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The purpose of this paper is to present the existence of the best period proximity point for cyclic
weaker Meir-Keeler contractions and asymptotic cyclic weaker Meir-Keeler contractions in metric
spaces.

1. Introduction and Preliminaries

Throughout this paper, by R
+ we denote the set of all nonnegative numbers, while N is the set

of all natural numbers. Let A and B be nonempty subsets of a metric space (X, d). Consider
a mapping f : A ∪ B → A ∪ B, f is called a cyclic map if f(A) ⊆ B and f(B) ⊆ A. A point
x in A is called a best proximity point of f in A if d(x, fx) = d(A,B) is satisfied, where
d(A,B) = inf{d(x, y) : x ∈ A,y ∈ B}, and x ∈ A is called a best periodic proximity point of f
inA if d(x, f2κ+1x) = d(A,B) is satisfied, for some κ ∈ N∪{0}. In 2005, Eldred et al. [1] proved
the existence of a best proximity point for relatively nonexpansive mappings using the
notion of proximal normal structure. In 2006, Eldred and Veeramani [2] proved the follow-
ing existence theorem.

Theorem 1.1 (see Theorem 3.10 in [2]). Let A and B be nonempty closed convex subsets of a
uniformly convex Banach space. Suppose f : A∪B → A∪B is a cyclic contraction, that is, f(A) ⊆ B
and f(B) ⊆ A, and there exists k ∈ (0, 1) such that

d
(
fx, fy

) ≤ kd(x, y) + (1 − k)d(A,B) for every x ∈ A,y ∈ B. (1.1)

Then there exists a unique best proximity point in A. Further, for each x ∈ A, {f2nx} converges to
the best proximity point.
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In this paper, we also recall the notion of Meir-Keeler type mapping. A mapping ψ :
R

+ → R
+ is said to be a Meir-Keeler-type mapping (see [3]) if for each η > 0, there exists

δ > 0 such that for t ∈ R
+ with η ≤ t < η + δ, we have ψ(t) < η.

In the recent, Eldred et al. [1] introduced the below notion of cyclic Meir-Keeler con-
traction.

Definition 1.2 (see [1]). Let (X, d) be a metric space, and let A and B be nonempty subsets of
X. Then f : A ∪ B → A ∪ B is called a cyclic Meir-Keeler contraction if the following are
satisfied:

(i) f(A) ⊂ B and f(B) ⊂ A;

(ii) for every ε > 0, there exists δ > 0 such that

d
(
x, y

)
< d(A,B) + ε + δ implies d

(
fx, fy

)
< d(A,B) + ε (1.2)

for all x ∈ A and y ∈ B.
In the recent, Di Bari et al. [4] proved the following best proximity point theorem.

Theorem 1.3 (see [4]). Let X be a uniformly convex Banach space, and let A and B be nonempty
subsets of X. Suppose A is closed and convex and f : A ∪ B → A ∪ B is a cyclic Meir-Keeler con-
traction. Then there exists a unique best proximity point in A. Further, for each x ∈ A, {f2nx} con-
verges to best proximity point.

Later, many authors studied this subject, and many results on best proximity points
are proved. (see, e.g., [5–10]). In this study, we will introduce the new concepts of cyclic
weaker Meir-Keeler contractions and asymptotic cyclic weaker Meir-Keeler contractions in
metric spaces, and the purpose of this paper is to present the existence of the best period pro-
ximity point for these contractions.

2. The Best Periodic Proximity Points for Cyclic Weaker
Meir-Keeler Contractions

In this section, we first introduce the below notions of the weaker Meir-Keeler-type mapping,
ϕ-mapping, and cyclic weaker Meir-Keeler contraction in metric spaces.

Definition 2.1. Let (X, d) be a metric space, and ϕ : R
+ → R

+. Then ϕ is called a weaker Meir-
Keeler-type mapping in X if for each η > 0, there exists δ > 0 such that for x, y ∈ X with
η ≤ d(x, y) < δ + η, there exists n0 ∈ N such that ϕn0(d(x, y)) < η.

The following provides an example of a weaker Meir-Keeler-type mapping that is not
a Meir-Keeler-type mapping in a metric space (X, d).

Example 2.2. Let X = R
2, and we define d : X ×X → R

+ by

d
(
x, y

)
=
∣∣x1 − y1

∣∣ +
∣∣x2 − y2

∣∣ ∀x = (x1, x2), y =
(
y1, y2

) ∈ X. (2.1)
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If ϕ : R
+ → R

+,

ϕ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t ≤ 1,

2t if 1 < t < 2,

1 if t ≥ 2,

(2.2)

where t = d(x, y), x, y ∈ X, then ϕ is a weaker Meir-Keeler-type mapping that is not a Meir-
Keeler-type mapping in X.

Definition 2.3. Let (X, d) be a metric space. A mapping ϕ : R
+ → R

+ is called a ϕ-mapping in
X if the mapping ϕ : R

+ → R
+ satisfies the following conditions:

(ϕ1) ϕ is a weaker Meir-Keeler-type mapping in X;

(ϕ2) for all t > 0, {ϕn(t)}n∈N
is nonincreasing;

(ϕ3) for all t > 0, ϕ(t) > 0 and ϕ(0) = 0.

The following provides two examples of a ϕ-mapping.

Example 2.4. Let X = R
2, and we define d : X ×X → R

+ by

d
(
x, y

)
=
∣∣x1 − y1

∣∣ +
∣∣x2 − y2

∣∣ ∀x = (x1, x2), y =
(
y1, y2

) ∈ X. (2.3)

Let ϕ : R
+ → R

+ be

ϕ(t) =
1
2
t ∀t ∈ R

+. (2.4)

Then ϕ : R
+ → R

+ is a ϕ-mapping in X.

Example 2.5. Let X = [0, 4], and we define d : X ×X → R
+ by

d
(
x, y

)
=
∣∣x − y∣∣ ∀x, y ∈ X. (2.5)

If ϕ : R
+ → R

+,

ϕ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3
4
t

2t

1

if 0 ≤ t ≤ 1,

if 1 < t < 2,

if 2 ≤ t ≤ 4,

(2.6)

where t = d(x, y), x, y ∈ X, then ϕ is a ϕ-mapping in X.

Definition 2.6. Let (X, d) be a metric space, and let A and B be nonempty subsets of X. Then
f : A ∪ B → A ∪ B is called a cyclic weaker Meir-Keeler contraction if the following condi-
tions hold:
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(1) f(A) ⊂ B and f(B) ⊂ A;

(2) there is a ϕ-mapping ϕ : R
+ → R

+ in X such that for all n ∈ N and x ∈ A, y ∈ B
with d(x, y) − d(A,B) > 0,

d
(
fnx, fny

) − d(A,B) < ϕn(d(x, y) − d(A,B)),

d
(
x, y

) − d(A,B) = 0 implies d
(
fnx, fny

) − d(A,B) = 0.
(2.7)

The following provides an example of a cyclic weaker Meir-Keeler contraction.

Example 2.7. Let A = [−2, 0] and B = [0, 2] in the metric space (R, d), where d(x, y) = |x − y|.
Define

f(x) =
−x
4

∀x ∈ A ∪ B. (2.8)

Let ϕ : R
+ → R

+ be defined by

ϕ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3
4
t if 0 ≤ t ≤ 1,

2t if 1 < t < 2,

1 if 2 ≤ t ≤ 4,

(2.9)

where t = d(x, y), x ∈ A, y ∈ B. Then all conditions (1) and (2) of Definition 2.6 and therefore
f are a cyclic weaker Meir-Keeler contraction. Notice that d(A,B) = 0.

Now, we are in this position to state the following results.

Lemma 2.8. Let (X, d) be a metric space, and let A, B be nonempty subsets of X. Suppose f :
A ∪ B → A ∪ B is a cyclic weakerMeir-Keeler contraction. Then limn→∞d(fnx, fn+1x) = d(A,B)
holds.

Proof. Since f : A ∪ B → A ∪ B is a cyclic weaker Meir-Keeler contraction, there is a ϕ-map-
ping ϕ : R

+ → R
+ in X such that

d
(
fnx, fny

) − d(A,B) < ϕn(d(x, y) − d(A,B)), (2.10)

for all n ∈ N and x ∈ A, y ∈ B.
Since {ϕn(d(x, y))}n∈N

is nonincreasing, hence we also conclude {ϕn(d(x, y) −
d(A,B))}n∈N

is nonincreasing, and it must converge to some η ≥ 0. We claim that η = 0.
On the contrary, assume that η > 0. By the definition of the weaker Meir-Keeler-type map-
ping ϕ, corresponding to η use, there exists δ > 0 such that for x, y ∈ X with η ≤
d(x, y) − d(A,B) < δ + η, there exists n0 ∈ N such that ϕn0(d(x, y) − d(A,B)) < η. Since
limn→∞ϕn(d(x, y)−d(A,B)) = η, there existsm0 ∈ N such that η ≤ ϕm(d(x, y)−d(A,B)) < δ+
η, forallm ≥ m0. Thus, we conclude that ϕm0+n0(d(x, y) − d(A,B)) < η. So we get a contradic-
tion. So limn→∞ϕn(d(x, y) − d(A,B)) = 0, and so limn→∞d(fnx, fny) − d(A,B) = 0, that
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is, limn→∞d(fnx, fny) = d(A,B). Thus, we also conclude that limn→∞d(fnx, fn+1x) =
d(A,B).

Applying above Lemma 2.8, it is easy to conclude the following theorem.

Theorem 2.9. Let (X, d) be a metric space, and let A,B be nonempty subsets of X. Suppose f :
A ∪ B → A ∪ B is a cyclic weaker Meir-Keeler contraction and if for some x ∈ A, the sequence
{f2n+1x} converges to x ∈ A, then x is a best periodic proximity point of f in A.

Proof. By the definition of the weaker Meir-Keeler-type mapping ϕ : R
+ → R

+ in X, there
exists n0 ∈ N such that ϕn0(η) ≤ η for each η > 0. Since {f2n+1x} converges tox ∈ A, cor-
responding to above n0 use, we have

d(A,B) ≤ d
(
x, f2n0+1x

)

≤ d
(
x, f2n+1x

)
+ d

(
f2n+1x, f2n0+1x

)
− d(A,B) + d(A,B)

≤ d
(
x, f2n+1x

)
+ ϕ2n0+1

(
d
(
f2(n−n0)x, x

)
− d(A,B)

)
+ d(A,B)

≤ d
(
x, f2n+1x

)
+ ϕ2n0

(
d
(
f2(n−n0)x, x

)
− d(A,B)

)
+ d(A,B)

≤ d
(
x, f2n+1x

)
+ d

(
f2(n−n0)x, x

)
− d(A,B) + d(A,B)

≤ d
(
x, f2n+1x

)
+ d

(
f2(n−n0)x, f2(n−n0)+1x

)
+ d

(
f2(n−n0)+1x, x

)
,

(2.11)

Letting n → ∞. Then d(A,B) = d(x, f2n0+1x). Thus x is a best period proximity point of f in
A.

3. The Best Periodic Proximity Points for Asymptotic Cyclic Weaker
Meir-Keeler Contractions

In this section, we introduce the below notions of the asymptotic cyclic weaker Meir-Keeler-
type sequence and asymptotic cyclic weaker Meir-Keeler contraction in a metric space (X, d).

Definition 3.1. Let (X, d) be a metric space. A sequence {ϕn | ϕn : R
+ → R

+}n∈N
in X is called

an asymptotic weaker Meir-Keeler-type sequence if {ϕn | ϕn : R
+ → R

+}n∈N
satisfies the

following conditions:

(C1) for each η > 0, there exists δ > 0 such that for x, y ∈ X with η ≤ d(x, y) < δ + η,
there exists 2n0 ∈ N such that ϕ2n0(d(x, y)) < η;

(C2) for all n ∈ N and t > 0, {ϕn(t)}n∈N
is nonincreasing;

(C3) for all n ∈ N, ϕn(0) = 0 and ϕn(t) > 0, t > 0.

Example 3.2. Let X = R
2 and we define d : X ×X → R

+ by

d
(
x, y

)
=
∣∣x1 − y1

∣∣ +
∣∣x2 − y2

∣∣ ∀x = (x1, x2), y =
(
y1, y2

) ∈ X. (3.1)
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Let ϕn : R
+ → R

+ be

ϕn(t) =
1
2n
t ∀t ∈ R

+, n ∈ N, (3.2)

where t = d(x, y), x, y ∈ X. Then {ϕn | ϕn : R
+ → R

+}n∈N
is an asymptotic weaker Meir-

Keeler-type sequence in a metric space (X, d).

Definition 3.3. Let (X, d) be a metric space, and let A and B be nonempty subsets of X. Then
f : A∪B → A∪B is an asymptotic cyclic weakerMeir-Keeler contraction if the following con-
ditions hold:

(1) f(A) ⊂ B and f(B) ⊂ A;

(2) there is an asymptotic weaker Meir-Keeler-type sequence {ϕn | ϕn : R
+ → R

+}n∈N

such that for all n ∈ N and x ∈ A, y ∈ B with d(x, y) − d(A,B) > 0,

d
(
fnx, fny

) − d(A,B) < ϕn
(
d
(
x, y

) − d(A,B)),
d
(
x, y

) − d(A,B) = 0 implies d
(
fnx, fny

) − d(A,B) = 0.
(3.3)

Now, we are in this position to state the following results.

Lemma 3.4. Let (X, d) be a metric space andA,B nonempty subsets ofX. Suppose f : A∪B → A ∪
B is an asymptotic cyclic weaker Meir-Keeler contraction. Then limn→∞d(fnx, fn+1x) = d(A,B)
holds.

Proof. Since f : A ∪ B → A ∪ B is an asymptotic cyclic weaker Meir-Keeler contraction, there
is an asymptotic weaker Meir-Keeler-type sequence {ϕn | ϕn : R

+ → R
+}n∈N

such that

d
(
fnx, fny

) − d(A,B) < ϕn
(
d
(
x, y

) − d(A,B)), (3.4)

for all n ∈ N and x ∈ A, y ∈ B.
Since {ϕn(d(x, y))}n∈N

is nonincreasing, hence we also conclude {ϕn(d(x, y) −
d(A,B))}n∈N

is nonincreasing, and it must converge to some η ≥ 0. We claim that η =
0. On the contrary, assume that η > 0. By the definition of asymptotic weaker Meir-
Keeler-type sequence, corresponding to η use, there exists δ > 0 such that for x, y ∈
X with η ≤ d(x, y) − d(A,B) < δ + η, there exists 2n0 ∈ N such that ϕ2n0(d(x, y) −
d(A,B)) < η. Since limn→∞ϕn(d(x, y) − d(A,B)) = η, there exists m0 ∈ N such that
η ≤ ϕm(d(x, y) − d(A,B)) < δ + η, for all m ≥ m0. Thus, we conclude that ψm0+2n0(d(x, y) −
d(A,B)) < η. So we get a contradiction. Therefore, limn→∞ϕn(d(x, y) − d(A,B)) = 0, and so
limn→∞d(fnx, fny) − d(A,B) = 0, that is, limn→∞d(fnx, fny) = d(A,B). Thus, we also con-
clude that limn→∞d(fnx, fn+1x) = d(A,B).

Applying above Lemma 3.4, we are easy to conclude the following theorem.

Theorem 3.5. Let (X, d) be a metric space and A, B nonempty subsets of X. Suppose f : A ∪ B →
A ∪ B is an asymptotic cyclic weaker Meir-Keeler contraction, and if for some x ∈ A, the sequence
{f2n+1x} converges to x ∈ A, then x is a best periodic proximity point of f in A.
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Proof. By the definition of the asymptotic weaker Meir-Keeler-type sequence {ϕn | ϕn : R
+ →

R
+}n∈N

, thus there exists 2n0 ∈ N such that ϕ2n0(η) ≤ η for each η > 0. Since {f2n+1x} converges
to x ∈ A, corresponding to above 2n0 use, we have

d(A,B) ≤ d
(
x, f2n0+1x

)

≤ d
(
x, f2n+1x

)
+ d

(
f2n+1x, f2n0+1x

)
− d(A,B) + d(A,B)

≤ d
(
x, f2n+1x

)
+ ϕ2n0+1

(
d
(
f2(n−n0)x, x

)
− d(A,B)

)
+ d(A,B)

≤ d
(
x, f2n+1x

)
+ ϕ2n0

(
d
(
f2(n−n0)x, x

)
− d(A,B)

)
+ d(A,B)

≤ d
(
x, f2n+1x

)
+ d

(
f2(n−n0)x, x

)
− d(A,B) + d(A,B)

≤ d
(
x, f2n+1x

)
+ d

(
f2(n−n0)x, f2(n−n0)+1x

)
+ d

(
f2(n−n0)+1x, x

)
.

(3.5)

Letting n → ∞. Then d(A,B) = d(x, f2n0+1x). Thus x is a best period proximity point of f in
A.
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