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We introduce hybrid-iterative schemes for solving a system of the zero-finding problems of
maximal monotone operators, the equilibrium problem, and the fixed point problem of weak
relatively nonexpansive mappings. We then prove, in a uniformly smooth and uniformly convex
Banach space, strong convergence theorems by using a shrinking projection method. We finally
apply the obtained results to a system of convex minimization problems.

1. Introduction

Let E be a real Banach space and C a nonempty subset of E. Let E∗ be the dual space of E. We
denote the value of x∗ ∈ E∗ at x ∈ E by 〈x∗, x〉. Let T : C → C be a nonlinear mapping. We
denote by F(T) the fixed points set of T , that is, F(T) = {x ∈ C : x = Tx}. LetA : E → 2E

∗
be a

set-valuedmapping.We denoteD(A) by the domain ofA, that is,D(A) = {x ∈ E : Ax/= ∅} and
also denote G(A) by the graph of A, that is, G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. A set-valued
mapping A is said to be monotone if 〈x∗ − y∗, x − y〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ G(A). It is
said to be maximal monotone if its graph is not contained in the graph of any other monotone
operators on E. It is known that if A is maximal monotone, then the set A−1(0∗) = {z ∈ E :
0∗ ∈ Az} is closed and convex.

The problem of finding a zero point of maximal monotone operators plays an impor-
tant role in optimizations. This is because it can be reformulated to a convex minimization
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problem and a variational inequality problem. Many authors have studied the convergence
of such problems in various spaces (see, e.g., [1–16]). Initiated by Martinet [17], in a real
Hilbert space H, Rockafellar [18] introduced the following iterative scheme: x1 ∈ H and

xn+1 = Jλnxn, ∀n ≥ 1, (1.1)

where {λn} ⊂ (0,∞), Jλ is the resolvent of A defined by Jλ := JλA = (I + λA)−1 for all λ > 0,
and A is a maximal monotone operator on H. Such an algorithm is called the proximal point
algorithm. It was proved that the sequence {xn} generated by (1.1) converges weakly to an
element in A−1(0) provided that lim infn→∞λn > 0. Recently, Kamimura and Takahashi [19]
introduced the following iteration in a real Hilbert space: x1 ∈ H and

xn+1 = αnxn + (1 − αn)Jλnxn, ∀n ≥ 1, (1.2)

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞). The weak convergence theorems are also established
in a real Hilbert space under suitable conditions imposed on {αn} and {λn}.

In 2004, Kamimura et al. [20] extended the above iteration process to a much more
general setting. In fact, they proposed the following algorithm: x1 ∈ E and

xn+1 = J−1(αnJ(xn) + (1 − αn)J(Jλnxn)), ∀n ≥ 1, (1.3)

where {αn} ⊂ [0, 1], {λn} ⊂ (0,∞), and Jλ := JλA = (J + λA)−1J for all λ > 0. They proved, in a
uniformly smooth and uniformly convex Banach space, a weak convergence theorem.

Let F : C×C → R, where R is the set of real numbers, be a bifunction. The equilibrium
problem is to find x ∈ C such that

F
(
x, y

) ≥ 0, ∀y ∈ C. (1.4)

The solutions set of (1.4) is denoted by EP(F).
For solving the equilibrium problem, we assume that

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,

(A3) for all x, y, z ∈ C, lim supt↓0F(tz + (1 − t)x, y) ≤ F(x, y),

(A4) for all x ∈ C, F(x, ·) is convex and lower semi-continuous.

Recently, Takahashi and Zembayashi [21] introduced the following iterative scheme
for a relatively nonexpansive mapping T : C → C in a uniformly smooth and uniformly
convex Banach space: x1 ∈ C and

C1 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),



Journal of Applied Mathematics 3

un ∈ C such thatF
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0 ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1(x1), ∀n ≥ 1,

(1.5)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Such an algorithm is called the shrinking projection
method which was introduced by Takahashi et al. [22]. They proved that the sequence
{xn} converges strongly to an element in F(T) ∩ EP(F) under appropriate conditions. The
equilibrium problem has been intensively studied by many authors (see, e.g., [23–31]).

Motivated by the previous results, we introduce a hybrid-iterative scheme for finding
a zero point of maximal monotone operators Ai : E → 2E

∗
(i = 1, 2, . . . ,N) which is also

a common element in the solutions set of an equilibrium problem for F and in the fixed
points set of weak relatively nonexpansive mappings Ti : C → C (i = 1, 2, . . .). Using the
projection technique, we also prove that the sequence generated by a constructed algorithm
converges strongly to an element in [

⋂N
i=1 A

−1
i (0∗)]∩[⋂∞

i=1 F(Ti)]∩EP(F) in a uniformly smooth
and uniformly convex Banach space. Finally, we apply our results to a system of convex
minimization problems.

2. Preliminaries and Lemmas

In this section, we give some useful preliminaries and lemmas which will be used in the
sequel.

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A
Banach space E is said to be strictly convex if for any x, y ∈ U,

x /=y implies
∥∥x + y

∥∥ < 2. (2.1)

A Banach space E is said to be uniformly convex if, for each ε ∈ (0, 2], there exists δ > 0 such
that for any x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥x + y
∥∥ < 2(1 − δ). (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. The
function δ : [0, 2] → [0, 1] which is called the modulus of convexity of E is defined as follows:

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.3)

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said
to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.4)
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exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.4) is attained
uniformly for x, y ∈ U. The duality mapping J : E → 2E

∗
is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(2.5)

for all x ∈ E. It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on bounded subsets of E (see [32] for more details).

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥
∥y

∥
∥2 (2.6)

for all x, y ∈ E. From the definition of φ, we see that

(‖x‖ − ∥∥y
∥∥)2 ≤ φ

(
x, y

) ≤ (‖x‖ + ∥∥y
∥∥)2,

φ
(
x, y

)
= φ(x, z) + φ

(
z, y

)
+ 2

〈
x − z, Jz − Jy

〉 (2.7)

for all x, y, z ∈ E.
Let C be a closed and convex subset of E, and let T be a mapping from C into itself.

A point p in C is said to be an asymptotic fixed point of T [33] if C contains a sequence {xn}
which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed
points of T will be denoted by F̂(T). A mapping T is said to be relatively nonexpansive [33, 34]
if F̂(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C. A point p in C is said to
be a strong asymptotic fixed point of T if C contains a sequence {xn} which converges strongly
to p such that limn→∞ ‖xn − Txn‖ = 0. The set of strong asymptotic fixed points of T will
be denoted by F̃(T). A mapping T is said to be weak relatively nonexpansive [35] if F̃(T) =
F(T) and φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C. It is obvious by definition that the
class of weak relatively nonexpansive mappings contains the class of relatively nonexpansive
mappings. Indeed, for any mapping T : C → C, we see that F(T) ⊂ F̃(T) ⊂ F̂(T). Therefore,
if T is a relatively nonexpansive mapping, then F(T) = F̃(T) = F̂(T).

Nontrivial examples of weak relatively nonexpansive mappings which are not rela-
tively nonexpansive can be found in [36].

Let E be a reflexive, strictly convex and smooth Banach space, and letC be a nonempty,
closed, and convex subset of E. The generalized projection mapping, introduced by Alber [37],
is a mapping ΠC : E → C, that assigns to an arbitrary point x ∈ E the minimum point of the

function φ(y, x), that is, ΠC(x) =
−
x, where

−
x is the solution to the minimization problem

φ
(−
x, x

)
= min

{
φ
(
y, x

)
: y ∈ C

}
. (2.8)

In a Hilbert space, ΠC is coincident with the metric projection denoted by PC.

Lemma 2.1 (see [38]). Let E be a uniformly convex and smooth Banach space and let {xn}, {yn} be
two sequences in E. If limn→∞ φ(xn, yn) = 0 and either {xn} or {yn} is bounded, then limn→∞ ‖xn−
yn‖ = 0.
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Lemma 2.2 (see [37, 38]). Let C be a nonempty, closed, and convex subset of a smooth, strictly
convex and reflexive Banach space E, let x ∈ E and let z ∈ C. Then z = ΠC(x) if and only if
〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C.

Lemma 2.3 (see [37, 38]). Let C be a nonempty, closed, and convex subset of a smooth, strictly
convex, and reflexive Banach space E. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

) ∀x ∈ C, y ∈ E. (2.9)

Lemma 2.4 (see [39]). Let E be a smooth and strictly convex Banach space, and let C be a nonempty,
closed, and convex subset of E. Let T be a mapping from C into itself such that F(T) is nonempty and
φ(u, Tx) ≤ φ(u, x) for all (u, x) ∈ F(T) × C. Then F(T) is closed and convex.

Let E be a reflexive, strictly convex, and smooth Banach space. It is known that A :
E → 2E

∗
is maximal monotone if and only if R(J + λA) = E∗ for all λ > 0, where R(B) stands

for the range of B.
Define the resolvent of A by JλA = (J + λA)−1J for all λ > 0. It is known that JλA is a

single-valued mapping from E toD(A) andA−1(0∗) = F(JλA) for all λ > 0. For each λ > 0, the
Yosida approximation of A is defined by

Aλ(x) =
1
λ
(J(x) − JJλA(x)) (2.10)

for all x ∈ E. We know that Aλ(x) ∈ A(JλA(x)) for all λ > 0 and x ∈ E.

Lemma 2.5 (see [5]). Let E be a smooth, strictly convex, and reflexive Banach space, let A ⊂ E × E∗

be a maximal monotone operator with A−1(0∗)/= ∅, and let JλA = (J + λA)−1J for each λ > 0. Then

φ
(
p, JλA(x)

)
+ φ(JλA(x), x) ≤ φ

(
p, x

)
(2.11)

for all λ > 0, p ∈ A−1(0∗), and x ∈ E.

Lemma 2.6 (see[40]). Let C be a closed and convex subset of a smooth, strictly convex, and reflexive
Banach space E, let F be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0 and x ∈ E.
Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.12)

Lemma 2.7 (see [41]). Let C be a closed and convex subset of a uniformly smooth, strictly convex,
and reflexive Banach space E, and let F be a bifunction from C × C to R satisfying (A1)–(A4). For all
r > 0 and x ∈ E, define the mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (2.13)
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Then, the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [42], that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.14)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

Lemma 2.8 (see [41]). Let C be a closed and convex subset of a smooth, strictly, and reflexive Banach
space E, let F be a bifunction from C × C to R satisfying (A1)–(A4), let r > 0. Then

φ
(
p, Trx

)
+ φ(Trx, x) ≤ φ

(
p, x

)
, (2.15)

for all x ∈ E and p ∈ F(Tr).

3. Strong Convergence Theorems

In this section, we are now ready to prove our main theorem.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty, closed and convex subset of E. Let Ai : E → 2E

∗
(i = 1, 2, . . . ,N) be maximal monotone

operators, let F : C × C → R be a bifunction, and let Ti : C → C (i = 1, 2, . . .) be weak relatively
nonexpansive mappings such that F := [

⋂N
i=1 A

−1
i (0∗)] ∩ [

⋂∞
i=1 F(Ti)] ∩ EP(F)/= ∅. Let {en}∞n=1 ⊂ E

be the sequence such that limn→∞en = 0. Define the sequence {xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

yn = JλNn AN
◦ JλN−1

n AN−1 ◦ · · · ◦ Jλ1nA1
(xn + en),

un = Trnyn,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, Tiun) ≤ φ(z, xn + en)

}

,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

(3.1)

If lim infn→∞λin > 0 for each i = 1, 2, . . . ,N and lim infn→∞rn > 0, then the sequence {xn} converges
strongly to q = ΠF(x1).

Proof. We split the proof into several steps as follows.
Step 1. F ⊂ Cn for all n ≥ 1.
From Lemma 2.4, we know that

⋂∞
i=1 F(Ti) is closed and convex. From Lemma 2.7(4),

we also know that EP(F) is closed and convex. On the other hand, since Ai (i = 1, 2, . . . ,N)
are maximal monotone, A−1

i (0∗) are closed and convex for each i = 1, 2, . . . ,N; consequently,
⋂N

i=1 A
−1
i (0∗) is closed and convex. Hence F is a nonempty, closed, and convex subset of C.
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We next show that Cn is closed and convex for all n ≥ 1. Obviously, C1 = C is closed
and convex. Now suppose that Ck is closed and convex for some k ∈ N. Then, for each z ∈ Ck

and i ≥ 1, we see that φ(z, Tiuk) ≤ φ(z, xk) is equivalent to

2〈z, Jxk〉 − 2〈z, JTiuk〉 ≤ ‖xk‖2 − ‖Tiuk‖2. (3.2)

By the construction of the set Ck+1, we see that

Ck+1 =

{

z ∈ Ck : sup
i≥1

φ(z, Tiuk) ≤ φ(z, xk)

}

=
∞⋂

i=1

{
z ∈ Ck : φ(z, Tiuk) ≤ φ(z, xk)

}
.

(3.3)

Hence, Ck+1 is closed and convex. This shows, by induction, that Cn is closed and convex for
all n ≥ 1. It is obvious that F ⊂ C1 = C. Now, suppose that F ⊂ Ck for some k ∈ N. For any
p ∈ F, by Lemmas 2.5 and 2.8, we have

φ
(
p, Tiuk

) ≤ φ
(
p, uk

)
= φ

(
p, Trkyk

)

≤ φ
(
p, yk

)

= φ
(
p, JλN

k
AN

◦ JλN−1
k

AN−1 ◦ · · · ◦ Jλ1kA1
(xk + ek)

)

≤ φ
(
p, JλN−1

k
AN−1 ◦ JλN−2

k
AN−2 ◦ · · · ◦ Jλ1kA1

(xk + ek)
)

...

≤ φ
(
p, Jλ2

k
A2

◦ Jλ1
k
A1
(xk + ek)

)

≤ φ
(
p, Jλ1

k
A1
(xk + ek)

)

≤ φ
(
p, xk + ek

)
.

(3.4)

This shows that F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all n ≥ 1.
Step 2. limn→∞φ(xn, x1) exists.
From xn = ΠCn(x1) and xn+1 = ΠCn+1(x1) ∈ Cn+1 ⊂ Cn, we have

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ≥ 1. (3.5)

From Lemma 2.3, for any p ∈ F ⊂ Cn, we have

φ(xn, x1) = φ(ΠCn(x1), x1) ≤ φ
(
p, x1

) − φ
(
p, xn

) ≤ φ
(
p, x1

)
. (3.6)

Combining (3.5) and (3.6), we conclude that limn→∞φ(xn, x1) exists.
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Step 3. limn→∞‖J(Tiyn) − J(xn + en)‖ = 0.
Since xm = ΠCm(x1) ∈ Cm ⊂ Cn for m > n ≥ 1, by Lemma 2.3, it follows that

φ(xm, xn) = φ(xm,ΠCn(x1)) ≤ φ(xm, x1) − φ(ΠCn(x1), x1)

= φ(xm, x1) − φ(xn, x1).
(3.7)

Letting m,n → ∞, we have φ(xm, xn) → 0. By Lemma 2.1, it follows that ‖xm − xn‖ → 0 as
m,n → ∞. Therefore, {xn} is a Cauchy sequence. By the completeness of the space E and the
closedness of C, we can assume that xn → q ∈ C as n → ∞. In particular, we obtain that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)

Since en → 0, we have

lim
n→∞

‖xn+1 − (xn + en)‖ = 0. (3.9)

Since xn+1 = ΠCn+1(x1) ∈ Cn+1, for each i ≥ 1,

φ(xn+1, Tiun) ≤ φ(xn+1, xn + en)

= 〈xn+1, J(xn+1) − J(xn + en)〉 + 〈xn+1 − (xn + en), J(xn+1)〉.
(3.10)

Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded sets. It
follows from (3.9) and by the boundedness of {xn} that

lim
n→∞

φ(xn+1, Tiun) = 0 (3.11)

for all i = 1, 2, . . .. So from Lemma 2.1, we have

lim
n→∞

‖xn+1 − Tiun‖ = 0,

lim
n→∞

‖Tiun − xn‖ = 0,
(3.12)

and, since en → 0, therefore

lim
n→∞

‖Tiun − (xn + en)‖ = 0, (3.13)

for all i = 1, 2, . . .. Since J is uniformly norm-to-norm continuous on bounded subsets of E,

lim
n→∞

‖J(Tiun) − J(xn + en)‖ = 0 (3.14)

for all i = 1, 2, . . . .
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Step 4. limn→∞ ‖Tiun − un‖ = 0 for all i = 1, 2, . . . .
Denote that Θi

n = JλinAi
◦ Jλi−1n Ai−1 ◦ . . . ◦ Jλ1nA1

for each i ∈ {1, 2, . . . ,N} and Θ0
n = I for

each n ≥ 1. We note that yn = ΘN
n (xn + en) for each n ≥ 1.

To this end, we will show that

lim
n→∞

∥
∥
∥J

(
Θi

n(xn + en)
)
− J

(
Θi−1

n (xn + en)
)∥∥
∥ = 0 (3.15)

for all i = 1, 2, . . . ,N.
For any p ∈ F, by (3.4), we see that

φ
(
p,ΘN−1

n (xn + en)
)
≤ φ

(
p,ΘN−2

n (xn + en)
)

≤ φ
(
p,ΘN−3

n (xn + en)
)

...

≤ φ
(
p, (xn + en)

)
.

(3.16)

Since p ∈ F, by Lemma 2.5 and (3.16), it follows that

φ
(
yn,ΘN−1

n (xn + en)
)
≤ φ

(
p,ΘN−1

n (xn + en)
)
− φ

(
p, yn

)

≤ φ
(
p, (xn + en)

) − φ
(
p, yn

)

≤ φ
(
p, (xn + en)

) − φ
(
p, un

)

≤ φ
(
p, (xn + en)

) − φ
(
p, Tiun

)

= ‖xn + en‖2 − ‖Tiun‖2 − 2
〈
p, J(xn + en) − J(Tiun)

〉
.

(3.17)

From (3.13) and (3.14), we get that limn→∞ φ(yn,ΘN−1
n (xn + en)) = 0. So we obtain that

lim
n→∞

∥∥∥yn −ΘN−1
n (xn + en)

∥∥∥ = 0. (3.18)

Again, since p ∈ F,

φ
(
ΘN−1

n (xn + en),ΘN−2
n (xn + en)

)
≤ φ

(
p,ΘN−2

n (xn + en)
)
− φ

(
p,ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

) − φ
(
p,ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

) − φ
(
p, Tiun

)
.

(3.19)

From (3.13) and (3.14), we get that

lim
n→∞

φ
(
ΘN−1

n (xn + en),ΘN−2
n (xn + en)

)
= 0. (3.20)
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It also follows that

lim
n→∞

∥
∥
∥ΘN−1

n (xn + en) −ΘN−2
n (xn + en)

∥
∥
∥ = 0. (3.21)

Continuing in this process, we can show that

lim
n→∞

∥
∥
∥ΘN−2

n (xn + en) −ΘN−3
n (xn + en)

∥
∥
∥ = · · · = lim

n→∞

∥
∥
∥Θ1

n(xn + en) − (xn + en)
∥
∥
∥ = 0. (3.22)

So, we now conclude that

lim
n→∞

∥
∥
∥Θi

n(xn + en) −Θi−1
n (xn + en)

∥
∥
∥ = 0 (3.23)

for each i = 1, 2, . . . ,N. By the uniform norm-to-norm continuity of J , we also have

lim
n→∞

∥∥∥J
(
Θi

n(xn + en)
)
− J

(
Θi−1

n (xn + en)
)∥∥∥ = 0 (3.24)

for each i = 1, 2, . . . ,N. Using (3.23), it is easily seen that

lim
n→∞

∥∥yn − (xn + en)
∥∥ = 0. (3.25)

From un = Trnyn, by Lemma 2.8, it follows that

φ
(
un, yn

)
= φ

(
Trnyn, yn

)

≤ φ
(
p, yn

) − φ
(
p, Trnyn

)

≤ φ
(
p, xn + en

) − φ
(
p, un

)

≤ φ
(
p, xn + en

) − φ
(
p, Tiun

)
.

(3.26)

This implies that limn→∞φ(un, yn) = 0 and hence

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.27)

Combining (3.13), (3.25), and (3.27), we obtain that

lim
n→∞

‖Tiun − un‖ = 0 (3.28)

for all i ≥ 1.
Step 5. q ∈ ⋂∞

i=1 F(Ti).
Since xn → q and en → 0, xn + en → q. So from (3.25) and (3.27), we have un → q.

Note that Ti (i = 1, 2, . . .) are weak relatively nonexpansive. Using (3.28), we can conclude
that q ∈ F̃(Ti) = F(Ti) for all i ≥ 1. Hence q ∈ ⋂∞

i=1 F(Ti).
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Step 6. q ∈ ⋂N
i=1 A

−1
i (0∗).

Noting that Θi
n(xn + en) = JλinAi

Θi−1
n (xn + en) for each i = 1, 2, . . . ,N, we obtain that

∥
∥
∥Aλin

Θi−1
n (xn + en)

∥
∥
∥ =

1
λin

∥
∥
∥J

(
Θi−1

n (xn + en)
)
− J

(
Θi

n(xn + en)
)∥∥
∥. (3.29)

From (3.24) and lim infn→∞λin > 0, we have

lim
n→∞

∥
∥
∥Aλin

Θi−1
n (xn + en)

∥
∥
∥ = 0. (3.30)

We note that (Θi
n(xn+en), Aλin

Θi−1
n (xn+en)) ∈ G(Ai) for each i = 1, 2, . . . ,N. If (w,w∗) ∈ G(Ai)

for each i = 1, 2, . . . ,N, then it follows from the monotonicity of Ai that

〈
w∗ −Aλin

Θi−1
n (xn + en), w −Θi

n(xn + en)
〉
≥ 0. (3.31)

We see that Θi
n(xn + en) → q for each i = 1, 2, . . . ,N. Thus, from (3.30) and (3.31), we have

〈
w∗, w − q

〉 ≥ 0. (3.32)

By the maximality of Ai, it follows that q ∈ A−1
i (0∗) for each i = 1, 2, . . . ,N. Therefore, q ∈

⋂N
i=1 A

−1
i (0∗).
Step 7. q ∈ EP(F).
From un = Trnyn, we have

F
(
un, y

)
+

1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C. (3.33)

By (A2), we have

∥∥y − un

∥∥
∥∥Jun − Jyn

∥∥

rn
≥ 1

rn

〈
y − un, Jun − Jyn

〉

≥ −F(un, y
) ≥ F

(
y, un

)
, ∀y ∈ C.

(3.34)

Note that ‖Jun − Jyn‖/rn → 0 since lim infn→∞ rn > 0. From (A4) and un → q, we get
F(y, q) ≤ 0 for all y ∈ C. For 0 < t < 1 and y ∈ C, define that yt = ty + (1 − t)q. Then yt ∈ C,
which implies that F(yt, q) ≤ 0. From (A1), we obtain that 0 = F(yt, yt) ≤ tF(yt, y) + (1 −
t)F(yt, q) ≤ tF(yt, y). Thus, F(yt, y) ≥ 0. From (A3), we have F(q, y) ≥ 0 for all y ∈ C. Hence,
q ∈ EP(F). From Steps 5, 6, and 7, we now can conclude that q ∈ F.

Step 8. q = ΠF(x1).
From xn = ΠCn(x1), we have

〈J(x1) − J(xn), xn − z〉 ≥ 0, ∀z ∈ Cn. (3.35)
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Since F ⊂ Cn, we also have

〈J(x1) − J(xn), xn − z〉 ≥ 0, ∀z ∈ F. (3.36)

Letting n → ∞ in (3.36), we obtain that

〈
J(x1) − J

(
q
)
, q − z

〉 ≥ 0, ∀z ∈ F. (3.37)

This shows that q = ΠF(x1) by Lemma 2.2. We thus complete the proof.

As a direct consequence of Theorem 3.1, we can also apply to a system of convex
minimization problems.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty, closed, and convex subset of E. Let fi : E → (−∞,∞] (i = 1, 2, . . . ,N) be proper lower
semicontinuous convex functions, let F : C × C → R be a bifunction, and let Ti : C → C (i =
1, 2, . . .) be weak relatively nonexpansive mappings such that F := [

⋂N
i=1(∂f

−1
i )(0∗)]∩ [

⋂∞
i=1 F(Ti)]∩

EP(F)/= ∅. Let {en}∞n=1 ⊂ E be the sequence such that limn→∞ en = 0. Define the sequence {xn}∞n=1
in C as follows:

x1 ∈ C1 = C,

z1n = arg min
y∈E

{
f1
(
y
)
+

1
2λ1n

∥∥y
∥∥2 +

1
λ1n

〈
y, J(xn + en)

〉
}
,

...

zN−1
n = arg min

y∈E

{
fN−1

(
y
)
+

1
2λN−1

n

∥∥y
∥∥2 +

1
λN−1
n

〈
y, J

(
zN−2
n

)〉}
,

yn = arg min
y∈E

{
fN

(
y
)
+

1
2λNn

∥∥y
∥∥2 +

1
λNn

〈
y, J

(
zN−1
n

)〉}
,

un = Trnyn,

Cn+1 =

{

z ∈ Cn : sup
i≥1

φ(z, Tiun) ≤ φ(z, xn + en)

}

,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

(3.38)

If lim infn→∞ λin > 0 for each i = 1, 2, . . . ,N and lim infn→∞rn > 0, then the sequence {xn} con-
verges strongly to q = ΠF(x1).
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Proof. By Rockafellar’s theorem [43, 44], ∂fi are maximal monotone operators for each i =
1, 2, . . . ,N. Let λi > 0 for each i = 1, 2, . . . ,N. Then, zi = Jλi∂fi(x) if and only if

0 ∈ ∂fi
(
zi
)
+

1
λi

(
J
(
zi
)
− J(x)

)

= ∂

(

fi +
1
λi

(
‖·‖2
2

− J(x)

))(
zi
)
,

(3.39)

which is equivalent to

zi = arg min
y∈E

{

fi
(
y
)
+

1
λi

(∥
∥y

∥
∥2

2
− 〈

y, J(x)
〉
)}

. (3.40)

Using Theorem 3.1, we thus complete the proof.

If E = H is a real Hilbert space, we then obtain the following results.

Corollary 3.3. LetC be a nonempty, closed and convex subset of a real Hilbert spaceH. LetAi : H →
2H (i = 1, 2, . . . ,N) be maximal monotone operators, let F : C × C → R be a bifunction, and let
Ti : C → C (i = 1, 2, . . .) be weak relatively nonexpansive mappings such that F := [

⋂N
i=1 A

−1
i (0)] ∩

[
⋂∞

i=1 F(Ti)] ∩ EP(F)/= ∅. Let {en}∞n=1 ⊂ H be the sequence such that limn→∞en = 0. Define the
sequence {xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

yn = JλNn AN
◦ JλN−1

n AN−1 ◦ · · · ◦ Jλ1nA1
(xn + en),

un = Trnyn,

Cn+1 =

{

z ∈ Cn : sup
i≥1

‖z − Tiun‖ ≤ ‖z − (xn + en)‖
}

,

xn+1 = PCn+1(x1), ∀n ≥ 1.

(3.41)

If lim infn→∞λin > 0 for each i = 1, 2, . . . ,N and lim infn→∞rn > 0, then the sequence {xn} converges
strongly to q = PF(x1).

Corollary 3.4. LetC be a nonempty, closed, and convex subset of a real Hilbert spaceH. Let fi : H →
(−∞,∞] (i = 1, 2, . . . ,N) be proper lower semi-continuous convex functions, let F : C × C → R

be a bifunction, and let Ti : C → C (i = 1, 2, . . .) be weak relatively nonexpansive mappings such
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that F := [
⋂N

i=1(∂f
−1
i )(0)] ∩ [

⋂∞
i=1 F(Ti)] ∩ EP(F)/= ∅. Let {en}∞n=1 ⊂ H be the sequence such that

limn→∞ en = 0. Define the sequence {xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

z1n = arg min
y∈H

{
f1
(
y
)
+

1
2λ1n

∥
∥y

∥
∥2 +

1
λ1n

〈
y, xn + en

〉
}
,

...

zN−1
n = arg min

y∈H

{
fN−1

(
y
)
+

1
2λN−1

n

∥
∥y

∥
∥2 +

1
λN−1
n

〈
y, zN−2

n

〉}
,

yn = arg min
y∈H

{
fN

(
y
)
+

1
2λNn

∥
∥y

∥
∥2 +

1
λNn

〈
y, zN−1

n

〉}
,

un = Trnyn,

Cn+1 =

{

z ∈ Cn : sup
i≥1

‖z − Tiun‖ ≤ ‖z − (xn + en)‖
}

,

xn+1 = PCn+1(x1), ∀n ≥ 1.

(3.42)

If lim infn→∞ λin > 0 for each i = 1, 2, . . . ,N and lim infn→∞ rn > 0, then the sequence {xn} con-
verges strongly to q = PF(x1).

Remark 3.5. Using the shrinking projectionmethod, we can construct a hybrid-proximal point
algorithm for solving a system of the zero-finding problems, the equilibrium problems, and
the fixed point problems of weak relatively nonexpansive mappings.

Remark 3.6. Since every relatively nonexpansive mapping is weak relatively nonexpansive,
our results also hold if Ti : C → C (i = 1, 2, . . .) are relatively nonexpansive mappings.
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