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This study investigates a random N-policy Geo/G/1 queue with startup and closedown times. N
is newly determined every time a new cycle begins. When random N customers are accumulated,
the server is immediately turned on but is temporarily unavailable to the waiting customers. It
needs a startup time before starting providing service. After all customers in the system are served
exhaustively, the server is shut down by a closedown time. Using the generating function and
supplementary variable technique, analytic solutions of system size, lengths of state periods, and
sojourn time are derived.

1. Introduction

This paper deals with a random N-policy Geo/G/1 queueing system in which the random
variable N, the startup time, and the closedown time obey the general distributions,
respectively. The system of turning on and turning off the server depends on the number
N of customers in the queue.N is newly determined every time a new cycle begins. When
the queue length reaches a random threshold N (N ≥ 1), the server is instantly turned on
but is temporarily unavailable to the waiting customers. The server needs the startup time
before starting each of his service periods. Once the startup is over, the server immediately
starts serving the waiting customers until the system is empty. As soon as the system becomes
empty, the server also needs a closedown time to be shut down.

It is assumed that the random threshold N, service time B, startup time S, and
closedown time C are all general distributions with probability mass functions, means,
variances and probability generating functions are as follows:

Pr{N = i} = ni, i = 1, 2, . . . , E[N] = μN,Var[N] = σ2
N,

E
[
zN
]
= N(z) =

∞∑
i=1

niz
i, |z| ≤ 1;
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Pr{B = i} = bi, i = 1, 2, . . . , E[B] = μB,Var[B] = σ2
B,

E
[
zB
]
= B(z) =

∞∑
i=1

biz
i, |z| ≤ 1;

Pr{S = i} = si, i = 1, 2, . . . , E[S] = μS,Var[S] = σ2
S,

E
[
zS
]
= S(z) =

∞∑
i=1

siz
i, |z| ≤ 1;

Pr{C = i} = ci, i = 1, 2, . . . , E[C] = μC,Var[C] = σ2
C,

E
[
zC
]
= C(z) =

∞∑
i=1

ciz
i, |z| ≤ 1.

(1.1)

Interarrival time A is a geometric distribution with parameter rate λ and the possible value
of A is on the integers 1,2,. . .. In startup and closedown periods, the system allows the
customers to enter the system to be served. At the instant of the end of closedown, if
there are customers in the system, the service is immediately started without startup time.
Arriving customers form a single waiting line based on first-come, first-served discipline.
All customers arriving to the system are assumed to be served exhaustively. Furthermore,
various stochastic processes are independent of each other.

The controllable queueing systems possess its applications in wide fields such
as manufacturing/production systems, communication networks, and computer systems.
Because theN-policy is analytically easier than other policies, many researchers concentrated
on this type of service policy. The N-policy M/G/1 queueing system has been well studied
by many queueing researchers (see [1–4] and others). N-policy G//M/1 queues with the
finite and infinite capacity have been studied by Ke and Wang [5], and Zhang and Tian
[6], respectively. Some related studies on M/G/1 queueing system with a startup time have
been reported (see [7–11], etc). Bisdikian [12] applied the decomposition property to derived
queue size for a random N-policy M/G/1 queue in which N is a random variable. He
also investigated the analytic solutions of waiting time for both the FIFO and LIFO service
disciplines. On the other hand, various authors analysed queueing models under several
combinations of server vacations and N-policy. The investigations of this type can be seen
in [13–16]. Extending the combinations of server vacations and N-policy to server with
startup can be found in [17, 18]. Recently, Arumuganathan and Jeyakumar [19] considered
a bulk queue with multiple vacations, setup times with N-policy, and closedown times.
After completing a service, if the queue length, N, is less than “a”, then the server performs
closedown work and then takes vacations. The server returning from a vacation, if N is
still less than “a”, then the server leaves for another vacation and so on, until N is greater
than “b”. Ke [20] derived the distribution of various system characteristics for two different
kinds of NT policy M/G/1 queueing system with breakdown, startup and closedown time.
Recently, Choudhury et al. [21] investigated bulk arrival queue withN-policy by introducing
a delay time for commencement of service after a breakdown. Each time a service is to start
there should be at least N customers in the system. Kuo et al. [22] dealt with the optimal
operation of the 〈p,N〉-policy M/G/1 queue with server breakdowns, general startup and
repair times. When the number of customers in the system reachesN, turn the server on with
probability p and leave the server off with probability (1 − p). Such a system policy is called
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〈p,N〉-policy. They developed system performance measures and provided an efficient
procedure to determine the optimal threshold of (p,N) that minimized the total expected
cost. Ke et al. [23] study the operating characteristics of an M[x]/G/1 queueing system
withN-policy and at most J vacations.

While many continuous time queueing systems with N-policy have been studied,
their discrete time counterparts have received little attention in the literature. Takagi [24]
derived the queue size and waiting time under the N-policy Geo/G/1 queue with batch
arrival. Böhm and Mohanty [25] investigated N-policy for the Geo/Geo/1 queue involving
batch arrival and batch service, respectively. Moreno [26] extended a modified N-policy
issue, where the firstN customers of each consecutive service period are served together and
the rest of customers are served singly. She gave detailed derivations of system characteristics
for a discrete time Geo/G/1 queue and developed a cost function to search the optimal
operating N-policy at a minimum cost. Furthermore, Moreno [27] analyzed a discrete time
single serve queue with a generalized N-policy and setup-closedown times. In [27], the
author derived the formulae for various system performance measures, such as queue and
system lengths, the expected length of the vacation, setup, and busy and closedown periods,
and performed a numerical investigation on the expected cost function. Recently, Wang and
Ke [28] discussed a discrete-time Geo/G/1 queue, in which if the customers are accumulated
toN, the server operates a (p,N) policy.

However, only very few works in the literature concerned with N-policy queueing
systems with startup, and closedown time have been done. Especially, the researches of the
discrete time N-policy queueing models with startup, and closedown time are really very
rare. Moreover, in the past works of the N-policy, N is a fixed number except for Bisdikian
[12]. To my best knowledge, the discrete time case of N-policy where is a random variable
has never been studied. In the real situation, the server with startup and closedown times is
a natural abstraction and the number N may vary depending on different instances of the
operation of the system. For example, Streaming technique is used for compression of the
audio/video files so they can be retrieved and played by remote viewers in real time. When
a user wants to play video file and activates the streaming player, the streaming player will
download and store the uncertain size of data (random N, N is newly determined every
time for a new cycle beginning, depending the network bandwidth) in the buffer in advance
before playing the data. The user can watch the video file before the entire video file has been
downloaded. However, when the streaming player is activated for playing the video, it needs
a short time to start up. It also needs a shutdown time to be closed as all received data has
been played.

The paper is structured as follows. In the next section, we formulate the system as an
embedded three-dimensional Markov chain and provide the stationary joint distribution of
system size and the server’s status. In Section 3, the idle,startup, busy, and closedown periods
are derived. In Section 4 the explicit forms for the mean waiting time of a customer in the
system conditioned on the various states are obtained. The mean waiting time of a customer
in the system is also obtained and this result confirms the Little’s formula. Section 5 gives the
numerical aspects to illustrate the effect of the varying parameters on the expected length in
the system.

2. Model Formulation and Stationary Distribution

In continuous time queues an arrival and a departure never happen simultaneously (i.e., the
probability of an arrival and a departure occurring simultaneously is zero) hence the order
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Figure 1: Time epochs for the LAS and the EAS.
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Figure 2: Time epochs in the slots n and n + 1 under the LAS.

of an arrival and a departure can be easily distinguishable. However, in discrete-time system,
time is treated as a discrete variable (slot), and an arrival and a departure can only occur at
boundary epochs of time slots (i.e., an arrival and a departure may occur concurrently in a
slot). If wewant to compute the number of customers in the system at time slot n and let it has
a precise meaning, the order of the arrivals and departures must be stated. Whether an arrival
or a departure is recorded into the number of customers in the system at time slot n, there
are two different agreements: one is called the late arrival system (LAS) if a potential arrival
occurs within (n−, n) and a potential departure occurs within (n, n+); the other is called the
early arrival system (EAS) if a potential departure occurs within (n−, n) and a potential arrival
occurs within (n, n+). These concepts and other related ones can be found in Takagi [24] and
Hunter [29]. The event occurring in (n−, n) denotes the event occurring immediately before
slot n boundary and the event occurring in (n, n+) denotes that it is occurring immediately
after slot boundary. Figure 1 depicts time epochs for the LAS and the EAS. LAS has two
variants: LAS with immediate access and LAS with delayed access. The difference between
them is when a customer arrives late in the nth slot during the server which is free, the service
is started in the nth slot (LAS with immediate access) or the service is started in the (n +
1)st slot (LAS with delayed access). Because the management policy of LAS with immediate
access has no obvious applications to computer and communication systems, we adopt the
LAS policy with delayed access in the presented model and for any real number x ∈ [0, 1],
we denote x = 1 − x. Figure 2 depicts time epochs under a natural extension of the LAS for
the present model.

Let Γn denote the server state at time n+:

Γn =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
0, j
)
, if the server is idle and the threshold is j, j ≥ 1,

1, if the server is under setup,
2, if the server is busy,
3, if the server is under closedown.

(2.1)
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And let γn be a supplementary random variable defined as follows:

γn =

⎧
⎪⎪⎨
⎪⎪⎩

remaining startup time at n+, if Γn = 1,
remaining service time at n+, if Γn = 2,
remaining closedown time at n+, if Γn = 3.

(2.2)

Let the random variable Ln indicate the number of customers in the system at n+. The
sequence of {(Γn, Ln, γn)} is a Markov chain whose state space is as follows:

{((
0, j
)
, k
)
: j ≥ 1, 0 ≤ k ≤ j − 1

} ∪ {(j, k, i) : j = 1, 2, k ≥ 1, i ≥ 1
} ∪ {(3, k, i) : k ≥ 0, i ≥ 1}.

(2.3)

Let us define the following limiting probabilities:

π̃j,k = lim
n→∞

Pr
[
Γn =

(
0, j
)
, Ln = k

]
, j ≥ 1, 0 ≤ k ≤ j − 1;

π̇k,i = lim
n→∞

Pr
[
Γn = 1, Ln = k, γn = i

]
, k ≥ 1, i ≥ 1;

π̈k,i = lim
n→∞

Pr
[
Γn = 2, Ln = k, γn = i

]
, k ≥ 1, i ≥ 1;

...
πk,i = lim

n→∞
Pr
[
Γn = 3, Ln = k, γn = i

]
, k ≥ 0, i ≥ 1.

(2.4)

The steady-state Kolmogorov equations are given by

π̃j,k = λπ̃j,k + δ0,kλnj
...
π0,1 + (1 − δ0,k)λπ̃j,k−1, j ≥ 1, 0 ≤ k ≤ j − 1; (2.5)

π̇k,i = λsiπ̃k,k−1 + λπ̇k,i+1 + (1 − δ1,k)λπ̇k−1,i+1, 1 ≤ k, i ≥ 1; (2.6)

π̈k,i = λbiπ̈k,1 + (1 − δ1,k)λπ̈k−1,i+1 + λπ̈k,i+1 + λbiπ̈k+1,1

+ (1 − δ1,k)λbiπ̇k−1,1 + λbiπ̇k,1 + λbi
...
πk,1 + λbi

...
πk−1,1, k ≥ 1, i ≥ 1;

(2.7)

...
πk,i = λ

...
πk,i+1 + δ0,kλciπ̈1,1 + λ(1 − δ0,k)

...
πk−1,i+1, k ≥ 0, i ≥ 1, (2.8)

where

δa,b =
{

1, if a = b
0, else.

(2.9)

The left-hand sides in (2.5)–(2.8) represent the steady-state probabilities that
states observed immediately after the current slot boundary changes to states observed
immediately after the next slot boundary. For example, the left-hand side, π̃j,k, of (2.5)
denotes the probability from the current state transiting to the next state where the server
is idle, the threshold is j and there are k customers in the system. It should be noted that
the next state depends only on the current state. From the current state transiting to the next
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state, there are three cases. (a) Given the current state that the server is idle, the threshold is
j, and there are k customers in the system, the probability of no customer arriving from the
current state to the next state is λ. The probability that the server is idle, the threshold is j,
and there are k customers in the system at current state is π̃j,k. Hence the joint probability
is λπ̃j,k. (See the first term of right-hand side for (2.5)). (b) Given the current state that the
server is during closedown period, there are nocustomers in the system, and the remaining
closedown time is one slot at current, the probability that no customers arrive at the next
state and the threshold is j is δ0,kλnj . The probability that the server is during closedown
period, there are no customers in the system, and the remaining closedown time is one slot
is

...
π0,1. Therefore, the joint probability is δ0,kλnj

...
π0,1. (See the second term of right-hand side

for (2.5)). (c) Given the current state that the server is idle, there are k − 1 customers in the
system, and the threshold is j, the probability that a customer arrives from the current state
to the next state is (1− δ0,k)λ. Hence the unconditional probability is (1− δ0,k)λπ̃j,k−1. (See the
third term of right-hand side for (2.5)). By using the similar approach, we can obtain (2.6)–
(2.8) for denoting the next state that the server is startup, the next state that the server is busy,
and the next state that the server is closedown, respectively.

Define the following generating functions:

G0(z) =
∞∑
j=1

π̃j,0 +
∞∑
j=2

j−1∑
k=1

zkπ̃j,k, G1(x, z) =
∞∑
k=1

∞∑
i=1

zkxiπ̇k,i, ϕ1(z) =
∞∑
k=1

zkπ̇k,1,

G2(x, z) =
∞∑
k=1

∞∑
i=1

zkxiπ̈k,i, ϕ2(z) =
∞∑
k=1

zkπ̈k,1, G3(x, z) =
∞∑
k=0

∞∑
i=1

zkxi ...πk,i, ϕ3(z) =
∞∑
k=0

zk
...
πk,1,

(2.10)

where |z| ≤ 1 and |x| ≤ 1.
From (2.5), when j ≥ 1 and k = 0, we have

π̃j,0 =
λnj

λ

...
π0,1, j ≥ 1,

∞∑
j=1

π̃j,0 =
λ

λ

...
π0,1. (2.11)

For j ≥ 2 and 1 ≤ k ≤ j − 1 in (2.5) it yields that

π̃j,k = π̃j,k−1, j ≥ 2, 1 ≤ k ≤ j − 1. (2.12)

From (2.11) and (2.12), we get

π̃j,k =
λnj

λ

...
π0,1, j ≥ 1, 0 ≤ k ≤ j − 1. (2.13)

Hence, the generation function of an idle server is given by

G0(z) =
∞∑
j=1

π̃j,0 +
∞∑
j=2

j−1∑
k=1

zkπ̃j,k =
λ(1 −N(z))
λ(1 − z)

...
π0,1. (2.14)
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Multiplying (2.6) by zk and summing over k after multiplying (2.6) by xi and summing over
i, we obtain

x −
(
λ + λz

)

x
G1(x, z) = λN(z)S(x)

...
π0,1 −

(
λ + λz

)
ϕ1(z).

(2.15)

Applying the same procedure to (2.7) and (2.8), respectively, we obtain

x −
(
λ + λz

)

x
G2(x, z) =

(
λ + λz

)
(B(x) − z)

z
ϕ2(z)

+ B(x)
[(

λ + λz
)(

ϕ1(z) + ϕ3(z)
) − λ(π̈1,1 +

...
π0,1)
]
,

(2.16)

x −
(
λ + λz

)

x
G3(x, z) = −

(
λ + λz

)
ϕ3(z) + λC(x)π̈1,1.

(2.17)

Inserting x = λ + λz in (2.15), (2.16), and (2.17) yields

ϕ1(z) =
λN(z)S

(
λ + λz

)
(
λ + λz

) ...
π0,1, (2.18)

ϕ2(z) =
zB
(
λ + λz

)[(
λ + λz

)(
ϕ1(z) + ϕ3(z)

) − λ(π̈1,1 +
...
π0,1)
]

(
λ + λz

)[
z − B

(
λ + λz

)] , (2.19)

ϕ3(z) =
λC
(
λ + λz

)

λ + λz
π̈1,1, (2.20)

G1(x, z) =
xλN(z)

(
S(x) − S

(
λ + λz

))

x −
(
λ + λz

) ...
π0,1, (2.21)

G2(x, z) =
xz
(
B(x) − B

(
λ + λz

))
[
x −
(
λz + λ

)](
z − B

(
λ + λz

))
[(

λ + λz
)(

ϕ1(z) + ϕ3(z)
) − λ(π̈1,1 +

...
π0,1)
]
,

(2.22)

G3(x, z) =
xλ
(
C(x) − C

(
λ + λz

))

x −
(
λ + λz

) π̈1,1. (2.23)

Setting z = 0 in (2.20) and ϕ3(z) =
∑∞

k=0 z
k ...πk,1 yields

π̈1,1 =
...
π0,1

C
(
λ
) . (2.24)
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Substituting (2.18), (2.20), and (2.24) into (2.22) and (2.23) yields

G2(x, z) =
λxz
(
B(x) − B

(
λ + λz

))
[
x −
(
λ + λz

)](
z − B

(
λ + λz

))

⎡
⎢⎣N(z)S

(
λ + λz

)
+
C
(
λ + λz

)
− 1

C
(
λ
) − 1

⎤
⎥⎦...π0,1,

(2.25)

G3(x, z) =
xλ
(
C(x) − C

(
λ + λz

))
(
x −
(
λ + λz

))
C
(
λ
) ...

π0,1. (2.26)

Let L denote the system size. Following (2.14), (2.21), (2.25) and (2.26), the probability
generating function (p.g.f.) is given by

L(z) =
λB
(
λ + λz

)(
1 −N(z)S

(
λ + λz

)
−
((

C
(
λ + λz

)
− 1
)
/C
(
λ
)))

λ
(
B
(
λ + λz

)
− z
) ...

π0,1. (2.27)

2.1. The Derivation of
...
π0,1

Using the normalization condition, L(1) = 1, yields

...
π0,1 =

λ
(
1 − ρ
)

λ
(
μN + λμS +

(
λμC/C

(
λ
))) , (2.28)

where ρ = λμB.
Substituting (2.28) into (2.27) gives

L(z) = Lo(z) ×
1 −N(z)S

(
λ + λz

)
−
((

C
(
λ + λz

)
− 1
)
/C
(
λ
))

(1 − z)
(
μN + λμS +

(
λμC/C

(
λ
))) , (2.29)

where Lo(z) is the p.g.f. of the system size in the classical Geo/G/1 queue and

Lo(z) =

(
1 − ρ
)
(1 − z)B

(
λ + λz

)

B
(
λ + λz

)
− z

. (2.30)

2.2. Stationary Distribution of the Server State

Let us define the following:

P0 ≡ the probability that the server is idle;

P1 ≡ the probability that the server is startup;
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P2 ≡ the probability that the server is turned on (working);

P3 ≡ the probability that the server is shut down;

Pempty ≡ the probability that the system is empty.

Substituting (2.28) into (2.14), (2.21), (2.25), and (2.26) yields

P0 = G0(1) =

(
1 − ρ
)
μN

μN + λμS +
(
λμC/C

(
λ
)) , (2.31)

P1 = G1(1, 1) =
λ
(
1 − ρ
)
μS

μN + λμS +
(
λμC/C

(
λ
)) , (2.32)

P2 = G2(1, 1) = ρ, (2.33)

P3 = G3(1, 1) =
λμC

(
1 − ρ
)

C
(
λ
)(

μN + λμS +
(
λμC/C

(
λ
))) . (2.34)

Setting x = 1 and z = 0 in G3(x, z) =
∑∞

k=0
∑∞

i=1 z
kxi ...πk,i and using (2.26) yield

∞∑
i=1

...
π0,i =

λ
(
1 − C

(
λ
))

λC
(
λ
) ...

π0,1. (2.35)

Hence, the probability that the system is empty is given by

Pempty =
∞∑
j=0

π̃j,0 +
∞∑
i=1

...
π0,i =

(
1 − ρ
)

C
(
λ
)(

μN + λμS +
(
λμC/C

(
λ
))) . (2.36)

2.3. The Expected System Size

Differentiating L(z) in (2.29) and setting z = 1, we note that the numerator and denominator
are both 0. Based on L’Hospital’s rule twice, the expected system size is given by

E[L] = ρ +
λ2σ2

B + ρ2 − λρ

2
(
1 − ρ
)

+

(
σ2
N + μ2

N − μN

)
+ 2λμNμS + λ2

(
σ2
S + μ2

S − μS +
((

σ2
C + μ2

C − μC

)
/C
(
λ
)))

2
(
μN + λμS +

(
λμC/C

(
λ
))) ,

(2.37)

where ρ+((λ2σ2
B +ρ2 −λρ)/2(1−ρ)) is the expected system size in the system for the classical

Geo/G/1 queue.



10 Journal of Applied Mathematics

3. The Idle, Startup, Busy, and Closedown Periods

This section studies the idle, startup, busy, and closedown periods. An idle period starts at
the departure instant of a customer which leaves the system empty and terminates when
accumulated customers reach N, where N may be 1,2,. . . with probability Pr{N = j} = nj . A
startup period begins at the end of an idle period and terminates at the beginning of a service.
A busy period starts at the beginning of a service and terminates when a service is completed
and the system is empty. A closedown period begins at the end of a busy period and ends at
the completion of closedown time.

Define the following:

Q0 ≡ the length of an idle period;

Q1 ≡ the length of a startup period;

Q2 ≡ the length of a busy period;

Q3 ≡ the length of a closedown period.

3.1. The Idle Period

According to the definition, the p.g.f. of Q0 is given by

Q0(x) =
∞∑
k=1

∞∑
	=1

nkC
	−1
k−1λ

kλ
	−k

x	 =
∞∑
k=1

nk

(
λx

1 − λx

)k

= N

(
λx

1 − λx

)
, (3.1)

and the mean length of idle period is

E[Q0] =
μN

λ
. (3.2)

3.2. The Startup Period

Next, we derive the startup period. A startup period is the amount of time to start up the
server and ends when the startup expires. The p.g.f. and mean length of Q1 are given by
Q1(x) = S(x) and

E(Q1) = μS. (3.3)

3.3. The Busy Period

LetΨ(z) be the p.g.f. of busy period of classical Geo/G/1 with late arrival delay access. From
Takagi [24], we have Ψ(z) = B(λzΨ(z) + λz). To derive the p.g.f. of the length of the busy
period for the present model, we consider the following.
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Case 1. The probability that there are k arrivals at the end of idle period and the server is
ready to serve is nk, k = 1, 2, . . .. The p.g.f. for the length of the busy period extended by these
k arrivals is

Φ(z) =
∞∑
k=1

nk

∞∑
j=1

bjz
j

j∑
	=0

C
j

	
λ	λ

j−	
(Ψ(z))	+k−1 = N(Ψ(z)). (3.4)

Case 2. The p.g.f. for the number of arrivals that arrive during startup time is S(λ + λz).
Therefore, the p.g.f. for the length of the busy period extended by these arrivals is S(λ +
λΨ(z)).

Case 3. The p.g.f. for the number of arrivals that arrive during a closedown period with
arrivals is given by (C(λ + λz) − C(λ))/(1 − C(λ)) and the number of closedowns in a cycle
obeys the geometric distribution with parameter C(λ). Therefore, we can obtain the p.g.f. for
the number of customers that arrive during the closedown period with arrivals:

∞∑
k=1

⎛
⎜⎝

C
(
λ + λz

)
− C
(
λ
)

1 − C
(
λ
)

⎞
⎟⎠

k−1

C
(
λ
)(

1 − C
(
λ
))k−1

=
C
(
λ
)

1 − C
(
λ + λz

)
+ C
(
λ
) . (3.5)

Consequently, the p.g.f. for the length of the busy period extended by these arrivals is given
by

C
(
λ
)

1 − C
(
λ + λΨ(z)

)
+ C
(
λ
) . (3.6)

Because the arrivals in idle period, startup period, busy period and closedown period are
independent. Hence, the p.g.f. for the length of the busy period is given by

Q2(z) = N(Ψ(z)) × S
(
λ + λΨ(z)

)
×

C
(
λ
)

1 − C
(
λ + λΨ(z)

)
+ C
(
λ
) , (3.7)

and the mean length is

E[Q2] =

(
μN + λμS +

(
λμC/C

(
λ
)))

μB

1 − ρ
. (3.8)

3.4. The Closedown Period

The probabilities of no customer and at least one customer in the system at the completion of
a closedown are C(λ) and 1 −C(λ), respectively. This process is Bernoulli process. Hence, the
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distribution of the number of shutdowns in a cycle is a geometric distribution with parameter
C(λ). Besides, the p.g.f. for the length of a shutdown time is C(x). Consequently, the p.g.f. of
Q3 is given by

Q3(x) =
∞∑
k=1

(C(x))k × C
(
λ
)(

1 − C
(
λ
))k−1

=
C
(
λ
)
C(x)

1 − C(x)
(
1 − C

(
λ
)) , (3.9)

and the mean length of Q3 is given by

E[Q3] =
μC

C
(
λ
) . (3.10)

From (3.2), (3.3), (3.8), and (3.10), the mean length of the service cycle, Q, is given by

E[Q] = E[Q0] + E[Q1] + E[Q2] + E[Q3] =
μN + λμS +

(
λμC/C

(
λ
))

λ
(
1 − ρ
) . (3.11)

4. Sojourn Time in the System

When a customer enters a service system, one of his most concerning issues is his sojourn
time in the system. The sojourn time in the system of an arrival depends on the server status
at the arrival epoch. Let us define the following p.g.f.s:

W0(z | idle) ≡ the p.g.f. of the sojourn time in the system of a customer (that arrives
at an arbitrary slot) conditioning that the server state is idle;

W1(z | startup) ≡ the p.g.f. of the sojourn time in the system of a customer (that
arrives at an arbitrary slot) conditioning that the server state is startup;

W2(z | busy) ≡ the p.g.f. of the sojourn time in the system of a customer (that
arrives at an arbitrary slot) conditioning that the server state is busy;

W3(z | closedown) ≡ the p.g.f. of the sojourn time in the system of a customer (that
arrives at an arbitrary slot) conditioning that the server state is closedown;

W(z) ≡ the unconditional p.g.f. of the sojourn time in the system of a customer
(that arrives at an arbitrary slot).

There are four situations of the server at the epoch of a tagged arrival.

Case 1. Suppose the server is idle will go into startup state if j customers are accumulated
in the queue. A tagged customer arrives and finds k customers (k ≥ 0) in the system at that
moment the server is idle. The sojourn time in the system of this tagged customer consists
of (i) the time of waiting j − k − 1 arrivals for the server going into startup state; (ii) the
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startup time; (iii) the total service time of the preceding k customers; (iv) the service time of
the tagged customer:

W0(z | idle) = 1
P0

∞∑
j=1

j−1∑
k=0

π̃j,k

(
λz

1 − λz

)j−1−k

S(z)(B(z))k+1

=
λS(z)B(z)

(
1 − λz

)(
N
(
λz/
(
1 − λz

))
−N(B(z))

)

λP0

[
λz −

(
1 − λz

)
B(z)
] ...

π0,1.

(4.1)

Case 2. A tagged customer arrives during startup period and finds k (k ≥ 1) customers in the
system. The tagged customer’s sojourn time in the system is the remaining startup time plus
the service time of the k + 1 (including himself) customers:

W1
(
z | startup) ≡ 1

P1

∞∑
k=1

∞∑
i=1

π̇k,iz
i−1[B(z)]k+1 =

λB(z)N(B(z))
(
S(z) − S

(
λ + λB(z)

))

P1

[
z −
(
λ + λB(z)

)] ...
π0,1.

(4.2)

Case 3. A tagged customer arrives while the server is busy and finds k customers in the
system. In this case, his sojourn time in the system consists of (i) the remaining service time
of the customer being served; (ii) the service time of the k customers (including himself).
Hence, we have

W2
(
z | busy) =

∑∞
k=1
∑∞

i=1 π̈k,iz
i−1[B(z)]k

P2

=
λB(z)

{
N(B(z))S

(
λ + λB(z)

)
+
[(

C
(
λ + λB(z)

)
− 1
)
/C
(
λ
)]

− 1
}

P2

[
z −
(
λ + λB(z)

)] ...
π0,1.

(4.3)

Case 4. A tagged customer arrives while the server is during the closedown period and finds
k (k ≥ 0) customers in the system. In this case, the sojourn time in the system of the customer
consists of the remaining closedown time, and the service time of the k + 1 customers:

W3(z | closedown) ≡ 1
P3

∞∑
k=0

∞∑
i=1

...
πk,iz

i−1[B(z)]k+1 =
λB(z)

(
C(z) − C

(
λB(z) + λ

))

P3

(
z −
(
λB(z) + λ

))
C
(
λ
) ...

π0,1. (4.4)
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By unconditioning (4.1)–(4.4), the sojourn time in the system of an arbitrary customer is given
by

W(z) = P0W0(z | idle) + P1W1
(
z | startup) + P2W2

(
z | busy) + P3W3(z | closedown)

=

⎡
⎢⎣
S(z)
(
1 − λz

)(
N
(
λz/
(
1 − λz

))
−N(B(z))

)

λ
[
λz −

(
1 − λz

)
B(z)
]

+
N(B(z))S(z) +

(
(C(z) − 1)/C

(
λ
))

− 1
[
z −
(
λ + λB(z)

)]

⎤
⎥⎦λB(z)...π0,1.

(4.5)

Finally, we obtain

W(z) = Wq(z) × B(z), (4.6)

where

Wq(z) =

⎧
⎨
⎩

S(z)
(
1 − λz

)(
N
(
λz/
(
1 − λz

))
−N(B(z))

)

λ
[
λz −

(
1 − λz

)
B(z)
]

+

(
N(B(z))S(z) +

(
(C(z) − 1)/C

(
λ
))

− 1
)

[
z −
(
λ + λB(z)

)]
⎫
⎬
⎭λ

...
π0,1

(4.7)

is the p.g.f. of the customer’s waiting time in the queue.
From (4.6), the expected sojourn time in the system is given by

E[W] = μB +
λ
(
σ2
B + μ2

B

) − ρ

2
(
1 − ρ
)

+

[((
σ2
N + μ2

N − μN

)
/λ
)
+ 2μNμS + λ

(
σ2
S + μ2

S − μS +
((

σ2
C + μ2

C − μC

)
/C
(
λ
)))]

2
(
μN + λμS +

(
λμC/C

(
λ
)))

(4.8)

which is in accordance with E[L]/λ and this result confirms Little’s formula.

5. Numerical Examples

In this section, we present some numerical examples to compare the mean length in the
system of the presented model with respect to no startup, no closedown, and both no startup
and no closedown. From (2.37), we can easily obtain the mean lengths in the system with no
startup, no closedown, and both no startup and no closedown as follows:
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(i) no startup:

ρ +
λ2σ2

B + ρ2 − λρ

2
(
1 − ρ
) +

(
σ2
N + μ2

N − μN

)
+ λ2
((

σ2
C + μ2

C − μC

)
/C
(
λ
))

2
(
μN +

(
λμC/C

(
λ
))) ; (5.1)

(ii) no closedown:

ρ +
λ2σ2

B + ρ2 − λρ

2
(
1 − ρ
) +

(
σ2
N + μ2

N − μN

)
+ 2λμNμS + λ2

(
σ2
S + μ2

S − μS

)

2
(
μN + λμS

) ; (5.2)

(iii) no startup and no closedown:

ρ +
λ2σ2

B + ρ2 − λρ

2
(
1 − ρ
) +

(
σ2
N + μ2

N − μN

)

2μN
. (5.3)

We assume that the startup time and the closedown time are geometric distributions
with parameter rates 0.4 and 0.5, respectively, and consider the following four cases. For
convenience, if a random X has a geometric distribution with parameter β, we denote
X ∼ Geo(β). Similarly, if a random X has a discrete uniform distribution on the integers
from β1 to β2, we denote X ∼ Du(β1, β2).

Case 1. Let λ = 0.3, N ∼ Du(1, 5), and B ∼ Geo(α) the values of the parameter α vary from
0.52 to 096 by the increment 0.04.

Case 2. Let λ = 0.3, N ∼ Geo(0.3), and B ∼ Geo(α) the values of the parameter α vary from
0.52 to 096 by the increment 0.04.

Case 3. Let N ∼ Du(1, 5), B ∼ Geo(0.7), and vary the values of λ from 0.3 to 0.5 by the
increment 0.02.

Case 4. Let N ∼ Geo(0.3), B ∼ Geo(0.7), and vary the values of λ from 0.3 to 0.5 by the
increment 0.02.

Cases 1–4 are depicted in Figures 3–6, respectively. Figures 3 and 4 display that the
mean length in the system decreases in service rate and Figures 5–6 display that the mean
length in the system increases in arrival rate. In Figure 3 (also see Figure 5), the mean length
in the system with startup and closedown is always greater than the mean length in the
systemwith no startup and no closedown. But in Figure 4 (also see Figure 6), the mean length
in the system with no startup and no closedown is always greater than the mean length in
the system with no startup. This is because we choose the different threshold distributions.
Because the server needs a startup time before starting to serve customers, the startup time
will increase number of customers in the system. Moreover, the system allows the customers
to enter the system in closedown period and the server immediately serves the customers
in the system without startup time. Comparing it with the system with no startup time and
no closedown, it is efficient in decreasing the customers in the system. Hence, we observe the
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Figure 3: Plot of mean length in the system versus service rate with λ = 0.3, N ∼ Du(1, 5), S ∼ Geo(0.4),
C ∼ Geo(0.5), and B ∼ Geo(α), the values of service rate α varying from 0.52 to 096 by the increment 0.04.
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Figure 4: Plot of mean length in the system versus service rate with λ = 0.3, N ∼ Geo(0.3), S ∼ Geo(0.4),
C ∼ Geo(0.5), and B ∼ Geo(α), the values of service rate α varying from 0.52 to 096 by the increment 0.04.

phenomenon that the mean length in the systemwithout closedown is greater than the others
and the mean length in the system without startup is smaller than the others.
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Figure 5: Plot of mean length in the system versus arrival rate with N ∼ Du(1, 5), S ∼ Geo(0.4), B ∼
Geo(0.7), and C ∼ Geo(0.5), the values of arrival rate λ varying from 0.3 to 0.5 by the increment 0.02.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Arrival rate

Sy
st

em
 le

ng
th

With startup and closedown
No closedown
No startup
No startup and no closedown

Figure 6: Plot of mean length in the system versus arrival rate with N ∼ Geo(0.3), S ∼ Geo(0.4), C ∼
Geo(0.5), and B ∼ Geo(0.7), the values of arrival rate λ varying from 0.3 to 0.5 by the increment 0.02.

6. Conclusions

In this work, we investigated a random N-policy Geo/G/1 queue with startup and
closedown times. The analytical results of mean lengths of the system size, idle period,
startup period, busy period, and closedown period were derived. The most careful thing
of a customer entering a service system, his sojourn time in the system, is also derived.
We obtained the steady-state distributions of the waiting time of a customer in the system
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conditioned on the various states. The analytic solution of unconditional mean waiting time
was also obtained and the result showed that Little’s formula still holds.
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