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Further properties on (X, ∗,&)-self-(co)derivations of ranked bigroupoids are investigated, and
conditions for an (X, ∗,&)-self-(co)derivation to be regular are provided. The notion of ranked
∗-subsystems is introduced, and related properties are investigated.

1. Introduction

Several authors [1–4] have studied derivations in rings and near rings. Jun and Xin [5]
applied the notion of derivation in ring and near-ring theory to BCI-algebras, and as a result
they introduced a new concept, called a (regular) derivation, in BCI-algebras. Zhan and Liu
[6] studied f-derivations in BCI-algebras. Alshehri [7] applied the notion of derivations
to incline algebras. Alshehri et al. [8] introduced the notion of ranked bigroupoids and
discussed (X, ∗,&)-self-(co)derivations. In this paper, we investigate further properties on
(X, ∗,&)-self-(co)derivations and provide conditions for an (X, ∗,&)-self-(co)derivation to be
regular. We introduce the notion of ranked ∗-subsystems and investigate related properties.

2. Preliminaries

In a nonempty set X with a constant 0 and a binary operation ∗, we consider the following
axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(a2) (x ∗ (x ∗ y)) ∗ y = 0,
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(a3) x ∗ x = 0,

(a4) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(b1) x ∗ 0 = x,

(b2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(b3) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0,

(b4) x ∗ (x ∗ (x ∗ y)) = x ∗ y.

If X satisfies axioms (a1), (a2), (a3), and (a4), then we say that (X, ∗, 0) is a BCI-
algebra. Note that a BCI-algebra (X, ∗, 0) satisfies conditions (b1), (b2), (b3), and (b4)
(see [9]).

In a p-semisimple BCI-algebra X, the following hold:

(b5) (x ∗ z) ∗ (y ∗ z) = x ∗ y,
(b6) 0 ∗ (0 ∗ x) = x.

3. Derivations on Ranked Bigroupoids

A ranked bigroupoid (see [8]) is an algebraic system (X, ∗, •) where X is a non-empty set and
“∗” and “•” are binary operations defined on X. We may consider the first binary operation ∗
as the major operation and the second binary operation • as the minor operation.

Given a ranked bigroupoid (X, ∗,&), a map d : X → X is called an (X, ∗,&)-self-
derivation (see [8]) if for all x, y ∈ X,

d
(
x ∗ y) =

(
d(x) ∗ y)&(

x ∗ d(y)). (3.1)

In the same setting, a map d : X → X is called an (X, ∗,&)-self -coderivation (see [8]) if for all
x, y ∈ X,

d
(
x ∗ y) =

(
x ∗ d(y))&(

d(x) ∗ y). (3.2)

Note that if (X, ∗) is a commutative groupoid, then (X, ∗,&)-self-derivations are (X, ∗,&)-self-
coderivations. A map d : X → X is called an abelian-(X, ∗,&)-self-derivation (see [8]) if it is
both an (X, ∗,&)-self-derivation and an (X, ∗,&)-self-coderivation.

Proposition 3.1. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which the
minor operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X.

(1) Assume that X satisfies axioms (b1), (b2), (b3), (a3), and (a4). If a map d : X → X is an
(X, ∗,&)-self-derivation, then d(x) = d(x)&x for all x ∈ X.

(2) If X satisfies two axioms (b1) and (a3) and a map d : X → X is an (X, ∗,&)-self-
coderivation, then the following are equivalent:

(2.1) d(0) = 0;
(2.2) (∀x ∈ X)(d(x) = x&d(x)).
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Proof. (1) Let x ∈ X. Using (b1) and (b2), we have

d(x) = d(x ∗ 0) = (d(x) ∗ 0)&(x ∗ d(0))
= d(x)&(x ∗ d(0))
= (x ∗ d(0)) ∗ ((x ∗ d(0)) ∗ d(x))
= (x ∗ d(0)) ∗ ((x ∗ d(x)) ∗ d(0)).

(3.3)

It follows from (b3) that

d(x) ∗ (d(x)&x) = ((x ∗ d(0)) ∗ ((x ∗ d(x)) ∗ d(0))) ∗ (d(x)&x) = 0. (3.4)

Using (b2) and (a3), we have (d(x)&x) ∗ d(x) = 0, and so d(x) = d(x)&x for all x ∈ X by
(a4).

(2) Let d be an (X, ∗,&)-self-coderivation. If d(0) = 0, then

d(x) = d(x ∗ 0) = (x ∗ d(0))&(d(x) ∗ 0) = x&d(x) (3.5)

for all x ∈ X. Assume that d(x) = x&d(x) for all x ∈ X. Taking x = 0 implies that d(0) =
0&d(0) = 0.

Corollary 3.2. Let (X, ∗,&) be a ranked bigroupoid in which (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X.

(1) If a map d : X → X is an (X, ∗,&)-self-derivation, then d(x) = d(x)&x for all x ∈ X.

(2) If a map d : X → X is an (X, ∗,&)-self-coderivation, then the following are equivalent:

(2.1) d(0) = 0;
(2.2) (∀x ∈ X) (d(x) = x&d(x)).

Lemma 3.3. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which three axioms
(b2),(a3), and (a4) are valid and the minor operation& is defined by x&y = y∗(y∗x) for all x, y ∈ X.

(1) For every x ∈ X with x&0 = x, one has

(∀y ∈ X
) (

y ∗ x = 0 =⇒ y = x
)
. (3.6)

(2) If an element a of X satisfies a&0 = a, then a&x = a for all x ∈ X.

Proof. (1) Let y ∈ X be such that y ∗ x = 0. Then

x ∗ y = (x&0) ∗ y =
(
0 ∗ y) ∗ (0 ∗ x)

=
((
y ∗ x) ∗ y) ∗ (0 ∗ x) = (0 ∗ x) ∗ (0 ∗ x) = 0,

(3.7)

and so y = x by (a4).
(2) Since (a&x) ∗ a = 0, it follows from (3.6) that a&x = a for all x ∈ X.
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Corollary 3.4. Let (X, ∗,&) be a ranked bigroupoid in which (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X.

(1) For every x ∈ X with x&0 = x, one has

(∀y ∈ X
) (

y ∗ x = 0 =⇒ y = x
)
. (3.8)

(2) If an element a of X satisfies a&0 = a, then a&x = a for all x ∈ X.

Proposition 3.5. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which four
axioms (b2), (b4), (a3), and (a4) are valid and the minor operation & is defined by x&y = y ∗ (y ∗ x)
for all x, y ∈ X. If a map d : X → X is an (X, ∗,&)-self-coderivation, then 0 ∗ d(x) = d(x) for all
x ∈ X with 0 ∗ x = x.

Proof. Let x ∈ X be such that 0 ∗ x = x. Since (0 ∗ d(x))&0 = 0 ∗ d(x), it follows from
Lemma 3.3(2) that d(x) = d(0 ∗ x) = (0 ∗ d(x))&(d(0) ∗ x) = 0 ∗ d(x).

Corollary 3.6. Let (X, ∗,&) be a ranked bigroupoid in which (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. If a map d : X → X is an (X, ∗,&)-
self-coderivation, then 0 ∗ d(x) = d(x) for all x ∈ X with 0 ∗ x = x.

Using Proposition 3.5, we can find an (X, ∗,&)-self-derivationwhich is not an (X, ∗,&)-
self-coderivation.

Example 3.7. Let (Z,−,&) be a ranked bigroupoid where Z is the set of all integers with the
minus operation “−” and theminor operation “&” defined by x&y = y−(y−x) for all x, y ∈ Z.
Let d be a self map of Z given by d(x) = x−1 for all x ∈ Z. Then d is a (Z,−,&)-self-derivation
since

d
(
x − y

)
=
(
x − y

) − 1 =
(
x − y + 1

) − 2

=
(
x − y − 1

)
&
(
x − y + 1

)
=
(
(x − 1) − y

)
&
(
x − (

y − 1
))

=
(
d(x) − y

)
&
(
x − d

(
y
))
.

(3.9)

Note that 0 − d(0) = 0 − (0 − 1) = 1/= − 1 = 0 − 1 = d(0). Hence d is not a (Z,−,&)-self-
coderivation by Proposition 3.5.

Proposition 3.8. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 and the minor
operation& is defined by x&y = y ∗ (y ∗x) for all x, y ∈ X. For an (X, ∗,&)-self-derivation d : X →
X, if (X, ∗, 0) satisfies axioms (b2),(b5), and (b6), then d(x) = d(0) ∗ (0 ∗x) for all x ∈ X. Moreover,
if d(0) = 0, then d is an identity map.

Proof. Assume that (X, ∗, 0) satisfies axioms (b2), (b5), and (b6). Then

d(x) = d(x&0) = (d(0) ∗ (0 ∗ x))&(0 ∗ d(0 ∗ x))
= (0 ∗ d(0 ∗ x)) ∗ ((0 ∗ d(0 ∗ x)) ∗ (d(0) ∗ (0 ∗ x)))
= (0 ∗ d(0 ∗ x)) ∗ ((0 ∗ (d(0) ∗ (0 ∗ x))) ∗ d(0 ∗ x))
= 0 ∗ (0 ∗ (d(0) ∗ (0 ∗ x)))
= d(0) ∗ (0 ∗ x),

(3.10)
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for all x ∈ X. Moreover, if d(0) = 0 then d(x) = d(0) ∗ (0 ∗ x) = x&0 = x for all x ∈ X, and so
d is an identity map.

Corollary 3.9. Let (X, ∗,&) be a ranked bigroupoid in which (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. If a map d : X → X is an (X, ∗,&)-
self-derivation, then

(1) d(0) = d(0)&0;

(2) if (X, ∗, 0) is p-semisimple, then d(x) = d(0) ∗ (0 ∗ x) for all x ∈ X;

(3) if (X, ∗, 0) is p-semisimple and d(0) = 0, then d is an identity map.

Definition 3.10. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0. A self map
d of (X, ∗,&) is said to be regular if d(0) = 0.

Example 3.11. Consider a ranked bigroupoid (X, ∗,&) in whichX = {0, a, b, c, d, e} and binary
operations “∗” and “&” are defined by

x ∗ y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
(
x, y

) ∈ {(0, a), (b, d), (c, e)} ∪ {(z, z) | z ∈ X},
a if

(
x, y

) ∈ {(a, 0), (d, b), (e, c)},
b if

(
x, y

) ∈ {(b, 0), (0, c), (0, e), (a, e), (b, a), (c, b), (c, d), (d, a), (e, d)},
c if

(
x, y

) ∈ {(c, 0), (c, a), (e, a), (0, b), (b, c), (0, d), (a, d), (b, e), (d, e)},
d if

(
x, y

) ∈ {(d, 0), (e, b), (a, c)},
e if

(
x, y

) ∈ {(a, b), (d, c), (e, 0)}

& 0 a b c d e

0 0 0 0 0 0 0
a 0 a 0 0 a a
b b b 0 b b b
c c c c c c c
d b d b b d d
e c e c c e e.

(3.11)

Define a map d : X → X by

d(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x ∈ {0, a},
b if x ∈ {b, d},
c if x ∈ {c, e}.

(3.12)

Then d is an abelian (X, ∗,&)-self-derivation which is regular.

Proposition 3.12. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which the
minor operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X and 0 ∗ x = 0 for all x ∈ X. Then
every (X, ∗,&)-self-derivation is regular. Moreover, if X satisfies the axioms (b1) and (a3) then every
(X, ∗,&)-self-coderivation is regular.
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Proof. Let d be an (X, ∗,&)-self-derivation. Then

d(0) = d(0 ∗ x) = (d(0) ∗ x)&(0 ∗ d(x)) = (d(0) ∗ x)&0 = 0. (3.13)

If d is an (X, ∗,&)-self-coderivation, then

d(0) = d(0 ∗ x) = (0 ∗ d(x))&(d(0) ∗ x) = 0&(d(0) ∗ x) = 0. (3.14)

Hence every (X, ∗,&)-self-(co)derivation is regular.

Proposition 3.13. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which the
minor operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X and two axioms (a3) and (b1) are
satisfied. Let d be a self map of X and a ∈ X such that d(x) ∗a = 0 (resp., a ∗d(x) = 0) for all x ∈ X.
If d is an (X, ∗,&)-self-derivation (resp., (X, ∗,&)-self-coderivation), then it is regular.

Proof. Assume that d is an (X, ∗,&)-self-derivation. For any x ∈ X, we have

0 = d(x ∗ a) ∗ a = ((d(x) ∗ a)&(x ∗ d(a))) ∗ a = (0&(x ∗ d(a))) ∗ a = 0 ∗ a, (3.15)

which implies that

d(0) = d(0 ∗ a) = (d(0) ∗ a)&(0 ∗ d(a)) = 0&(0 ∗ d(a)) = 0. (3.16)

Hence d is regular. Now, let d be an (X, ∗,&)-self-coderivation such that a ∗ d(x) = 0 for all
x ∈ X. Then

0 = a ∗ d(a ∗ x) = a ∗ ((a ∗ d(x))&(d(a) ∗ x)) = a ∗ (0&(d(a) ∗ x)) = a ∗ 0, (3.17)

and so

d(0) = d(a ∗ 0) = (a ∗ d(0))&(d(a) ∗ 0) = 0&(d(a) ∗ 0) = 0&d(a) = 0. (3.18)

Therefore d is regular.

Definition 3.14. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0. Let d be
a self map of (X, ∗,&). A subset A of X is called a ranked ∗-subsystem of X if it satisfies the
following:

(r1) 0 ∈ A,

(r2) (∀x, y ∈ X)(x ∈ A,y ∗ x ∈ A ⇒ y ∈ A).

Moreover, if a ranked ∗-subsystem A of X satisfies d(A) ⊆ A, then we say that A is
ranked d-invariant.
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Example 3.15. Consider a ranked bigroupoid (X, ∗,&) in whichX = {0, a, b, c, d, e} and binary
operations “∗”and “&” are defined by

x ∗ y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
(
x, y

) ∈ {(0, a), (b, c), (b, d), (b, e), (c, d), (c, e)} ∪ {(z, z) | z ∈ X},
a if

(
x, y

) ∈ {(a, 0), (c, b), (d, b), (e, b), (d, c), (e, c), (e, d), (d, e)},
c if

(
x, y

)
= (c, 0),

d if
(
x, y

)
= (d, 0),

e if
(
x, y

)
= (e, 0),

b otherwise,

(3.19)

and x&y = y ∗ (y ∗ x) for all x, y ∈ X. Define a map d: X → X by

d(x) =

⎧
⎨

⎩

b ifx ∈ {0, a}
0 otherwise.

(3.20)

Then d is an abelian (X, ∗,&)-self-derivation which is not regular. It is easily check that A =
{0, a} is a ranked ∗-subsystem of X. Since d(A) = {b}/⊆A, d is not ranked d-invariant.

Example 3.16. In Example 3.11, A = {0, a} is a ranked d-invariant ∗-subsystem of X.

Theorem 3.17. Let (X, ∗,&) be a ranked bigroupoid with distinguished element 0 in which three
axioms (b1),(b2), and (a3) are valid and the minor operation & is defined by x&y = y ∗ (y ∗ x) for
all x, y ∈ X. For an (X, ∗,&)-self-coderivation d, if d is regular then every ranked ∗-subsystem of X
is ranked d-invariant.

Proof. Assume that d is regular and let A be a ranked ∗-subsystem of X. Then d(x) = x&d(x)
for all x ∈ X by Proposition 3.1(2). Let y ∈ d(A). Then y = d(a) for some a ∈ A. Thus
y ∗ a = d(a) ∗ a = (a&d(a)) ∗ a = 0 ∈ A, and so y ∈ A by (r2). Hence d(A) ⊆ A and A is
ranked d-invariant.

Corollary 3.18. Let d be an (X, ∗,&)-self-coderivation where (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. If d is regular, then every ideal of X is
ranked d-invariant.

Example 3.15 shows that Theorem 3.17 is not true if we drop the regularity of d.
We consider the converse of Theorem 3.17.

Theorem 3.19. Let d be an (X, ∗,&)-self-coderivation where (X, ∗,&) is a ranked bigroupoid with
distinguished element 0 in which the minor operation& is defined by x&y = y∗(y∗x) for all x, y ∈ X
and there does not exist a nonzero element x of X such that x ∗ 0 = 0. If every ranked ∗-subsystem of
X is ranked d-invariant, then d is regular.

Proof. Assume that every ranked ∗-subsystem of X is ranked d-invariant. Note that A = {0}
is a ranked ∗-subsystem of X. Thus d(A) = d({0}) ⊆ {0}, and therefore d(0) = 0, that is, d is
regular.
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Corollary 3.20. Let d be an (X, ∗,&)-self-coderivation where (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. Then d is regular if and only if every
ranked ∗-subsystem of X is ranked d-invariant.

Proposition 3.21. Let (X, ∗,&) be a ranked bigroupoid where (X, ∗, 0) is a BCI-algebra and the
minor operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. For any α ∈ X, let dα be a self
map of X defined by dα(x) = x ∗ α for all x ∈ X. If X satisfies the following conditions:

(1) ((x ∗ y) ∗ z) ∗ (x ∗ (y ∗ z)) = 0 for all x, y, z ∈ X,

(2) (∀x, y ∈ X) (x ∗ y = 0 ⇒ x = y),

then dα is an abelian (X, ∗,&)-self-derivation.

Proof. If X satisfies two given conditions, then the following identity is valid (see [9]):

(∀x, y, z ∈ X
)((

x ∗ y) ∗ z = x ∗ (y ∗ z)). (3.21)

It follows from (b1), (a3), and (b2) that

dα

(
x ∗ y) =

(
x ∗ y) ∗ α =

(
x ∗ (y ∗ α)) ∗ 0

=
(
x ∗ (y ∗ α)) ∗ ((x ∗ (y ∗ α)) ∗ (x ∗ (y ∗ α)))

=
(
x ∗ (y ∗ α)) ∗ ((x ∗ (y ∗ α)) ∗ ((x ∗ α) ∗ y))

=
(
dα(x) ∗ y

)
&
(
x ∗ dα

(
y
))
.

(3.22)

Hence dα is an (X, ∗,&)-self-derivation. Similarly, we can verify that dα is an (X, ∗,&)-self-
coderivation.

Corollary 3.22. Let (X, ∗,&) be a ranked bigroupoid where (X, ∗, 0) is a BCI-algebra and the minor
operation & is defined by x&y = y ∗ (y ∗ x) for all x, y ∈ X. For any α ∈ X, let dα be a self map of X
defined by dα(x) = x ∗ α for all x ∈ X. If X satisfies (b1) and the following conditions:

(1) ((x ∗ y) ∗ z) ∗ (x ∗ (y ∗ z)) = 0 for all x, y, z ∈ X,

(2) (x ∗ y) ∗ (x ∗ z) = z ∗ y for all x, y, z ∈ X,

then dα is an abelian (X, ∗,&)-self-derivation.

Proof. IfX satisfies both (b1) and the second condition, thenX is a p-semisimple BCI-algebra
(see [9]). Hence the second condition of Proposition 3.21 is valid. Therefore dα is an abelian
(X, ∗,&)-self-derivation.

4. Conclusion

Alshehri et al. [8] introduced the notion of ranked bigroupoids and discussed (X, ∗,&)-self-
(co)derivations.
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A nonempty set X together with maps ∗ : X ×X → X and & : X ×X → X is called a
ranked bigroupoid. For a ranked bigroupoid (X, ∗,&), a map d : X → X is called:

(1) an (X, ∗,&)-self -derivation if

d
(
x ∗ y) =

(
d(x) ∗ y)&(

x ∗ d(y)) (4.1)

for all x, y ∈ X;

(2) an (X, ∗,&)-self -coderivation if

d
(
x ∗ y) =

(
x ∗ d(y))&(

d(x) ∗ y) (4.2)

for all x, y ∈ X.

In this paper, we have investigated further properties on (X, ∗,&)-self-(co)derivations
and have provided conditions for an (X, ∗,&)-self-(co)derivation to be regular. We have
introduced the notion of ranked ∗-subsystems and have investigated related properties.

In general, there are many kind of derivations (generalized derivations, biderivations,
triderivations, etc.) in algebraic structures, for example, (near) rings, prime rings, semiprime
rings, Γ-near-rings, incline algebras, Banach algebras, lattices, MV-algebras, and BCK/BCI-
algebras.

Based on this paper together with related papers on derivations, we will consider
several kind of derivations in ranked bigroupoids.

Acknowledgment

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

[1] H. E. Bell and L.-C. Kappe, “Rings in which derivations satisfy certain algebraic conditions,” Acta
Mathematica Hungarica, vol. 53, no. 3-4, pp. 339–346, 1989.

[2] H. E. Bell and G. Mason, “On derivations in near-rings,” in Near-Rings and Near-Fields, vol. 137, pp.
31–35, North-Holland Mathematics Studies, Amsterdam, The Netherlands, 1987.

[3] K. Kaya, “Prime rings with α-derivations,” Hacettepe Bulletin of Natural Sciences and Engineering, vol.
11, no. 16-17, pp. 63–71, 1987-1988.

[4] E. C. Posner, “Derivations in prime rings,” Proceedings of the American Mathematical Society, vol. 8, pp.
1093–1100, 1957.

[5] Y. B. Jun and X. L. Xin, “On derivations of BCI-algebras,” Information Sciences, vol. 159, no. 3-4, pp.
167–176, 2004.

[6] J. Zhan and Y. L. Liu, “On f -derivations of BCI-algebras,” International Journal of Mathematics and
Mathematical Sciences, no. 11, pp. 1675–1684, 2005.

[7] N. O. Alshehri, “On derivations of incline algebras,” Scientiae Mathematicae Japonicae, vol. 71, no. 3, pp.
349–355, 2010.

[8] N. O. Alshehri, H. S. Kim, and J. Neggers, “Derivations onranked bigroupoids,” Applied Mathematics
& Information Sciences. In press.

[9] Y. Huang, BCI-Algebra, Science Press, Beijing, China, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


