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In this study, a steady, incompressible, and laminar-free convective flow of a two-dimensional
electrically conducting viscoelastic fluid over a moving stretching surface through a porous
medium is considered. The boundary-layer equations are derived by considering Boussinesq and
boundary-layer approximations. The nonlinear ordinary differential equations for the momentum
and energy equations are obtained and solved analytically by using homotopy analysis method
(HAM) with two auxiliary parameters for two classes of visco-elastic fluid (Walters’ liquid B and
second-grade fluid). It is clear that by the use of second auxiliary parameter, the straight line region
in �-curve increases and the convergence accelerates. This research is performed by considering
two different boundary conditions: (a) prescribed surface temperature (PST) and (b) prescribed
heat flux (PHF). The effect of involved parameters on velocity and temperature is investigated.

1. Introduction

The analysis of the flow field in a boundary layer near a stretching sheet is an important part
in fluid dynamics and heat transfer occurring in a number of engineering processes such as
polymer processing, metallurgy, extrusion of plastic sheets, and crystal growth [1, 2].

Incompressible MHD visco-elastic (Rivlin-Ericksen) fluid flow with small particles
between two infinite moving parallel plates was analyzed via Laplace transform technique
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by Ghosh et al. [3]. Datti et al. [4] carried out a study on MHD visco-elastic fluid flow
over a nonisothermal stretching sheet with presence of internal heat generation/absorption
and radiation. The fourth-order Runge-Kutta method was applied to investigate the effects
of suction/blowing on steady boundary-layer flow and heat transfer considering thermal
radiation. The flow of non-Newtonian power-law fluids past a power-law stretched sheet
with surface heat flux has been investigated by Chen [5]. A central-difference scheme was
employed to solve governing equations and to discuss the effects of different physical
parameters. Bég et al. [6] employed Keller-box implicit method to analyze Soret and Dufour
effects on heat and mass transfer micropolar fluid flow over an isothermal sphere. MHD flow
of an infinite vertical porous plate was investigated by Kamel [7] using Laplace transform
techniques.

Computers have a significant effect on the developments of new methods. Today,
researchers apply analytical methods in solving nonlinear problems and use many
advantages of these methods like high convergence, and so forth. One of the most known and
reliable techniques is homotopy analysis method. Homotopy analysis method (HAM) was
employed by Liao, as the first one to offer a general analytic method for nonlinear problems
[8, 9]. Heat transfer of a magnetohydrodynamic Sisko fluid through a porous medium was
studied by Khan and Farooq [10] and they compared a Sisko fluid to a Newtonian fluid.
Rashidi and Pour [11] employed HAM for unsteady boundary-layer flow and heat transfer
on a stretching sheet. Hayat et al. [12] investigated Soret and Dufour’s effect on mixed
convection of a visco-elastic fluid flow over a vertical stretching surface via HAM. Abbas
et al. [13] studied mixed convection boundary-layer flow of a Maxwell fluid over a vertical
stretching surface byHAM. Khan and Shahzad [14, 15] studied boundary-layer flow of a non-
Newtonian (Sisko) fluid over a radially stretching sheet and a wedge via HAM respectively,
considering involved parameters. Khan et al. [16] also considered the flow of a Sisko fluid in
an annular pipe and solved both analytically (HAM) and numerically (the finite difference
method). Partial slip, thermal diffusion, and diffusion thermo on MHD convective flow over
a rotating disk with viscous dissipation and ohmic heating was studied by Rashidi et al. [17]
via HAM. They clearly stated that increase in magnetic parameter leads to decrease in the
radial skin friction and increase in slip coefficient leads to an increase in the heat transfer
coefficient. HAM has been extensively used to solve nonlinear problems in mechanics and
fluid dynamics [18–24].

To accelerate solution convergence and to improve the method, we use HAMwith two
auxiliary parameters. The second auxiliary parameter increases the straight line of �-curve
and the rate of convergence. Aliakbar et al. [25] surveyed the effects of involved parameters in
MHD flow ofMaxwellian fluids in presence of thermal radiation via HAMwith two auxiliary
parameters.

2. Flow Analysis

We consider a steady-state two-dimensional boundary-layer flow of an electrically con-
ducting visco-elastic incompressible laminar-free convective fluid over a moving stretching
surface in a porous medium. Two opposite and equal forces along x-axis are applied, keeping
the origin fixed so the sheet is stretched [1]. The stretching velocity is assumed to be
uω(x) = bx. A uniformmagnetic field along y-axis is imposed. Assuming magnetic Reynolds
number very small, we neglect the induced magnetic field in comparison to the applied
magnetic field. Viscous dissipation is small. With the Boussinesq and the boundary-layer
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approximations and considering the above assumptions, the boundary-layer equations are
[1]:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= − k0

{
u

∂3u

∂x∂y2
+ v

∂3u

∂y3
+
∂u

∂x

∂2u

∂y2
− ∂u

∂y

∂2u

∂x∂y

}

+ υ
∂2u

∂y2
− σB2

0u

ρ
− υ

k′
u + gβ(T − T∞),

(2.1)

where u and v are velocity components in the directions of x and y along and perpendicular
to the surface, respectively. The boundary conditions are

u = uω(x), v = 0, at y = 0,

u −→ 0, uy −→ 0, as y −→ ∞.
(2.2)

By introducing stream function ψ, that u = ∂ψ/∂y, v = −∂ψ/∂x, the continuity equation
is satisfied. The momentum and energy equations can be transformed to the ordinary
differential equations by using the following introduced similarity solutions:

η =

√
uω(x)
υx

y, ψ =
√
υxuω(x)f

(
η
)
. (2.3)

η is the nondimensional distance of boundary-layer and f(η) is the dimensionless stream
function. Substitution (2.3) into the boundary-layer equation, a similarity non-linear ordinary
differential equation is obtained:

f2
η

(
η
) − f(η)fηη(η) = fηηη

(
η
) − k1{2fη(η)fηηη(η) − f(η)fηηηη(η) − f2

ηη

(
η
)}

−Mnfη
(
η
) − k2fη(η) +Grθ

(
η
)
,

(2.4)

where subscript η in equations and superscript ′ in figures denote the derivative in respect
to k1 = k0b/υ is the visco-elastic parameter, k2 = υ/bk′ is the permeability parameter, Mn =
σB2

0/bρ is magnetic field parameter, and Gr = gβA/b2l is Grashof number. The boundary
conditions are as follow:

fη
(
η
)
= 1, f

(
η
)
= 0, at η = 0,

fη
(
η
) −→ 0, fηη

(
η
) −→ 0, as η −→ ∞.

(2.5)
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If we want to apply reduction of order to (2.4)we have

fη
(
η
)
= z
(
f
)
, (2.6a)

fηη
(
η
)
= z

dz

df
, (2.6b)

fηηη
(
η
)
= z

d

df

(
z
dz

df

)
, (2.6c)

fηηηη
(
η
)
= z

d

df

(
z
d

df

(
z
dz

df

))
, (2.6d)

reducing (2.4) to

z2 − fzdz
df

= z
d

df

(
z
dz

df

)
− k1
{
2z2

d

df

(
z
dz

df

)
− fz d

df

(
z
d

df

(
z
dz

df

))
− z2
(
dz

df

)2
}

−Mn z − k2z +Grθ
(
η
)
.

(2.6e)

This reduction is possible because (2.4) is autonomous and hence admits the symmetry
generator X = ∂/∂η. The related boundary conditions are as follows:

z(0) = 1, (2.6f)

z
dz

df
−→ 0, as η −→ ∞, (2.6g)

z −→ 0, as η −→ ∞. (2.6h)

But we do not have any value for f when η → ∞, that is, f(∞) is unknown: therefore,
we are unable to apply a symmetry reduction to this boundary value problem. For analytical
solution of this problem, we implement the HAM in the Section 3.

3. Heat Transfer

The energy equation with radiation and heat generation/absorption for flow in two dimen-
sions is

u
∂T

∂x
+ v

∂T

∂y
=

1
ρCp

∂

∂y

(
K
∂T

∂y

)
+

Q

ρCp
(T − T∞) − 1

ρCp

∂qr
∂y

, (3.1)

the thermal conductivity K changes linearly respect to the temperature in the form of in

K = K∞
(
1 + εθ

(
η
))
, (3.2)
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where

ε =
Kω −K∞
K∞

. (3.3)

By the use of Rosseland approximation the radiative heat flux is given by,

qr = − 4σ∗

3K∗
∂T4

∂y
, (3.4)

σ∗ is the Stephan-Boltzman constant and K∗ is the mean absorption coefficient. Assume that
T4 is defined as a linear function of temperature. Using Taylor series,

T4 ∼= 4T3
∞T − 3T4

∞. (3.5)

Considering two different types of heating processes we have the following.

3.1. Prescribed Surface Temperature (PST)

The boundary conditions in this case are

T = Tω = T∞ +A
(x
l

)
, at y = 0,

T −→ T∞ as y −→ ∞.

(3.6)

A is constant and l is the characteristic length.
Defining nondimensional temperature as

θ
(
η
)
=

T − T∞
Tω − T∞ .

(3.7)

We can obtain dimensionless energy equation as follows:

(
1 + εθ

(
η
)
+Nr

)
θηη
(
η
)
+ Prf

(
η
)
θη
(
η
) − Pr

(
fη
(
η
) − α)θ(η) + εθ2η(η) = 0. (3.8)

Dimensionless boundary conditions are

θ
(
η
)
= 1, at η = 0,

θ
(
η
) −→ 0, as η −→ ∞.

(3.9)

Pr = μCp/K∞ is the Prandtl number, α = Q/bρCp is heat source/sink parameter, and Nr =
16σ∗T3

∞/3K
∗K∞ is the thermal radiation parameter.
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3.2. Prescribed Wall Heat Flux (PHF)

The corresponding boundary conditions are

−K
(
∂T

∂y

)
ω

= Qω = D
(x
l

)
, at y = 0,

T −→ T∞ as y −→ ∞.

(3.10)

Qω is the wall heat flux and D is a constant.

(
∂T

∂y

)
ω

= −D
K

(x
l

)
. (3.11)

Now we can obtain that

(Tω − T∞) = D

K

(x
l

)√υ

b
,

(T − T∞) = D

K

(x
l

)√υ

b
g
(
η
)
.

(3.12)

Defining non-dimensional temperature as

g
(
η
)
=

T − T∞
Tω − T∞ ,

(3.13)

Dimensionless form of energy equation and boundary conditions are

(
1 + εg

(
η
)
+Nr

)
gηη
(
η
)
+ Prf

(
η
)
gη
(
η
) − Pr

(
fη
(
η
) − α)g(η) + εg2

η

(
η
)
= 0, (3.14)

gη
(
η
)
= −1, at η = 0,

g
(
η
) −→ 0, as η −→ ∞.

(3.15)

4. HAM Solution

We choose the initial approximations to satisfy the boundary conditions. Use of two
auxiliary parameters increases the rate of convergence of the solution. The appropriate initial
approximations are as follows:

f0
(
η
)
=

1 − e−γη
γ

,

θ0
(
η
)
= e−γη,

g0
(
η
)
=
e−γη

γ
.

(4.1)
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The linear operators Lf(f), Lθ(θ) and Lg(g), are defined as

Lf

(
f
)
=
∂4f

∂η4
+ γ

∂3f

∂η3
,

Lθ(θ) =
∂2θ

∂η2
+ γ

∂θ

∂η
,

Lg

(
g
)
=
∂2g

∂η2
+ γ

∂g

∂η
.

(4.2)

The following properties are satisfied with the above linear operators:

Lf

(
c1 + c2η + c3η2 + c4e−γη

)
= 0,

Lθ

(
c5 + c6e−γη

)
= 0,

Lg

(
c7 + c8e−γη

)
= 0.

(4.3)

c1–c8 are arbitrary constants. The nonlinear operators are

Nf

[
f̂
(
η; q
)
, θ̂
(
η; q
)]

=

(
∂f̂
(
η; q
)

∂η

)2

− f̂(η; q)∂2f̂
(
η; q
)

∂η2
− ∂3f̂

(
η; q
)

∂η3

+ k1

⎧⎨
⎩2

∂f̂
(
η; q
)

∂η

∂3f̂
(
η; q
)

∂η3
− f̂(η; q)∂4f̂

(
η; q
)

∂η4
−
(
∂2f̂(η; q)
∂η2

)2
⎫⎬
⎭ PST case

+Mn
∂f̂
(
η; q
)

∂η
+ k2

∂f̂
(
η; q
)

∂η
−Grθ̂

(
η; q
)
,

Nf

[
f̂
(
η; q
)
, ĝ
(
η; q
)]

=

(
∂f̂
(
η; q
)

∂η

)2

− f̂(η; q)∂2f̂
(
η; q
)

∂η2
− ∂3f̂

(
η; q
)

∂η3

+ k1

⎧⎨
⎩2

∂f̂
(
η; q
)

∂η

∂3f̂
(
η; q
)

∂η3
− f̂(η; q)∂4f̂

(
η; q
)

∂η4
−
(
∂2f̂
(
η; q
)

∂η2

)2
⎫⎬
⎭ PHF case

+Mn
∂f̂
(
η; q
)

∂η
+ k2

∂f̂
(
η; q
)

∂η
−Grĝ

(
η; q
)
,
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Nθ

[
f̂
(
η; q
)
, θ̂
(
η; q
)]

=
(
1 + εθ̂

(
η; q
)
+Nr

)∂2θ̂(η; q)
∂η2

+ Prf̂
(
η; q
)∂θ̂(η; q)

∂η

− Pr

(
∂f̂
(
η; q
)

∂η
− α
)
θ̂
(
η; q
)
+ ε

(
∂θ̂(η; q)
∂η

)2

,

Ng

[
f̂
(
η; q
)
, ĝ
(
η; q
)]

=
(
1 + εĝ

(
η; q
)
+Nr

)∂2ĝ(η; q)
∂η2

+ Prf̂
(
η; q
)∂ĝ(η; q)

∂η

− Pr

(
∂f̂
(
η; q
)

∂η
− α
)
ĝ
(
η; q
)
+ ε

(
∂ĝ
(
η; q
)

∂η

)2

.

(4.4)

The zero-order deformation equations are defined as

(
1 − q)Lf

[
f̂
(
η; q
) − f0(η)] = q�Hf

(
η
)Nf

[
f̂
(
η; q
)
, θ̂
(
η; q
)]
, PST case

(
1 − q)Lf

[
f̂
(
η; q
) − f0(η)] = q�Hf

(
η
)Nf

[
f̂
(
η; q
)
, ĝ
(
η; q
)]
, PHF case

(
1 − q)Lθ

[
θ̂
(
η; q
) − θ0(η)] = q�Hθ

(
η
)Nθ

[
f̂
(
η; q
)
, θ̂
(
η; q
)]
,

(
1 − q)Lg

[
ĝ
(
η; q
) − g0(η)] = q�Hg

(
η
)Ng

[
f̂
(
η; q
)
, ĝ
(
η; q
)]
.

(4.5)

� is auxiliary nonzero parameter andHf(η),Hθ(η),Hg(η) are auxiliary functions, which we
chose them as

Hf

(
η
)
= e−γη,

Hθ

(
η
)
= e−γη,

Hg

(
η
)
= e−γη,

(4.6)

fm
(
η
)
=

1
m!

∂mf̂
(
η; q
)

∂qm

∣∣∣∣∣
q=0

,

θm
(
η
)
=

1
m!

∂mθ̂
(
η; q
)

∂qm

∣∣∣∣∣
q=0

,

gm
(
η
)
=

1
m!

∂mĝ
(
η; q
)

∂qm

∣∣∣∣∣
q=0

.

(4.7)
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Differentiating the zero-order deformation equations, m times in respect to q, and dividing
bym! in q = 0, we have themth-order deformation equations

Lf

[
fm
(
η
) − χm fm−1

(
η
)]

= �Hf

(
η
)
Rf,m

(
η
)
,

Lθ

[
θm
(
η
) − χm θm−1

(
η
)]

= �Hθ

(
η
)
Rθ,m

(
η
)
,

Lg

[
gm
(
η
) − χm gm−1

(
η
)]

= �Hg

(
η
)
Rg,m

(
η
)
,

(4.8)

where

Rf,m

(
η
)

=
m−1∑
n=0

(
∂fn
(
η
)

∂η

∂fm−1−n
(
η
)

∂η
− fn
(
η
)∂2fm−1−n

(
η
)

∂η2

)
− ∂3fm−1

(
η
)

∂η3
+
m−1∑
n=0

k1

×
(
2
∂fn
(
η
)

∂η

∂3fm−1−n
(
η
)

∂η3
− fn
(
η
)∂4fm−1−n

(
η
)

∂η4
− ∂2fn

(
η
)

∂η2
∂2fm−1−n

(
η
)

∂η2

)
PST case

+Mn
∂fm−1

(
η
)

∂η
+ k2

∂fm−1
(
η
)

∂η
−Grθm−1

(
η
)
,

Rf,m

(
η
)

=
m−1∑
n=0

(
∂fn
(
η
)

∂η

∂fm−1−n
(
η
)

∂η
− fn
(
η
)∂2fm−1−n

(
η
)

∂η2

)
− ∂3fm−1

(
η
)

∂η3
+
m−1∑
n=0

k1

×
(
2
∂fn
(
η
)

∂η

∂3fm−1−n
(
η
)

∂η3
− fn
(
η
)∂4fm−1−n

(
η
)

∂η4
− ∂2fn

(
η
)

∂η2
∂2fm−1−n

(
η
)

∂η2

)
PHF case

+Mn
∂fm−1

(
η
)

∂η
+ k2

∂fm−1
(
η
)

∂η
−Grgm−1

(
η
)
,

Rθ,m

(
η
)

= (1 +Nr)
∂2θm−1

(
η
)

∂η2
+ ε

m−1∑
n=0

θn
(
η
)∂2θm−1−n

(
η
)

∂η2

+ Pr

(
m−1∑
n=0

fn
(
η
)∂θm−1−n

(
η
)

∂η
− θn

(
η
)∂fm−1−n

(
η
)

∂η

)
+ (α · Pr)θm−1

(
η
)

+ ε
m−1∑
n=0

∂θn
(
η
)

∂η

∂θm−1−n
(
η
)

∂η
,
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Rg,m

(
η
)

= (1 +Nr)
∂2gm−1

(
η
)

∂η2
+ ε

m−1∑
n=0

gn
(
η
)∂2gm−1−n

(
η
)

∂η2

+ Pr

(
m−1∑
n=0

fn
(
η
)∂gm−1−n

(
η
)

∂η
− gn

(
η
)∂fm−1−n

(
η
)

∂η

)
+ (α · Pr)gm−1

(
η
)

+ ε
m−1∑
n=0

∂gn
(
η
)

∂η

∂gm−1−n
(
η
)

∂η
.

(4.9)

Finally, we obtain by Taylor series the following:

f̂
(
η; q
)
= f0
(
η
)
+

∞∑
m=1

fm
(
η
)
qm,

θ̂
(
η; q
)
= θ0

(
η
)
+

∞∑
m=1

θm
(
η
)
qm,

ĝ
(
η; q
)
= g0

(
η
)
+

∞∑
m=1

gm
(
η
)
qm,

(4.10)

χm =

{
0 m ≤ 1,
1 m > 1.

(4.11)

The system of equations with boundary conditions is solved by software MATHEMATICA.

5. Convergence of HAM

The appropriate values of the parameters � and γ have significant influence on the solution
convergence [8]. The optimal values are selected from the valid region in straight line.
Straight line in �-curve can be extended by the use of the second auxiliary parameter γ .

In Figure 1, �-curve is figured and obtained via 20th-order of HAM solution. We
should select the optimal values from the straight lines parallel to the horizontal axis to
control the convergence. Figures 2, 3, 4, and 5 obviously prove the effect of choosing the
appropriate second auxiliary parameter in increasing the straight valid region of �-curves.
The averaged residual errors are defined as (5.1) to acquire optimal values of auxiliary
parameters

Resf =

(
df
(
η
)

dη

)2

− f(η)d2f
(
η
)

dη2
− d3f

(
η
)

dη3

+ k1

⎧⎨
⎩2

df
(
η
)

dη

d3f
(
η
)

dη3
− f(η)d4f

(
η
)

dη4
−
(
d2f
(
η
)

dη2

)2
⎫⎬
⎭
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+Mn
df
(
η
)

dη
+ k2

df
(
η
)

dη
−Grθ

(
η
)
, PST case

Resf =

(
df
(
η
)

dη

)2

− f(η)d2f
(
η
)

dη2
− d3f

(
η
)

dη3

+ k1

⎧⎨
⎩2

df
(
η
)

dη

d3f
(
η
)

dη3
− f(η)d4f

(
η
)

dη4
−
(
d2f
(
η
)

dη2

)2
⎫⎬
⎭

+Mn
df
(
η
)

dη
+ k2

df
(
η
)

dη
−Grg

(
η
)
, PHF case

Resθ =
(
1 + εθ

(
η
)
+Nr

)d2θ
(
η
)

dη2
+ Prf

(
η
)dθ(η)

dη

− Pr

(
df
(
η
)

dη
− α
)
θ
(
η
)
+ ε

(
dθ
(
η
)

dη

)2

,

Resg =
(
1 + εg

(
η
)
+Nr

)d2g
(
η
)

dη2
+ Prf

(
η
)dg(η)

dη

− Pr

(
df
(
η
)

dη
− α
)
g
(
η
)
+ ε

(
dg
(
η
)

dη

)2

.

(5.1)

To check the accuracy of the method, the residual errors of the equations are illustrated
in Figures 6(a), and 6(b). As one can see, the residual error is reducedwhenwe use the second
auxiliary parameter and this justifies why we use the second auxiliary parameter. In Figure
6(a) the effect of considering γ = 0.92 in PHF case and γ = 0.93 in PST case is to decrease the
order of residual errors more than γ = 1 (without the second auxiliary parameter) in Figure
6(b) and this improves the accuracy of HAMmethod. In fact, the selection of second auxiliary
parameter has a determinative effect on the solution and improves the convergence strength
of HAM. The second auxiliary parameter not only extends the straight line region in �-curve
but also leads to a better choice of � and hence improves the accuracy of the solution.

6. Results and Discussion

In this paper, the MHD boundary layer problem for momentum and heat transfer with
buoyancy force, thermal radiation and internal heat source/sink in visco-elastic fluid flow
(Walters’ liquid B and second-grade fluid) over a porous stretching sheet is investigated.

The effect of different parameters on velocity and temperature distributions is
discussed by applying numerical values to the involved parameters. Graphical representation
of results is very useful to demonstrate the effect of different parameters in solutions.
Figures 7 and 8 indicate the influence of the visco-elastic parameter k1, in both PST and
PHF cases on velocity profile. Visco-elasticity introduces tensile stress so the boundary-layer
contracts transversely and hence velocity decreases. As we expect in Figures 7 and 8, velocity
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Figure 1: The �-curves of f ′′′(0), θ′(0) and g(0) obtained by the 20th-order approximation of the HAM
solution when k1 = k2 = Nr = Mn = ε = 0.1, Pr = 1, α = 0, Gr = 0.4.
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Gr = 0.2, Nr = 0.0, Pr = 1.0, ε = 0.05, α = −0.5 in PST case.

decreases with increasing visco-elastic parameter. Considering both kinds of visco-elastic
fluids (Walters’ liquid B and second-grade fluid), we selected k1, to vary from −0.5 to +0.5.

The effect of magnetic parameter on flow is figured in Figure 9. Transverse magnetic
field yields to create a drag like force named Lorentz force to resist the flow so magnetic field
parameter slows down the flow and causes to decrease the horizontal velocity. We can see
that in Figure 9 with increasing Mn, the velocity profiles decrease. The effect of permeability
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parameter is just like the effect of magnetic parameter. From Figure 10, one can obtain that
with the increase of Grashof number velocity profiles increase. We should notice that Gr
shows the coupling of the equations or the volumetric expansion capability of the fluid.
Buoyancy force acts like a favorable pressure gradient and accelerates the fluid. With the
increase of Prandtl number kinematic viscosity increases and velocity in both PST and PHF
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decreases. In Figure 11, it is shown that with the increase in Pr, the velocity profiles descends.
The effect of thermal radiation parameter Nr, on velocity profiles, is to increase the horizontal
velocity that is shown in Figure 12.

The effect of heat source/sink parameter on velocity profile is to increase the velocity.
It is very clear that with increasing αwe can say that b is decreasing and so the velocity should
increase.
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Figure 8: The velocity profile when Mn = 0.15, k2 = 0.05, Gr = 0.2, Pr = 1.0, Nr = 0.0, ε = 0.05, α = −0.5 in
PHF case.

With the increase of visco-elastic parameter as we expect, the temperature increases in
both PST and PHF cases. When (α > 0), that is, Tw > T∞ heat transfer occurs from sheet to
fluid and temperature increases (we have energy generation). But when (α < 0) heat transfer
occurs from fluid to sheet (energy absorption) and temperature decreases. As we expect, the
temperature in boundary layer in α > 0 is more than α < 0.

7. Conclusion

In this paper, we study the effect of the buoyancy force and thermal radiation in MHD
boundary layer visco-elastic fluid flow over a continuously moving stretching surface in
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Figure 10: The velocity profile when k1 = 0.1, k2 = Nr = 0.0, Mn = 0.2, Pr = 1.0, ε = 0.1, α = −0.05 in PST
case.

a porous medium. The governing equations are formulated and the obtained equations
transformed to ordinary differential equations and solved analytically using HAM for two
classes of visco-elastic fluid (Walters’ liquid B and second-grade fluid). The influence of the
different parameters on the horizontal velocity and temperature profiles in two different
boundary conditions (i) PST case and (ii) PHF case is illustrated and discussed. In general
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we note that the effect of visco-elastic parameter is to decrease the velocity and increase the
temperature in boundary-layer. This mirrors the effect of magnetic field parameter. But with
increasing the Prandtl number both velocity and temperature decrease. In PHF case, the wall
temperature is greater than the PST case.
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