.

In the following section, to achieve from the validity and the accuracy we compare our
approximate solution with those obtained using the variational iteration method.

4. Procedure of Solution Using VIM

The VIM gives the possibility to write the solution of (1.4), (0 < α ≤ 1) with the aid of the
correction functionals in the form:

xn+1(t) = xn(t) +
∫ t

0
λ(τ)

[
dxn

dτ
− ρx̃n(t − r1)(1 − x̃n(t − r2))

]
dτ, (4.1)

where λ is the general Lagrange multiplier, which can be identified optimally via the
variational theory [13]. The function x̃n is a restricted variation, which means that δx̃n = 0.
Therefore, we first determine the Lagrange multiplier λ that will be identified optimally
via integration by parts. The successive approximations xn, n ≥ 0, of the solution x(t)
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will be readily obtained upon using the obtained Lagrange multiplier and by using any
selective function x0. The initial values of the solution are usually used for selecting the zeroth
approximation x0. With λ determined, several approximations xn, n ≥ 0, follow immediately.
Making the above correction functional stationary:

δxn+1(t) = δxn(t) + δ

∫ t

0
λ(τ)

[
dxn

dτ
− ρx̃n(t − r1)(1 − x̃n(t − r2))

]
dτ

= δxn(t) +
∫ t

0
δλ(τ)

[
dxn

dτ

]
dτ

= δxn(t) + [λ(τ)δxn(τ)]τ=t −
∫ t

0
δxnλ̇(τ)dτ = 0,

(4.2)

where δx̃n is considered as a restricted variation, that is, δx̃n = 0, yields the following
stationary conditions (by comparison the two sides in the above equation):

λ̇(τ) = 0, 1 + λ(τ)|τ=t = 0. (4.3)

The equation in (4.3) is called Lagrange-Euler equation with the natural boundary condition.
The solution of this equation gives the Lagrange multiplier λ(τ) = −1.

Now, by substituting in (4.1), we obtained

xn+1(t) = xn(t) −
∫ t

0

[
dαxn

dτα
− ρxn(t − r1)(1 − xn(t − r2))

]
dτ, n ≥ 0. (4.4)

5. Procedure of Solution Using VIM with Fractional
Complex Transform

In this section, we use the fractional complex transform [23, 24] to convert the fractional
Logistic equation into its differential partner, so that the VIM can be effectively used. To
achieve this aim we can use the following fractional complex transform:

T =
tα

Γ(1 + α)
, (5.1)

and using Jumarie’s chain rule [37, 38], we have

dαx

dtα
=

dx

dT
· d

αT

dtα
=

dx

dT
. (5.2)

So, we can obtain the corresponding ordinary differential equation of (1.4) as follows:

dx(T)
dT

− ρx(T − r1)(1 − x(T − r2)) = 0, T > 0, ρ > 0. (5.3)
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Figure 1: The behavior of the numerical solution (at α = 1, ρ = 0.5) using ChebM with (m = 6) and VIM at
r1 = 0.0, r2 = 0.7 (a) and r1 = r2 = 0.7 (b).

The variational iteration algorithm is

xn+1(T) = xn(T) −
∫T

0

(
dx(s)
ds

− ρx(s − r1)(1 − x(s − r2))
)
ds. (5.4)

We start with initial approximation x0(t) = 0.5, and by using the above iteration formula (4.4),
we can directly obtain the components of the solution. Consequently, the exact solution may
be obtained by using the following:

x(t) = lim
n→∞

xn(t). (5.5)

Now, the first two components of the solution x(t) at α = 1, ρ = 0.5 of the fractional Logistic
equation with different two delays by using (4.4) or (5.4) are

x0(t) = 0.5,

x1(t) = 0.5 + t4 + 0.0555556 t9, . . ..

The numerical results of this example are presented in Figures 1–5, using the
Chebyshev collocation method (ChebM) and compared with the approximate solution using
VIM. We considered different values of the delay parameters r1 and r2 with different values
ofm and α.

In Figure 1, the behavior of the numerical solution (at α = 1, ρ = 0.5) using ChebM
with (m = 6) and VIM at r1 = 0.0, r2 = 0.7 (a) and r1 = r2 = 0.7 (b) is presented in the interval
[0, 1]. In Figure 2, the behavior of the numerical solution (at α = 1, ρ = 0.5) using ChebM
with (m = 6) and VIM at r1 = 0.7, r2 = 0.7 is presented in the interval [0, 2]. In Figure 3, the
behavior of the numerical solution (at α = 0.85, ρ = 0.5) using ChebMwith (m = 6) at r1 = 0.0,
r2 = 0.7 (a) and r1 = r2 = 0.7 (b) is presented in the interval [0, 10]. Also, from Figures 4 and 5
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Figure 3: The behavior of the numerical solution (at α = 0.85, ρ = 0.5) using ChebMwith (m = 6) at r1 = 0.0,
r2 = 0.7 (a) and r1 = r2 = 0.7 (b).

we can see that the system shows a periodic (chaotic) behavior. In the above experiments we
have decreased the value of α and observed that the system becomes periodic for α.

In Table 1, we presented the CPU time needed for the computation with each method
using different values of m, where m represents the iteration number of VIM and represents
the number of term of the series using the ChebM.

From Figure 1, we can conclude that the obtained numerical results using the proposed
method are in excellent agreement with the exact solution and the solution using VIM. On the
other hand, in Figure 2, we saw that the solution using VIM is not agreement with the exact
solution at a large domain. This result confirm that our proposed method is more accurate
and efficiency from VIM.
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Figure 4: Show phase portrait of the system, that is, plot of x(t) versus x(t − r1) (a) and plot of x(t) versus
x(t − r2) (b) at r1 = 0.7, r2 = 0.7, and α = 0.85.
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Table 1: The CPU time needed for the computation with each method.

m ChebM VIM

3 2.3 s 1.5 s
5 4.0 s 2.8 s
7 5.8 s 4.6 s

6. Conclusion

In this paper, some interesting fractional delay differential equations arising in biology have
been solved. It is observed that even two dimensional delayed systems of fractional order
show chaotic behavior, and below some critical order, the system changes its nature and
becomes periodic. In some cases it is observed that the phase portrait gets stretched as the
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order of the derivative is reduced. We used two computational methods, Chebyshev spectral
method and variational iteration method for solving the fractional-order Logistic equation
with two different delays. We derived an approximate formula of the fractional derivative.
The properties of the Chebyshev polynomials are used to reduce FOLE with two different
delays to the solution of nonlinear system of algebraic equations. Special attention is given
to study the convergence analysis and estimate the upper bound of the error of the derived
formula. From the solutions obtained using the suggested method we can conclude that these
solutions are in excellent agreement with the exact solution and show that these approaches
can solve the problem effectively. It is evident that the overall errors can be made smaller
by adding new terms from the series (2.7). Comparisons are made between approximate
solutions to illustrate the validity and the great potential of the proposed techniques. All
numerical results are obtained using MatLab 8.
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