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The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical
schemes with low dispersion and low dissipation errors. A technique has recently been devised
in a Computational Fluid Dynamics framework which enables optimal parameters to be chosen so
as to better control the grade and balance of dispersion and dissipation in numerical schemes
(Appadu and Dauhoo, 2011; Appadu, 2012a; Appadu, 2012b; Appadu, 2012c). This technique
has been baptised as the Minimized Integrated Exponential Error for Low Dispersion and Low
Dissipation (MIEELDLD) and has successfully been applied to numerical schemes discretising the
1-D, 2-D, and 3-D advection equations. In this paper, we extend the technique of MIEELDLD to the
field of computational aeroacoustics and have been able to construct high-ordermethodswith Low
Dispersion and Low Dissipation properties which approximate the 1-D linear advection equation.
Modifications to the spatial discretization schemes designed by Tam and Webb (1993), Lockard et
al. (1995), Zingg et al. (1996), Zhuang and Chen (2002), and Bogey and Bailly (2004) have been
obtained, and also a modification to the temporal scheme developed by Tam et al. (1993) has
been obtained. These novel methods obtained using MIEELDLD have in general better dispersive
properties as compared to the existing optimised methods.

1. Introduction

Computational aeroacoustics (CAA) has been given increased interest because of the need
to better control noise levels from aircrafts, trains, and cars due to increased transport and
stricter regulations from authorities [1]. Other applications of CAA are in the simulation of
sound propagation in the atmosphere to the improved design of musical instruments.

In computational aeroacoustics, the accurate prediction of the generation of sound is
demanding due to the requirement for preservation of the shape and frequency of wave
propagation and generation. It is well known [2, 3] that, in order to conduct satisfactory
computational aeroacoustics, numerical methods must generate the least possible dispersion
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and dissipation errors. In general, higher order schemes would be more suitable for CAA
than the lower-order schemes since, overall, the former are less dissipative [4]. This is the
reason why higher-order spatial discretisation schemes have gained considerable interest in
computational aeroacoustics.

The field of CAA has grown rapidly during the last decade and there has been
a resurgence of interest in aeroacoustic phenomena characterised by harsher legislation
and increasing environmental awareness. CAA is concerned with the accurate numerical
prediction of aerodynamically generated noise as well as its propagation and far-field
characteristics. CAA involves mainly the development of numerical methods which
approximate derivatives in a way that better preserves the physics of wave propagation
unlike typical aerodynamic computations [1].

Since multidimensional finite-volume algorithms are generally more expensive in
terms of numerical cost than finite-difference algorithms, the majority of CAA codes are
based on the finite-difference methodology [5]. The trend within the field of CAA has been to
employ higher-order accurate numerical schemes that have in some manner been optimized
for wave propagation in order to reduce the number of grid points per wavelength while
ensuring tolerable levels of numerical error. Apart from acoustics and aeroacoustics, low
amplitude wave propagation takes place over distances characterized by large multiples of
wavelength in other areas such as [6]

(1) electromagnetics, for microcircuit design,

(2) elastodynamics, for nondestructive testing,

(3) seismology, for oil exploration,

(4) medical Imaging, for accurate diagnosis,

(5) hyperthermia, for noninvasive surgery.

Aerodynamics and other areas of fluid mechanics have benefitted immensely from the
development of CFD [7]. The numerical analysis of flows around full aircraft configurations
has become feasible with advances in both numerical techniques and computing machines.
The temptation to apply effective CFD methods to aeroacoustic problems has been un-
avoidable and has been met with some success, but, in some cases, it has been observed that
there is a necessity for some numerical protocols specific to problems involving disturbance
propagation over long distances. The difference between aerodynamic and aeroacoustic
problems lies mainly in the fact that for aeroacoustic computations, the solution is desired at
some large distance from the aerodynamic source, but, in the case of aerodynamic problems,
flow properties are required accurately only on the body itself [7]. Most aerodynamics
problems are time independent, whereas aeroacoustics problems are, by definition, time
dependent [8]. There are computational issues that are unique to aeroacoustics. Thus,
computational aeroacoustics requires somewhat independent thinking and development.

At specific Courant numbers and angles of propagation, the perfect-shift property
can be obtained, leading to exact propagation for all wavenumbers [9]. The perfect shift
property refers to the situation when the error from the spatial discretisation precisely cancels
that from the temporal discretisation. Several numerical schemes which combine the spatial
and temporal discretisation produce the perfect shift property at specific Courant numbers
[9]. Often this perfect cancellation of temporal and spatial errors occurs at cfl = 1.0. For
such methods, the sum of the spatial and temporal error increases when the cfl number is
decreased as the temporal error no longer cancels the spatial error. As the cfl number tends
to zero, so does the temporal error and thus only spatial error remains. For most schemes,
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a low cfl represents the worst case associated with large dispersion or large dissipation
errors as there is no cancellation of temporal and spatial errors [9]. Thus it is important to
assess numerical methods over a range of Courant numbers [9]. However, this is not an
issue for schemes built up from a high-accuracy spatial discretisation with a high-accuracy
time-marching method. These schemes generally do not rely on cancellation to achieve high
accuracy and thus the error does not increase as the Courant number is reduced.

The imaginary part of the numerical wavenumber represents numerical dissipation
only when it is negative [10]. Due to the difference between the physical and numerical
wavenumber, some wavenumbers propagate faster or slower than the wave speed of the
original partial differential equation [11]. This is how dispersion errors are induced. The
real part of the modified wavenumber determines the dispersive error while the imaginary
part determines the dissipative error [9]. The group velocity of a wavepacket governs
the propagation of energy of the wavepacket. The group velocity is characterised by
Re((d/(d(θh)))(θ∗h)) − 1.0 which must be almost one in order to reproduce exact result [12].
Otherwise, dispersive patterns appear. When Re((d/(d(θh)))(θ∗h)) = 1.0, the scheme has the
same group velocity or speed of sound as the original governing equations and the numerical
waves are propagated with correct wave speeds.

2. Organisation of Paper

This paper is organised as follows. In Section 3, we briefly describe the technique
of Minimised Integrated Exponential Error for Low Dispersion and Low Dissipation
(MIEELDLD) when used to optimise parameters in numerical methods. We also describe
how this technique can be extended to construct high order methods with low dispersive
and low dissipative properties in computational aeroacoustics. In Sections 4–8, we use
MIEELDLD to obtain some optimized spatial methods based on a modification of the
methods constructed by Tam andWebb [3], Lockard et al. [13], Zingg et al. [14], Zhuang and
Chen [15], Bogey and Bailly [16]. Section 9 introduces an optimised temporal scheme which
is obtained using MIEELDLD and based on a modification of the temporal discretisation
method constructed by Tam et al. [17]. In Section 10, we construct numerical methods based
on blending each of the five new spatial schemes with the new time discretisation scheme
when used to discretise the 1-D linear advection equation and obtain rough estimates of the
range of stability of these methods. Section 12 highlights the salient features of the paper.

3. The Concept of Minimised Integrated Exponential Error for
Low Dispersion and Low Dissipation

In this section, we describe briefly the technique of Minimized Integrated Exponential Error
for LowDispersion and LowDissipation (MIEELDLD). This technique have been introduced
in Appadu and Dauhoo [18] and Appadu and Dauhoo [19]. We now give a resume of how
we have derived this technique of optimisation.

Suppose the amplification factor of the numerical scheme when applied to the 1-D
linear advection equation:

∂u

∂t
+ β

∂u

∂x
= 0 (3.1)

is

ξ = A + IB. (3.2)
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Then the modulus of the Amplification Factor (AFM) and the relative phase error (RPE) are
calculated as

AFM = |ξ|,

RPE = − 1
rw

tan−1 B
A
,

(3.3)

where r and w are the cfl number and phase angle, respectively.
For a scheme to have Low Dispersion and Low Dissipation, we require

|1 − RPE| + (1 −AFM) −→ 0. (3.4)

The quantity, |1−RPE|measures dispersion error while (1−AFM)measures dissipation
error. Also when dissipation neutralises dispersion optimally, we have

||1 − RPE| − (1 −AFM)| −→ 0. (3.5)

Thus on combining these two conditions, we get the following condition necessary for dis-
sipation to neutralise dispersion and for low dispersion and low dissipation character to be
satisfied:

eldld = ||1 − RPE| − (1 −AFM)| + (|1 − RPE| + (1 −AFM)) −→ 0. (3.6)

Similarly, we expect

eeldld = exp(||1 − RPE| − (1 −AFM)|) + exp(|1 − RPE| + (1 −AFM)) − 2 −→ 0, (3.7)

in order for Low Dispersion and Low Dissipation properties to be achieved.
The measure, eeldld, denotes the exponential error for low dispersion and low dissi-

pation. The reasons why we prefer eeldld over eldld is because the former is more sensitive
to perturbations.

We next explain how the integration process is performed in order to obtain the
optimal parameter(s).

Only One Parameter Involved

If the cfl number is the only parameter, we compute

∫w1

0
eeldlddw, (3.8)

for a range of w ∈ [0, w1], and this integral will be a function of r. The optimal cfl is the one
at which the integral quantity is closest to zero.
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Two Parameters Involved

We next consider a case where two parameters are involved and whereby we would like to
optimise these two parameters.

Suppose we want to obtain an improved version of the Fromm’s scheme which is
made up of a linear combination of Lax-Wendroff (LW) and Beam-Warming (BW) schemes.
Suppose we apply BW and LW in the ratio λ : 1 − λ. This can be done in two ways.

In the first case, if we wish to obtain the optimal value of λ at any cfl, then we compute

∫ r1

0

∫w1

0
eeldlddwdr, (3.9)

which will be in terms of λ.
The value of r1 is chosen to suit the region of stability of the numerical scheme under

consideration while w1 is chosen such that the approximated RPE ≥ 0 for r ∈ [0, r1]. In cases
where phase wrapping phenomenon does not occur, we use the exact RPE instead of the
approximated RPE and in that case, w ∈ [0, π].

The second way to optimise a scheme made up of a linear combination of Beam-
Warming and Lax-Wendroff is to compute the IEELDLD as

∫w1

0 eeldld dw and the integral
obtained in that case will be a function of r and λ. Then a 3-D plot of this integral with respect
to r ∈ [0, r1] and λ ∈ [0, 1] enables the respective optimal values of r and λ to be located.
The optimised scheme obtained will be defined in terms of both a cfl number and the optimal
value of λ to be used.

Considerable and extensive work on the technique of Minimised Integrated Expo-
nential Error for Low Dispersion and Low Dissipation has been carried out in Appadu and
Dauhoo [18], Appadu and Dauhoo [19], Appadu [20–22].

In Appadu and Dauhoo [18], we have obtained the optimal cfl for some explicit
methods like Lax-Wendroff, Beam-Warming, Crowley, Upwind Leap-Frog, and Fromm’s
schemes. In Appadu and Dauhoo [19], we have combined some spatial discretisation
schemes with the optimised time discretisation method proposed by Tam and Webb [3]
in order to approximate the linear 1-D advection equation. These spatial derivatives are
a standard 7-point and 6th-order central difference scheme (ST7), a standard 9-point and
8th-order central difference scheme (ST9) and optimised spatial schemes designed by Tam
and Webb [3], Lockard et al. [13], Zingg et al. [14], Zhuang and Chen [15] and Bogey and
Bailly [16]. The results from some numerical experiments were quantified into dispersion and
dissipation errors andwe have found that the quality of the results is dependent on the choice
of the cfl number even for optimised methods, though to a much lesser degree as compared
to standard methods.

Moreover, in Appadu [20], we obtain the optimal cfl of some multilevel schemes in
1-D. These schemes are of high order in space and time and have been designed by Wang
and Liu [23]. We have also optimised the parameters in the family of third-order schemes
proposed by Takacs [24]. The optimal cfl of the 2-D CFLF4 scheme which is a composite
method made up of Corrected Lax-Friedrichs and the two-step Lax-Friedrichs developed by
Liska and Wendroff [25] has been computed and some numerical experiments have been
performed such as 2-D solid body rotation test [26], 2-D acoustics [27], and 2-D circular
Riemann problem [26]. We have shown that better results are obtained when the optimal
parameters obtained using MIEELDLD are used.
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Some more interesting features of MIEELDLD are detailed in Appadu [21]. In that
paper, we extend the measures used by Tam and Webb [3], Bogey and Bailly [16], Berland
et al. [28] in a computational aeroacoustics framework to suit them in a computational fluid
dynamics framework such that the optimal cfl of some known numerical methods can be
obtained. Thus, we define the following integrals: integrated error from Tam and Webb [3],
(IETAM), integrated error from Bogey and Bailly [16] ((IEBOGEY), and integrated error from
Berland et al. [28] (IEBERLAND) as follows:

IETAM =
∫w1

0
|1 − RPE|2dw,

IEBOGEY =
∫w1

0
|1 − RPE|dw,

IEBERLAND =
∫w1

0
(1 − α)|1 − RPE| + α(1 −AFM)dw.

(3.10)

The optimal cfl is obtained by plotting the respective integral with respect to the cfl
number and locating the cfl at which the integral is least. The techniques used to obtain
the quantities IETAM, IEBOGEY, and IEBERLAND are named Minimised Integrated Error
from Tam and Webb [3] (MIETAM), Minimised Integrated Error from Bogey and Bailly [16]
(MIEBOGEY), and Minimised Integrated Error from Berland et al. [28] (MIEBERLAND)
respectively. It is shown that MIEELDLD has an upper hand over the other techniques of
optimisation: MIETAM, MIEBOGEY, and MIEBERLAND.

The work in Appadu [22] helps us to understand why not all composite schemes
can be effective to capture shocks with minimum dispersion and dissipation. The findings
concluded are that some efficient composite methods to approximate the 1-D linear advection
equation are as follows: composite methods using Lax-Wendroff and Beam-Warming
as either predictor or corrector steps, a linear combination of either Lax-Wendroff and
Beam-Warming schemes or MacCormack and two-step Lax-Friedrichs and the composite
MacCormack/Lax-Friedrichs schemes [29].

4. Modification to Space Discretisation Scheme Proposed by
Tam and Webb [3]

Tam andWebb [3] constructed a 7-pt and 4th-order central differencemethod based on amin-
imization of the dispersion error.

They approximated ∂u/∂x at x0 as

∂u

∂x
=

1
h

3∑
i=−3

aiu(x0 + ih), (4.1)

where h is the spacing of a uniform mesh and the coefficients ai are such that ai = −a−i,
providing a scheme without dissipation. On applying spatial Fourier Transform to (4.1), the
effective wavenumber θ∗h of the scheme is obtained and it is given by

θ∗h = 2
3∑
i=1

ai sin(iθh). (4.2)
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Taylor expansion of θ∗h about θh from (4.2) gives the following:

2a1

(
θh − 1

6
(θh)3 +

1
120

(θh)5
)
+ 2a2

(
2θh − 1

6
(2θh)3 +

1
120

(2θh)5
)

+ 2a3

(
3θh − 1

6
(3θh)3 +

1
120

(3θh)5
)
+ · · · .

(4.3)

To obtain a 4th-order accurate method, we must have

2a1 + 4a2 + 6a3 = 1,

a1 + 8a2 + 27a3 = 0.
(4.4)

Since, we have 2 equations and 3 unknowns, we can choose, for instance, say a1 as a
free parameter. Thus,

a2 =
9
20

− 4
5
a1,

a3 =
1
5

(
a1 − 2

3

)
.

(4.5)

Hence, the numerical wavenumber can be expressed as

θ∗h ≈ 2a1 sin(θh) + 2
(

9
20

− 4
5
a1

)
sin(2θh) + 2

(
1
5
a1 − 2

15

)
sin(3θh). (4.6)

The optimisation procedure used by Tam and Webb [3] is to find a1 which minimizes
the integrated error, E defined as

E =
∫1.1

0
|θ∗h − θh|2d(θh). (4.7)

The value obtained for a1 is 0.7708823806. The corresponding values for a2 and a3 are
−0.1667059045 and 0.0208431428.

Hence, the scheme developed by Tam and Webb [3] has numerical wavenumber, θ∗h,
and group velocity given by

θ∗h = 1.5417647612 sin(θh) − 0.3334118090 sin(2θh) + 0.0416862856 sin(3θh),
(4.8)

groupvelocity = 1.5417647612 cos(θh) − 0.6668236180 cos(2θh) + 0.1250588568 cos(3θh)
(4.9)

and is termed as “TAM” method.



8 Journal of Applied Mathematics

We next consider the numerical wavenumber in (4.2) and use the technique of
MIEELDLD to find optimal values of a1, a2, and a3. The integrated error using MIEELDLD is
given by

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (4.10)

Since we are considering a 7-point and 4th-order central difference method, the numerical
wavenumber, θ∗h, does not have an imaginary part, that is, �(θ∗h) = 0. Hence, (4.10) simpli-
fies to

E =
∫1.1

0

(
2 exp|�(θ∗h) − θh| − 2

)
d(θh), (4.11)

and on minimising this integral using the function NLPSolve in maple, we obtain a1 as
0.7677206709. Corresponding values for a2 and a3 are 0.1641765367 and 0.0202108009, re-
spectively.

Hence we have obtained a modified method which is 7-point and of 4th-order which
we term as “TAM-NEW”method. Expressions for the numerical wavenumber and the group
velocity of the “TAM-NEW” method are given by

θ∗h = 1.5354413418 sin(θh) − 0.3283530734 sin(2θh) + 0.0404216018 sin(3θh), (4.12)

groupvelocity = 1.5354413418 cos(θh) − 0.6567061468 cos(2θh) + 0.1212648054 cos(3θh).
(4.13)

We next perform a spectral analysis of the two methods. We compare the variation of
numerical wavenumber versus the exact wavenumber in Figure 1. A plot of the dispersion
error versus the exact wavenumber is depicted in Figure 2. The dispersion error for TAM-
NEW is slightly less than that for TAM for 0 < θh ≤ 1, but for 1 ≤ θh ≤ π/2, the dispersion
error from TAM is slightly less than that for TAM-NEW.

We now compare quantitatively these twomethods: TAM and TAM-NEW.We use four
accuracy limits [5, 16] defined as follows:

|θ∗h − θh|
π

≤ 5 × 10−3,

|θ∗h − θh|
π

≤ 5 × 10−4,

∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3,

∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4

(4.14)

and compute the minimum number of points per wavelength needed to resolve a wave for
each of the four accuracy limits. The results are summarised in Table 1.



Journal of Applied Mathematics 9

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Exact wavenumber

N
um

er
ic

al
 w

av
en

um
be

r

Ideal
TAM
TAM-NEW

ZINGG
ZINGG-NEW

Figure 1: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods: TAM,
TAM-NEW, ZINGG, and ZINGG-NEW.
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Figure 2: Plot of the dispersion error on a logarithmic scale versus exact wavenumber for the methods:
TAM, TAM-NEW, ZINGG, and ZINGG-NEW.

It is seen that the scheme “TAM-NEW” is not superior to the TAM method as for
a given accuracy it requires more points per wavelength in regard to the dispersive and
group velocity properties. This is because the technique of MIEELDLD aims to minimize both
dispersion and dissipation in numerical methods but here our aim is to construct a 7-point
and 4th-order central difference method with no dissipation.
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Table 1: Comparing the dispersive and group velocity properties for two spatial discretisation methods
“TAM” and “TAM-NEW” in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 TAM 1.3068 4.8081

|θ∗h − θh|
π

≤ 5 × 10−3 TAM-NEW 1.2830 4.8974

|θ∗h − θh|
π

≤ 5 × 10−4 TAM 1.0820 5.8073

|θ∗h − θh|
π

≤ 5 × 10−4 TAM-NEW 1.0365 6.0617
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 TAM 0.9239 6.8007
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 TAM-NEW 0.8870 7.0835
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 TAM 0.8533 7.3636
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 TAM-NEW 0.8002 7.8517

5. Modification to Space Discretisation Scheme Developed
by Lockard et al. [13]

Lockard et al. [13] constructed a 7-point and 4th-order difference method by approximating
∂u/∂x at x0 as

∂u

∂x
=

1
h

3∑
i=−4

aiu(x0 + ih), (5.1)

and therefore the real and imaginary parts of the numerical wavenumber are obtained as fol-
lows:

�(θ∗h) = −a−4 sin(4θh) − a−3 sin(3θh) − a−2 sin(2θh) − a−1 sin(θh)

+ a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh),
(5.2)

�(θ∗h) = −(a−4 cos(4θh) + a−3 cos(3θh) + a−2 cos(2θh) + a−1 cos(θh) + a0

+a1 cos(θh) + a2 cos(2θh) + a3 cos(3θh)).
(5.3)

To obtain a 4th-order method, we require 4 conditions based on the real and imaginary
parts of θ∗h, namely,

a1 + 2a2 + 3a3 − 4a−4 − 3a−3 − 2a−2 − a−1 = 1,

−a1 − 8a2 − 27a3 + 64a−4 + 27a−3 + 8a−2 + a−1 = 0,

a0 + a1 + a2 + a3 + a−4 + a−3 + a−2 + a−1 = 0,

−a1 − 4a2 − 9a3 − 16a−4 − 9a−3 − 4a−2 − a−1 = 0.

(5.4)
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The coefficients obtained by Lockard et al. [13] are

a−4 = 0.0103930209, a−3 = −0.0846974943, a−2 = 0.3420311831,

a−1 = −1.0526812838, a0 = 0.2872741244, a1 = 0.5861624738,

a2 = −0.0981442817, a3 = 0.0096622576.

(5.5)

Hence, the real and imaginary parts of θ∗h for LOCKARD scheme are given as follows:

�(θ∗h) = 1.63884375 sin(θh) − 0.44017538 sin(2θh) + 0.09433201 sin(3θh)

− 0.01039020 sin(4θh),
(5.6)

�(θ∗h) = −0.28727412 + 0.46651881 cos(θh) − 0.24388682 cos(2θh) + 0.07500749 cos(3θh)

− 0.01039020 cos(4θh),
(5.7)

respectively.
We now obtain a modification to the scheme developed by Lockard et al. [13]. We

consider the numerical wavenumber in (5.2) and (5.3) and replace a−1, a0, a1, a2, and a3 in
terms of a−2, a−3, a−4, and θh. Our aim is to minimise the following integral:

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (5.8)

The integral is a function of a−2, a−3, and a−4. We use the function NLPSolve and obtain
optimal values for a−4, a−3, and a−2 as 0.0113460667, −0.0891980000, and 0.3499980000. Then
the values of the other unknowns can be obtained and we are out with

a−1 = −1.0582666667, a0 = 0.2866010000, a1 = 0.5895196001,

a2 = −0.1, a3 = 0.01.
(5.9)

The modified method is termed as “LOCKARD-NEW” and has real and imaginary
parts of its numerical wavenumber described by

�(θ∗h) = 1.6477862670 sin(θh) − 0.4499980000 sin(2θh) + 0.0991980000 sin(3θh)

− 0.0113460667 sin(4θh),
(5.10)

�(θ∗h) = −0.2866010000 + 0.4687470669 cos(θh) − 0.2499980000 cos(2θh)

+ 0.0791980000 cos(3θh) − 0.0113460667 cos(4θh),
(5.11)

respectively.
We next perform a spectral analysis of the two methods: LOCKARD and LOCKARD-

NEW. We compare the variation of numerical wavenumber versus the exact wavenumber
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Table 2: Comparing the dispersive and group velocity properties for two spatial methods LOCKARD and
LOCKARD-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 LOCKARD 1.4910 4.2140

|θ∗h − θh|
π

≤ 5 × 10−3 LOCKARD-NEW 1.5197 4.1344

|θ∗h − θh|
π

≤ 5 × 10−4 LOCKARD 1.2204 5.1485

|θ∗h − θh|
π

≤ 5 × 10−4 LOCKARD-NEW 1.2596 4.9881
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 LOCKARD 1.0964 5.7309
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 LOCKARD-NEW 1.1395 5.5142
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 LOCKARD 0.9655 6.5077
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 LOCKARD-NEW 1.0240 6.1359

in Figure 3 and in Figure 4, we have the plot of the dispersion error versus the exact
wavenumber.

We now compare quantitatively the twomethods by computing theminimum number
of points per wavelength needed to resolve a wave for each of the four accuracy limits and
the results are summarized in Table 2.

Clearly, LOCKARD-NEW has appreciably better phase and group velocity properties
as compared to LOCKARD scheme.

6. Modification to Spatial Discretisation Scheme Developed
by Zingg et al. [14]

Zingg et al. [14] constructed a 4-point and 4th-order difference method. They approximated
∂u/∂x at x0 by

∂u

∂x
=

1
h

3∑
i=1

ai(u(x0 + ih) − u(x0 − ih)) +
1
h

(
d0u(x0) +

3∑
i=1

di(u(x0 + ih) + u(x0 − ih))

)
.

(6.1)

The real and imaginary parts of the numerical wavenumber are obtained as

�(θ∗h) = 2(a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh)), (6.2)

�(θ∗h) = −(d0 + 2d1 cos(θh) + 2d2 cos(2θh) + 2d3 cos(3θh)). (6.3)

The conditions to have a 4th-order difference method are as follows.
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Figure 3: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods
LOCKARD and LOCKARD-NEW.
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Figure 4: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber for
LOCKARD and LOCKARD-NEW schemes.

(i) If we consider �(θ∗h), then

2a1 + 4a2 + 6a3 = 1,

−1
6
a1 − 8

6
a2 − 27

6
a3 = 0,

(6.4)
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and these two conditions give

a2 =
9
20

− 4
5
a1, (6.5)

a3 =
1
5

(
a1 − 2

3

)
. (6.6)

(ii) If we consider �(θ∗h), then

d0 + 2d1 + 2d2 + 2d3 = 0,

−d1 − 4d2 − 9d3 = 0,
(6.7)

and this gives

d0 = 6d2 + 16d3, (6.8)

d1 = −4d2 − 9d3. (6.9)

Based on the optimisation performed by Zingg et al. [14], the following values are
obtained:

a1 = 0.75996126, a2 = −0.15812197, a3 = 0.01876090, d0 = 0.1,

d1 = −0.07638462, d2 = 0.03228962, d3 = −0.00590500. (6.10)

We now obtain a modification to the scheme proposed by Zingg et al. [14] using
MIEELDLD. We consider

�(θ∗h) = −(d0 + 2 d1 cos(θh) + 2 d2 cos(2θh) + 2d3 cos(3θh)). (6.11)

Since Im(θ∗h) must be negative and the method must have sufficient dissipation, we
can choose d0 = 0.1 and hence obtain

d1 = −5
8
d2 − 0.05625,

d3 = 0.00625 − 3
8
d2.

(6.12)

We next plot Im(θ∗h) versus d2 versus θh ∈ [0, 2π] and obtain the range of d2 such
that Im(θ∗h) < 0. The maximum value of d2 is 0.0323. Having fixed the values of d0 as 0.1 and
d2 as 0.0323, now we can compute the values of d1 and d3. We are out with d1 = −0.0764375
and d3 = −5.8625 × 10−3. Hence, we minimize the following integral:

∫1.1

0
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2.0 d(θh) (6.13)

which is a function of a1, using NLPSolve.
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Figure 5: Plot of the imaginary part of numerical wavenumber versus exact wavenumber for the methods:
LOCKARD, LOCKARD-NEW, ZHUANG, and ZHUANG-NEW.

We obtain a1 = 0.7643155206, and therefore, using (6.5) and (6.6), we obtain a2 =
−0.1614524165 and a3 = 0.0195297708.

Hence, the real and imaginary parts of the real and imaginary parts of the numerical
wavenumber of the scheme ZINGG-NEW are as follows:

�(θ∗h) = 1.5286310410 sin(θh) − 0.3229048330 sin(2θh) + 0.0390595416 sin(3θh), (6.14)

�(θ∗h) = −0.1 + 0.1528750000 cos(θh) − 0.0646000000 cos(2θh) + 0.0117250000 cos(3θh).
(6.15)

Plots of�(θ∗h) versus θh and also for�(θ∗h) versus θh for ZINGG and ZINGG-NEW
schemes are depicted in Figures 1 and 6, respectively. It is observed based on Figure 6 that
the two methods have almost the same dissipation error for θh ∈ [0, π]. Based on (Figure 1),
we observe that for θh < 0.2 and 0.8 < θh < π/2, the dispersion error from ZINGG-NEW is
less than that for ZINGG. For 0.2 < θh < 0.8, the dispersion error from ZINGG is less than
ZINGG-NEW.

Based on Table 3, for the four accuracy limits tested, we can conclude that the new
scheme developed is superior to the ZINGG method in terms of both dispersive and group
velocity properties as it requires less points per wavelength in all the four cases.

7. Modification to Spatial Scheme Developed by Zhuang and Chen [15]

Zhuang and Chen [15] constructed a 7-point and 4th-order difference method by approxi-
mating ∂u/∂x at x0 as

∂u

∂x
=

1
h

2∑
i=−4

aiu(x0 + ih), (7.1)
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Figure 6: Plot of the imaginary part of numerical wavenumber versus exact wavenumber for ZINGG and
ZINGG-NEW.

Table 3: Comparing the dispersive and group velocity properties for two spatial methods ZINGG and
ZINGG-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 ZINGG 1.2239 5.1339

|θ∗h − θh|
π

≤ 5 × 10−3 ZINGG-NEW 1.2579 5.1258

|θ∗h − θh|
π

≤ 5 × 10−4 ZINGG 0.9163 6.8575

|θ∗h − θh|
π

≤ 5 × 10−4 ZINGG-NEW 0.9988 6.2904
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 ZINGG 0.7885 7.9686
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 ZINGG-NEW 0.8471 7.4176
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 ZINGG 0.6200 10.1341
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 ZINGG-NEW 0.7379 8.5152

and therefore the real and imaginary parts of the numerical wavenumber are obtained as

�(θ∗h) = a1 sin(θh) + a2 sin(2θh) − a−4 sin(4θh) − a−3 sin(3θh)

− a−2 sin(2θh) − a−1 sin(θh),
(7.2)

�(θ∗h) = −(a−4 cos(4θh) + a−3 cos(3θh) + a−2 cos(2θh) + a−1 cos(θh) + a0

+a1 cos(θh) + a2 cos(2θh)).
(7.3)
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To obtain a 4th-order method, we require 4 conditions based on the real and imaginary
parts of θ∗h:

a1 + 2a2 − 4a−4 − 3a−3 − 2a−2 − a−1 = 1,

−a1 − 8a2 + 64a−4 + 27a−3 + 8a−2 + a−1 = 0,

a0 + a1 + a2 + a−4 + a−3 + a−2 + a−1 = 0,

−a1 − 16a−4 − 4a−2 − a1 − 4a2 − 9a−3 = 0.

(7.4)

These simplify to the following if we let a−4, a−3, a−2 as free parameters:

a2 = 10a−4 + 4a−3 + a−2 − 1
6
,

a−1 = −20a−4 − 10a−3 − 4a−2 − 1
3
,

a0 = 45a−4 + 20a−3 + 6a−2 − 1
2
,

a1 = −36a−4 − 15a−3 − 4a−2 + 1.

(7.5)

On plugging a2, a−1, a0, and a1 in terms of functions of a−4, a−3, a−2 in (7.2) and (7.3),
we get

�(θ∗h) = −5
(
16
5

a−4 + a−3 − 4
15

)
sin(θh) +

1
6
(60a−4 + 24a−3 − 1) sin(2θh)

− a−3 sin(3θh) − a−4 sin(4θh),

(7.6)

�(θ∗h) =
1
2
− 45a−4 − 20a−3 − 6a−2 +

1
6
cos(θh)(336a−4 + 150a−3 + 48a−2 − 4)

− a−3 cos(3θh) − a−4 cos(4θh) +
1
6
(−60a−4 − 24a−3 − 12a−2 + 1) cos(2θh).

(7.7)

The coefficients obtained by Zhuang and Chen [15] are

a−4 = 0.0161404967, a−3 = −0.1228212790, a−2 = 0.4553322778,

a−1 = −1.2492595883, a0 = 0.5018904380, a1 = 0.4399321927,

a2 = −0.0412145379,

(7.8)
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and, therefore, the real and imaginary parts of θ∗h are given as follows:

�(θ∗h) = 1.689191781 sin(θh) − 0.4965468157 sin(2θh) + 0.1228212790 sin(3θh)

− 0.0161404967 sin(4θh),
(7.9)

�(θ∗h) = −0.5018904390 + 0.8093273950 cos(θh) − 0.4141177399 cos(2 θh)

+ 0.1228212790 cos(3θh) − 0.0161404967 cos(4θh),
(7.10)

respectively.
We now obtain a modification to the scheme developed by Zhuang and Chen [15]. We

consider the numerical wavenumber in (7.6) and (7.7) and minimise the following integral

E =
∫1.1

0

(
exp(|�(θ∗h) − θh| + |�(θ∗h)|) + exp||�(θ∗h) − θh| − |�(θ∗h)|| − 2

)
d(θh). (7.11)

The integral is a function of a−4, a−3, and a−2. We use the function NLPSolve and obtain
optimal values for a−4, a−3, and a−2 as 0.01575, −0.122, and 0.4553 respectively. Corresponding
values for a2, a−1, a0, and a1 are then obtained as −0.0418666600, −1.2495333300, 0.5005500000,
and 0.4418000000, respectively.

The modified method is termed as ZHUANG-NEW and has real and imaginary parts
of its numerical wavenumber described by

�(θ∗h) = 1.6913333333 sin(θh) − 0.4971666667 sin(2θh) + 0.1220000000 sin(3θh)

− 0.0157500000 sin(4θh),
(7.12)

�(θ∗h) = −0.5005500000 + 0.8077333330 cos(θh) − 0.4134333333 cos(2θh)

+ 0.1220000000 cos(3θh) − 0.0157500000 cos(4θh),
(7.13)

respectively.
We next perform a spectral analysis of the two methods: ZHUANG and ZHUANG-

NEW. We compare the variation of real part and imaginary parts of the numerical wavenum-
ber versus the exact wavenumber in Figures 7 and 5, respectively. We have the plot of the
dispersion error versus the exact wavenumber in Figure 8 andwe observe that, for 0 < θh < 1,
ZHUANG-NEW is slightly better than ZHUANG in terms of dispersive properties.

We now compare quantitatively these two methods. We compute the minimum
number of points per wavelength needed to resolve a wave for each of the four accuracy lim-
its. The results are summarized in Table 4.

ZHUANG-NEW requires fewer points per wavelength than ZHUANG scheme for
|(θ∗h − θh)/π | ≤ 0.005.
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Table 4: Comparing the dispersive and group velocity properties for two spatial methods ZHUANG and
ZHUANG-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 ZHUANG 1.6755 3.7501

|θ∗h − θh|
π

≤ 5 × 10−3 ZHUANG-NEW 1.6957 3.7175

|θ∗h − θh|
π

≤ 5 × 10−4 ZHUANG 1.3315 4.7190

|θ∗h − θh|
π

≤ 5 × 10−4 ZHUANG-NEW 1.1417 5.5030
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 ZHUANG 1.0484 5.9932
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 ZHUANG-NEW 0.9620 6.3865
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 ZHUANG 0.9029 6.9593
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 ZHUANG-NEW 0.8052 7.5176
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Figure 7: Plot of the variation of numerical wavenumber versus exact wavenumber for the methods:
ZHUANG, ZHUANG-NEW, BOGEY, and BOGEY-NEW.

8. Modification to Spatial Discretisation Scheme Developed
by Bogey and Bailly [16]

Bogey and Bailly [16] modified the measure used by Tam and Webb [3] by minimizing the
relative difference between θh and θ∗h. They define the integrated error, E, as

E =
∫π/2

π/16

|θ∗h − θh|
θh

d(θh). (8.1)



20 Journal of Applied Mathematics

0 0.5 1 1.5 2 2.5 3
Exact wavenumber

D
is

pe
rs

io
n 

er
ro

r

10−12

10−10

10−8

10−6

10−4

10−2

100

ZHUANG
ZHUANG-NEW

Figure 8: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber for the
methods ZHUANG and ZHUANG-NEW.

Bogey and Bailly [3] use a 9-point stencil with coefficients a−4, a−3, a−2, a−1, a0, a1, a2,
a3, a4 and choose a0 = 0, a−1 = −a1, a−2 = −a2, a−3 = −a3, and a−4 = −a4 and therefore the
numerical wavenumber can be written as

θ∗h = 2(a1 sin(θh) + a2 sin(2θh) + a3 sin(3θh) + a4 sin(4θh)). (8.2)

To obtain a 4th-order method, a1 and a2 are chosen such as

a1 =
2
3
+ 5a3 + 16a4,

a2 = −1
6

(
1
2
+ 24a3 + 60a4

)
,

(8.3)

respectively.
The coefficients a3 and a4 are chosen to minimize the integrated error defined in (8.1),

and the values which Bogey and Bailly [16] have obtained are as follows:

a1 = 0.841570125, a2 = −0.2446786318, a3 = 0.0594635848, a4 = −0.0076509040.
(8.4)

We now construct a method based on a 9-point stencil using MIEELDLD. The wave-
number is set as follows:

θ∗h = 2
(
2
3
+ 5a3 + 16a4

)
sin(θh) + 2

(
− 1
12

− 4a3 − 10a4

)
sin(2θh) + 2a3 sin(3θh). (8.5)
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The integrated error using MIEELDLD is defined as

∫π/2

π/16

(
2 exp|�(θ∗h) − θh| − 2

)
d(θh), (8.6)

which is a function of a3 and a4. Using NLPSolve, we obtain the optimal values of a3 and a4

as 0.0613000000 and −0.0080500000, respectively. Hence, we obtain a1 and a2 as 0.8443666667
and −0.2480333333, respectively.

Using MIEELDLD, a new scheme is obtained and is termed as BOGEY-NEW with its
numerical wavenumber given by

θ∗h = 1.6887333332 sin(θh) − 0.4960666667 sin(2θh)

+ 0.1226000000 sin(3θh)0.0161000000 sin(4θh).
(8.7)

Wenext perform a spectral analysis of the twomethods: BOGEY and BOGEY-NEW.We
compare the variation of numerical wavenumber versus the exact wavenumber in Figures 7
and 9; we have the plot of the dispersion error versus the exact wavenumber.

We now compare quantitatively these two methods. We compute the minimum num-
ber of points per wavelength needed to resolve a wave for each of the four accuracy limits.

Table 5 indicates that BOGEY-NEW has appreciably better phase and group velocity
properties as compared to BOGEY scheme.

9. Optimized Time Discretisation Schemes

9.1. Time Discretisation Scheme by Tam et al. [17]

Tam et al. [17] have developed a time-marching scheme which is four-level and accurate up
to k3. They expressed

U(n+1) −U(n) ≈ k
3∑

j=0

bj

(
dU

dt

)(n−j)
. (9.1)

We next summarize how the coefficients have been obtained.
The effective angular frequency of the time discretisation method is obtained as

	 =
I
(
exp(−Iωk) − 1

)
k
∑3

j=0 bj exp
(
Ijωk

) . (9.2)

For 	k to approximate ωk to order (ωk)4, we must have

b0 + b1 + b2 + b3 = 1,

b1 + 2b2 + 3b3 = −1
2
,

b1 + 4b2 + 9b3 =
1
3
.

(9.3)
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Table 5: Comparing the dispersive and group velocity properties for two spatial methods BOGEY and
BOGEY-NEW in terms of number of points per wavelength (to 4 d.p).

Accuracy Method Max. value of θh No. of pts per wavelength

|θ∗h − θh|
π

≤ 5 × 10−3 BOGEY 1.4875 4.2240

|θ∗h − θh|
π

≤ 5 × 10−3 BOGEY-NEW 1.5175 4.1405

|θ∗h − θh|
π

≤ 5 × 10−4 BOGEY 1.6529 3.8013

|θ∗h − θh|
π

≤ 5 × 10−4 BOGEY-NEW 1.6733 3.7550
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 BOGEY 1.0572 5.9433
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−3 BOGEY-NEW 1.0523 5.9710
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 BOGEY 0.8784 7.1533
∣∣∣∣ d

d(θh)
(θ∗h) − 1.0

∣∣∣∣ ≤ 5 × 10−4 BOGEY-NEW 0.9049 6.9437
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Figure 9: Plot of the variation of dispersion error in logarithmic scale versus exact wavenumber.

Since we have 4 equations and 3 unknowns, we can choose b0 as a free parameter, and
hence we have

b1 =
53
12

− 3b0, b2 = 3b0 − 16
3
, b3 =

23
12

− b0. (9.4)

Hence, we can express 	 as follows:

	k =
AC + BD1 + I(BC −AD1)

C2 + (D1)2
, (9.5)
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where

A = sin(ωk),

B = cos(ωk) − 1,

C = b0 +
(
53
12

− 3b0
)
cos(ωk) +

(
3b0 − 16

3

)
cos(2ωk) +

(
23
12

− b0

)
cos(3ωk),

D1 =
(
53
12

− 3b0
)
sin(ωk) +

(
3b0 − 16

3

)
sin(2ωk) +

(
23
12

− b0

)
sin(3ωk).

(9.6)

The weighted integral error incurred by using	 to approximate ω, used by Tam et al.
[17], is computed as

ET =
∫0.5

−0.5

[
σ(�(	k) −ωk)2 + (1 − σ)(�(	k))2

]
d(ωk), (9.7)

and σ is chosen as 0.36.
On minimizing ET , the value of b0 is obtained as 2.30255809 and therefore the cor-

responding values for b1, b2, and b3 are −2.49100760, 1.57434094, and −0.38589142, respec-
tively.

9.2. Modified Temporal Discretisation Scheme Using MIEELDLD

We consider the equation in (9.5)which expresses	k in terms of ωk and define the quantity,
eeldld as

exp(|�(	k) −ωk| + |�(	k)|) + exp(|�(	k) −ωk| − |�(	k)|) − 2. (9.8)

We minimize

∫0.5

−0.5
eeldld d(ωk) (9.9)

and this integral is a function of b0. Using NLPSolve, we obtain the value of b0 as
2.2796378228. A plot of ET versus b0 is shown in Figure 10.

Corresponding values of b1, b2, b3 are obtained as −2.4222468020, 1.5055801360, and
−0.3629711560. This modified temporal discretisation scheme obtained by modifying the
temporal scheme of Tam et al. [17] is termed as “TAM-MODIFIED” scheme. Plots of �(	k)
versus ωk and �(	k) versus ωk for the TAM-MODIFIED scheme are shown in Figures 11
and 12, respectively.

For |�(	k)| ≤ 3 × 10−3, we require ωk ≤ 0.42.

9.3. Comparison between Temporal Discretisation Schemes:
TAM and TAM-MODIFIED

Plots of �(	k) versus ωk for the two methods are shown in Figure 13. We also compare
their dispersive properties at two different levels of accuracy in terms of number of points
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Figure 11: Plot of �(	k) versus ωk.

per wavelength and the results are tabulated in Table 6. Clearly, TAM-MODIFIED is more
superior as it requires less points per wavelength for the same accuracy.

10. Stability of Some Multilevel Optimized Combined
Spatial-Temporal Finite Difference Schemes

The stability of the combined spatial and temporal finite difference scheme developed by Tam
and Webb [3] and Tam et al. [17], which is 7-point in space and 4-point in time and which
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Figure 12: Plot of �(	k) versus ωk.
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Figure 13: Plot of �(	k) versus ωk for TAM and TAM-MODIFIED schemes.

is referred to as the Dispersion-Relation-Preserving (DRP) scheme, satisfies the stability
condition, r ≤ 0.229 [3]. The condition on the spatial discretisation is that |(θ∗h−θh)/π | ≤ 0.05
and this gives θh ≤ 1.76. The interval 0 < 	k ≤ 0.4 has been chosen in order to maintain
satisfactory temporal resolution and this interval is obtained by requiring the condition:
�(	k) ≤ 0.003.
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Table 6: Comparing the dispersive properties for two temporal discretisation methods TAM and TAM-
MODIFIED in terms of number of points per wavelength (to 4 d.p).

Method Accuracy Max. value of ωk No. of pts per wavelength

TAM |�(	k) −ωk|
π

≤ 5 × 10−3 0.5913 10.6267

TAM-MODIFIED |�(	k) −ωk|
π

≤ 5 × 10−3 0.6280 10.0050

TAM |�(	k) −ωk|
π

≤ 5 × 10−4 0.3461 18.1565

TAM-MODIFIED |�(	k) −ωk|
π

≤ 5 × 10−4 0.3570 17.6002

Since

	k =
(
βθ

)
k, (10.1)

we also have

	k = r θh. (10.2)

Since, we require 	k ≤ 0.4, this implies that r (θh) ≤ 0.4. Also, we have θh ≤ 1.76 and
thus r ≤ 0.4/1.76.

The stability of the DRP scheme therefore satisfies the condition: r ≤ 0.23.
Using the approach just described in the preceding paragraph, the ranges of

stability of some methods are obtained, namely, TAM-NEW, ZINGG-NEW, ZHUANG-NEW,
LOCKARD-NEW, and BOGEY-NEW when combined with TAMMODIFIED. We also obtain
the range of stability for the methods: ZINGG, ZINGG, ZHUANG, LOCKARD, and BOGEY
when they are combined with the temporal discretisation scheme of Tam et al. [17]. The
results are tabulated in Table 7. It is seen that the new combined spatial-temporal methods
constructed using MIEELDLD have a slightly greater region of stability than the existing
combined spatial-temporal methods.

11. Comparison of Some Metric Measures

Spatial Scheme of Tam and Webb [3]

The integrated error is defined as

∫1.1

0
|θ∗h − θh|2d(θh). (11.1)

The quantity, |θ∗h − θh|2 is equivalent to |1 − RPE|2 in a computational fluid dynamics
framework. A plot of |1 − RPE|2 versus RPE ∈ [0, 2] is shown in Figure 14(a).
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Table 7: Region of stability for some combined spatial-temporal discretisation schemes.

Spatial scheme Temporal scheme Range of θh required Range of ωk required max. value of r

TAM TAM 1.76 0.40 0.23
TAM-NEW TAM-MODIFIED 1.75 0.42 0.24
ZINGG TAM 1.72 0.40 0.23
ZINGG-NEW TAM-MODIFIED 1.73 0.42 0.24
ZHUANG TAM 2.03 0.40 0.20
ZHUANG-NEW TAM-MODIFIED 2.03 0.42 0.21
LOCKARD TAM 1.97 0.40 0.20
LOCKARD-NEW TAM-MODIFIED 1.92 0.42 0.22
BOGEY TAM 2.01 0.40 0.20
BOGEY-NEW TAM-MODIFIED 2.02 0.42 0.21
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Figure 14: Plot of differentmetrics from Tam andWebb [3], Bogey and Bailly [16] andAppadu andDauhoo
[18].
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Spatial Scheme of Bogey and Bailly [16]

In this case, the integrated error is defined as

∫π/2

π/16

|θ∗h − θh|
θh

d(θh), (11.2)

or

∫ lnπ/2

lnπ/16
|θ∗h − θh|d(ln(θh)). (11.3)

The quantity (|θ∗h − θh|)/θh is equivalent to (|1 − RPE|)/RPE while |θ∗h − θh| is equivalent
to |1 − RPE|. Plots of (|1 − RPE|)/RPE and |1 − RPE|, both versus RPE ∈ [0, 2], are shown in
Figures 14(b) and 14(c).

Spatial Scheme Using MIEELDLD

A plot of eeldld = exp((||1 − RPE| − (1 − AFM)|) + exp(|1 − RPE| + (1 − AFM)) − 2) versus
RPE ∈ [0, 2] versus AFM ∈ [0, 1] is shown in Figure 14(d).

We observe from Figures 14(a), 14(b), and 14(c) that the measure is zero when RPE = 1
whereas, in Figure 14(d), the measure is zero provided RPE = 1 and AFM = 1.

12. Conclusions

In this work, we have used the technique of Minimised Integrated Exponential Error for Low
Dispersion and Low Dissipation (MIEELDLD) in a computational aeroacoustics framework
to obtain modifications to optimized spatial schemes constructed by Tam and Webb [3],
Zingg et al. [14], Lockard et al. [13], Zhuang and Chen [15], and Bogey and Bailly [16], and
also a modification to the optimized temporal scheme devised by Tam et al. [17] is obtained.
It is seen that, in general, improvements can be made to the existing spatial discretisation
schemes, using MIEELDLD. The new temporal scheme obtained using MIEELDLD is
superior in terms of dispersive properties as compared to the one constructed by Tam et
al. [17]. The region of stability has also been obtained. In a nutshell, we conclude that
MIEELDLD is an efficient technique to construct high order methods with low dispersion and
dissipative properties. An extension of this work will be to use the new spatial discretisation
schemes and the novel temporal discretisation method constructed to solve 1-D wave
propagation experiments and quantify the errors into dispersion and dissipation. Moreover,
MIEELDLD can be used to construct low dispersive and low dissipative methods which
approximate 2-D and 3-D scalar advection equation suited for computational aeroacoustics
applications.

Nomenclature

I =
√
(−1)

k: Time step
h: Spatial step
n: Time level
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β: Advection velocity
θ∗h: Numerical wavenumber
θh: Exact wavenumber
r: cfl/courant number
r = βk/h
w: Phase angle in 1-D
w = θh
ω: Exact angular frequency
	 : Effective angular frequency of time discretization scheme
RPE: Relative phase error per unit time step
AF: Amplification factor
AFM = |AF|
LDLD: Low Dispersion and Low Dissipation
IEELDLD: Integrated Exponential Error for Low Dispersion and Low Dissipation
MIEELDLD: Minimised Integrated Exponential Error for Low Dispersion and Low

Dissipation.
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