
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 816528, 15 pages
doi:10.1155/2012/816528

Research Article
Expected Residual Minimization Method
for a Class of Stochastic
Quasivariational Inequality Problems

Hui-Qiang Ma and Nan-Jing Huang

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Correspondence should be addressed to Nan-Jing Huang, nanjinghuang@hotmail.com

Received 22 August 2012; Accepted 15 October 2012

Academic Editor: Xue-Xiang Huang

Copyright q 2012 H.-Q. Ma and N.-J. Huang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We consider the expected residual minimization method for a class of stochastic quasivariational
inequality problems (SQVIP). The regularized gap function for quasivariational inequality
problem (QVIP) is in general not differentiable. We first show that the regularized gap function
is differentiable and convex for a class of QVIPs under some suitable conditions. Then, we
reformulate SQVIP as a deterministic minimization problem that minimizes the expected residual
of the regularized gap function and solve it by sample average approximation (SAA) method.
Finally, we investigate the limiting behavior of the optimal solutions and stationary points.

1. Introduction

The quasivariational inequality problem is a very important and powerful tool for the study
of generalized equilibrium problems. It has been used to study and formulate generalized
Nash equilibrium problem in which a strategy set of each player depends on the other
players’ strategies (see, for more details, [1–3]).

QVIP is to find a vector x∗ ∈ S(x∗) such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ S(x∗), (1.1)

where F : R
n → R

n is a mapping, the symbol 〈·, ·〉 denotes the inner product in R
n, and

S : R
n → 2R

n
is a set-valued mapping of which S(x) is a closed convex set in R

n for each x.
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In particular, if S is a closed convex set and S(x) ≡ S for each x, then QVIP (1.1) becomes the
classical variational inequality problem (VIP): find a vector x∗ ∈ S such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ S. (1.2)

In most important practical applications, the function F always involves some random
factors or uncertainties. Let (Ω,F, P) be a probability space. Taking the randomness into
account, we get stochastic quasivariational inequality problem (SQVIP): find an x∗ ∈ S(x∗)
such that

P{ω ∈ Ω : 〈F(x∗, ω), x − x∗〉 ≥ 0, ∀x ∈ S(x∗)} = 1, (1.3)

or equivalently,

〈F(x∗, ω), x − x∗〉 ≥ 0, ∀x ∈ S(x∗), ω ∈ Ω a.s., (1.4)

where F : R
n × Ω → R

n is a mapping and a.s. is abbreviation for “almost surely” under the
given probability measure P .

Due to the introduction of randomness, SQVIP (1.4) becomes more practical
and also evokes more and more attentions in the recent literature [4–16]. However, to
our best knowledge, most publications in the existing literature discuss the stochastic
complementarity problems and the stochastic variational inequality problems, which are two
special cases of (1.4). It is well known that quasivariational inequalities are more complicated
than variational inequalities and complementarity problems and that they have widely
applications. Therefore, it is meaningful and interesting to study the general problem (1.4).

Because of the existence of a random element ω, we cannot generally find a vector
x∗ ∈ S(x∗) such that (1.4) holds almost surely. That is, (1.4) is not well defined if we think
of solving (1.4) before knowing the realization ω. Therefore, in order to get a reasonable
resolution, an appropriate deterministic reformulation for SQVIP becomes an important issue
in the study of the considered problem.

Recently, one of the mainstreaming research methods on the stochastic variational
inequality problem is expected residual minimization method (see [4, 5, 7, 11–13, 16] and
the references therein). Chen and Fukushima [5] formulated the stochastic linear comple-
mentarity problem (SLCP) as a minimization problem which minimizes the expectation of
gap function (also called residual function) for SLCP. They regarded the optimal solution
of this minimization problem as a solution to SLCP. This method is the so-called expected
residual minimization method (ERM). Following the ideas of Chen and Fukushima [5],
Zhang and Chen [16] considered the stochastic nonlinear complementary problems. Luo
and Lin [12, 13] generalized the expected residual minimization method to solve stochastic
variational inequality problem.

In this paper, we focus on ERM method for SQVIP. We first show that the regularized
gap function for QVIP is differentiable and convex under some suitable conditions. Then, we
formulate SQVIP (1.4) as an optimization problem and solve this problem by SAA method.

The rest of this paper is organized as follows. In Section 2, some preliminaries and
the reformulation for SQVIP are given. In Section 3, we give some suitable conditions under
which the regularized gap function for QVIP is differentiable and convex. In Section 4, we
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show that the objective function of the reformulation problem is convex and differentiable
under some suitable conditions. Finally, the convergence results of optimal solutions and
stationary points are given in Section 5.

2. Preliminaries

Throughout this paper, we use the following notations. ‖ · ‖ denotes the Euclidean norm of a
vector. For an n × n symmetric positive-definite matrix G, ‖ · ‖G denotes the G-norm defined
by ‖x‖G =

√
〈x,Gx〉 for x ∈ R

n and ProjS,G(x) denotes the projection of the point x onto the
closed convex set S with respect to the norm ‖ · ‖G. For a mapping F : R

n → R
n, ∇xF(x)

denotes the usual gradient of F(x) in x. It is easy to verify that

√
λmin‖x‖ ≤ ‖x‖G ≤

√
λmax‖x‖, (2.1)

where λmin and λmax are the smallest and largest eigenvalues of G, respectively.
The regularized gap function for the QVIP (1.1) is given as follows:

fα(x) := max
y∈S(x)

{
−〈F(x), y − x

〉 − α

2
∥∥y − x

∥∥2
G

}
, (2.2)

where α is a positive parameter. Let X ⊆ R
n be defined by X = {x ∈ R

n : x ∈ S(x)}. This is
called a feasible set of QVIP (1.1). For the relationship between the regularized gap function
(2.2) and QVIP (1.1), the following result has been shown in [17, 18].

Lemma 2.1. Let fα(x) be defined by (2.2). Then fα(x) ≥ 0 for all x ∈ X. Furthermore, fα(x∗) = 0
and x∗ ∈ X if and only if x∗ is a solution to QVIP (1.1). Hence, problem (1.1) is equivalent to finding
a global optimal solution to the problem:

min
x∈X

fα(x). (2.3)

Though the regularized gap function fα(x) is directional differentiable under some
suitable conditions (see, [17, 18]), it is in general nondifferentiable.

The regularized gap function (or residual function) for SQVIP (1.4) is as follows:

fα(x,ω) := max
y∈S(x)

{
−〈F(x,ω), y − x

〉 − α

2
∥∥y − x

∥∥2
G

}
, (2.4)

and the deterministic reformulation for SQVIP is

min
x∈X

Θ(x) := Efα(x,ω), (2.5)

where E denotes the expectation operator.
Note that the objective function Θ(x) contains mathematical expectation. Throughout

this paper, we assume that Efα(x,ω) cannot be calculated in a closed form so that
we will have to approximate it through discretization. One of the most well-known
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discretization approaches is sample average approximation method. In general, for an
integrable function φ : Ω → R, we approximate the expected value E[φ(ω)] with
sample average (1/Nk)

∑
ωi∈Ωk

φ(ωi), where ω1, . . . , ωNk are independently and identically
distributed random samples of ω and Ωk := {ω1, . . . , ωNk}. By the strong law of large
numbers, we get the following lemma.

Lemma 2.2. If φ(ω) is integrable, then

lim
k→∞

1
Nk

∑

ωi∈Ωk

φ(ωi) = E
[
φ(ω)

]
(2.6)

holds with probability one.

Let

Θk(x) :=
1
Nk

∑

ωi∈Ωk

fα(x,ωi). (2.7)

Applying the above techniques, we can get the following approximation of (2.5):

min
x∈X

Θk(x). (2.8)

3. Convexity and Differentiability of fα(x)

In the remainder of this paper, we restrict ourself to a special case, where S(x) = S + m(x).
Here, S is a closed convex set in R

n and m(x) : R
n → R

n is a mapping. In this case, we can
show that fα(x) is continuously differentiable whenever so are the functions F(x) and m(x).
In order to get this result, we need the following lemma (see [19, Chapter 4, Theorem 1.7]).

Lemma 3.1. Let S ∈ R
n be a nonempty closed set and U ∈ R

m be an open set. Assume that
f : R

n × U → R be continuous and the gradient ∇uf(·, ·) is also continuous. If the problem
minx∈Sf(x, u) is uniquely attained at x(u) for any fixed u ∈ U, then the function φ(u) :=
minx∈Sf(x, u) is continuously differentiable and ∇uφ(u) is given by ∇uφ(u) = ∇uf(x(u), u).

For any y ∈ S(x) = S +m(x), we can find a vector z ∈ S such that y = z +m(x). Thus,
we can rewrite (2.2) as follows:

fα(x) = max
z∈S

{
−〈F(x), z +m(x) − x〉 − α

2
‖z − (x −m(x))‖2G

}

= −min
z∈S

{
〈F(x), z − (x −m(x))〉 + α

2
‖z − (x −m(x))‖2G

}
.

(3.1)

The minimization problem in (3.1) is essentially equivalent to the following problem:

min
z∈S

∥∥∥z −
[
x −m(x) − α−1G−1F(x)

]∥∥∥
2

G
. (3.2)
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It is easy to know that problem (3.2) has a unique optimal solution ProjS,G(x −m(x) −
α−1G−1F(x)). Thus, ProjS,G(x −m(x) − α−1G−1F(x)) is also a unique solution of problem (3.1).
The following result is a natural extension of [20, Theorem 3.2].

Theorem 3.2. If S is a closed convex set in R
n and m(x) and F(x) are continuously differentiable,

then the regularized gap function fα(x) given by (2.2) is also continuously differentiable and its
gradient is given by

∇fα(x) = [I − ∇m(x)]F(x) − [∇F(x) − α(I − ∇m(x))G][zα(x) − (x −m(x))], (3.3)

where zα(x) = ProjS,G(x −m(x) − α−1G−1F(x)) and I denotes the n × n identity matrix.

Proof. Let us define the function h : R
n × S → R by

h(x, z) = 〈F(x), z − (x −m(x))〉 + α

2
‖z − (x −m(x))‖2G. (3.4)

It is obviously that if F(x) and m(x) are continuous, then h(x, z) is continuous in (x, z). If
F(x) and m(x) are continuously differentiable, then

∇xh(x, z) = −[I − ∇m(x)]F(x) + [∇F(x) − α(I − ∇m(x))G][z − (x −m(x))] (3.5)

is continuous in (x, z). By (3.1), we have

fα(x) = −min
z∈S

h(x, z). (3.6)

Since the minimum on the right-hand side of (3.6) is uniquely attained at z = zα(x), it follows
from Lemma 3.1 that fα(x) is differentiable and its gradient is given by

∇fα(x) = − ∇xh(x, zα(x))

= [I − ∇m(x)]F(x) − [∇F(x) − α(I − ∇m(x))G][zα(x) − (x −m(x))].
(3.7)

This completes the proof.

Remark 3.3. Whenm(x) ≡ 0, we have S(x) ≡ S and so QVIP (1.1) reduces to VIP (1.2). In this
case

∇fα(x) = F(x) − [∇F(x) − αG][zα(x) − x], (3.8)

where

zα(x) = ProjS,G
(
x − α−1G−1F(x)

)
. (3.9)
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Moreover, when α = 1, we have

∇fα(x) = F(x) − [∇F(x) −G][zα(x) − x],

zα(x) = ProjS,G
(
x −G−1F(x)

)
,

(3.10)

which is the same as [20, Theorem 3.2].

Now we investigate the conditions under which fα(x) is convex.

Theorem 3.4. Suppose that F(x) = Mx + q and m(x) = Nx, where M and N are n × n matrices
and q ∈ R

n is a vector. Denote βmin and μmax by the smallest and largest eigenvalues ofMT (I −N) +
(I −N)TM and (N − I)TG(N − I), respectively. We have the following statements.

(i) If μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax), then the function fα(x) is convex. Moreover,
if there exists a constant β > 0 such that α ≤ (βmin/μmax(1 + β)), then fα(x) is strongly
convex with modulus αβμmax.

(ii) If μmax = 0 and βmin ≥ 0, then the function fα(x) is convex. Moreover, if βmin > 0, then
fα(x) is strongly convex with modulus βmin.

Proof. Substituting F(x) = Mx + q and m(x) = Nx into (3.1), we have

fα(x) = max
z∈S

{
−〈Mx + q, z + (N − I)x

〉 − α

2
‖z − (I −N)x‖2G

}
. (3.11)

Define

H(x, z) = −〈Mx + q, z + (N − I)x
〉 − α

2
‖z − (I −N)x‖2G. (3.12)

Noting that

∇2
xH(x, z) = MT (I −N) + (I −N)TM − α(N − I)TG(N − I), (3.13)

we have, for any y ∈ R
n,

yT∇2
xH(x, z)y = yT

[
MT (I −N) + (I −N)TM

]
y − αyT (N − I)TG(N − I)y

≥ (βmin − αμmax
)∥∥y
∥∥2.

(3.14)
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If μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax), we have

yT∇2
xH(x, z)y ≥ (βmin − αμmax

)∥∥y
∥
∥2 ≥ 0. (3.15)

This implies that the Hessen matrix ∇2
xH(x, z) is positive semidefinite and hence H(x, z) is

convex in x for any z ∈ S. In consequence, by (3.11), the regularized gap function fα(x) is
convex. Moreover, if α ≤ (βmin/μmax(1 + β)), then

yT∇2
xH(x, z)y ≥ (βmin − αμmax

)∥∥y
∥
∥2 ≥ αβμmax

∥
∥y
∥
∥2, (3.16)

which means that H(x, z) is strongly convex with modulus αβμmax in x for any z ∈ S. From
(3.11), we know that the regularized gap function fα(x) is strongly convex.

If μmax = 0 and βmin ≥ 0, we have

yT∇2
xH(x, z)y ≥ βmin

∥∥y
∥∥2 ≥ 0. (3.17)

Thus, the regularized gap function fα(x) is convex. Moreover, if βmin > 0, then the regularized
gap function fα(x) is strongly convex with modulus βmin. This completes the proof.

Remark 3.5. When N = 0, QVIP (1.1) reduces to VIP (1.2). Denote βmin and μmax by the
smallest and largest eigenvalues of MT +M and G, respectively. In this case, the function

fα(x) = max
z∈S

{
−〈F(x), z − x〉 − α

2
‖z − x‖2G

}
(3.18)

is convex when μmax > 0, βmin ≥ 0 and α ≤ (βmin/μmax).

Remark 3.6. When N = 0 and G = I, we have that μmax = 1. In this case, the function

f̂α(x) = max
z∈S

{
−〈F(x), z − x〉 − α

2
‖z − x‖2

}
(3.19)

is convex when βmin ≥ 0 and α ≤ βmin. This is consistent with [4, Theorem 2.1].

4. Properties of Function Θ

In this section, we consider the properties of the objective function Θ(x) of problem (2.5). In
what follows we show that Θ(x) is differentiable under some suitable conditions.

Theorem 4.1. Suppose that F(x,ω) := M(ω)x +Q(ω), where M : Ω → R
n×n and Q : Ω → R

n

with

E

[
‖M(ω)‖2 + ‖Q(ω)‖2

]
< +∞. (4.1)
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Let S(x) = S +Nx. Then the function Θ(x) is differentiable and

∇xΘ(x) = E∇xfα(x,ω). (4.2)

Proof. Since S(x) = S +Nx, it is easy to know that

fα(x,ω) = −〈F(x,ω), yα(x,ω) − (x −Nx)
〉 − α

2
∥
∥yα(x,ω) − (x −Nx)

∥
∥2
G, (4.3)

where

yα(x,ω) = ProjS,G
(
x −Nx − α−1G−1F(x,ω)

)
. (4.4)

It follows from Lemma 2.1 that fα(x,ω) ≥ 0 and so

α

2
∥∥yα(x,ω) − x +Nx

∥∥2
G ≤ −〈F(x,ω), yα(x,ω) − x +Nx

〉

≤ ‖F(x,ω)‖∥∥yα(x,ω) − x +Nx
∥∥

≤ 1
√
λmin

‖F(x,ω)‖∥∥yα(x,ω) − x +Nx
∥∥
G.

(4.5)

Thus,

∥∥yα(x,ω) − x +Nx
∥∥
G ≤ 2

α
√
λmin

‖F(x,ω)‖,

∥∥yα(x,ω) − x +Nx
∥∥ ≤ 1
√
λmin

∥∥yα(x,ω) − x +Nx
∥∥
G ≤ 2

αλmin
‖F(x,ω)‖.

(4.6)

In a similar way to Theorem 3.2, we can show that fα(x,ω) is differentiable with
respect to x and

∇xfα(x,ω) = (I −N)F(x,ω) − [M(ω) − α(I −N)G]
[
yα(x,ω) − (I −N)x

]
. (4.7)
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It follows that

∥
∥∇xfα(x,ω)

∥
∥ ≤ ‖I −N‖‖F(x,ω)‖ − ‖M(ω) − α(I −N)G‖∥∥yα(x,ω) − (I −N)x

∥
∥

≤
{
‖I −N‖ + 2

αλmin
‖M(ω) − α(I −N)G‖

}
‖F(x,ω)‖

≤
(
1 +

2‖G‖
λmin

)
‖I −N‖‖F(x,ω)‖ + 2

αλmin
‖M(ω)‖‖F(x,ω)‖

≤
(
1 +

2‖G‖
λmin

)
‖I −N‖(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)

+
2

αλmin
(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)2

≤
(
1 +

2‖G‖
λmin

)
‖I −N‖(1 + ‖x‖)(‖M(ω)‖ + ‖Q(ω)‖)

+
4

αλmin
(1 + ‖x‖)

(
‖M(ω)‖2 + ‖Q(ω)‖2

)
.

(4.8)

By [21, Theorem 16.8], the function Θ is differentiable and ∇xΘ(x) = E∇xfα(x,ω). This
completes the proof.

The following theorem gives some conditions under which Θ(x) is convex.

Theorem 4.2. Suppose that the assumption of Theorem 4.1 holds. Let

β0 := inf
ω∈Ω\Ω0

λmin

(
M(ω)T (I −N) + (I −N)TM(ω)

)
, (4.9)

whereΩ0 is a null subset ofΩ and λmin(G) denotes the smallest eigenvalue ofG. We have the following
statements.

(i) If μmax > 0, β0 > 0 and α ≤ (β0/μmax), then the function Θ(x) is convex. Moreover, if
α ≤ (β0/μmax(1 + β)) with β > 0, then Θ(x) is strongly convex with modulus αβμmax.

(ii) If μmax = 0 and β0 ≥ 0, then the function Θ(x) is convex. Moreover, if β0 > 0, then Θα(x)
is strongly convex with modulus β0.

Proof. Define

H(x, z,ω) = −〈M(ω)x +Q(ω), z + (N − I)x〉 − α

2
‖z − (I −N)x‖2G. (4.10)

Noting that

∇2
xH(x, z,ω) = M(ω)T (I −N) + (I −N)TM(ω) − α(N − I)TG(N − I), (4.11)
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we have, for any y ∈ R
n,

yT∇2
xH(x, z,ω)y = yT

[
M(ω)T (I −N) + (I −N)TM(ω)

]
y − αyT (N − I)TG(N − I)y

≥ (β0 − αμmax
) ∥∥y
∥
∥2,

(4.12)

where the inequality holds almost surely.
If μmax > 0, β0 > 0 and α ≤ (β0/μmax), then

yT∇2
xH(x, z,ω)y ≥ 0. (4.13)

This implies that the Hessen matrix ∇2
xH(x, z,ω) is positive semidefinite and hence

H(x, z,ω) is convex in x for any z ∈ S. Since

fα(x,ω) = max
y∈S(x)

{
−〈F(x,ω), y − x

〉 − α

2
∥∥y − x

∥∥2
G

}
= max

z∈S
H(x, z,ω), (4.14)

the regularized gap function fα(x,ω) is convex and so is Θ(x). Moreover, if α ≤ (β0/μmax(1 +
β)), then

yT∇2
xH(x, z,ω)y ≥ αβμmax

∥∥y
∥∥2, (4.15)

which means that H(x, z,ω) is strongly convex in x for any z ∈ S. From the definitions of
H(x, z,ω) and fα(x,ω), we know that fα(x,ω) is strongly convex with modulus αβμmax and
so is Θ(x).

If μmax = 0 and β0 ≥ 0, then

yT∇2
xH(x, z,ω)y ≥ β0

∥∥y
∥∥2 ≥ 0, (4.16)

which implies that the regularized gap function fα(x,ω) is convex and so is Θ(x). Moreover,
if β0 > 0, then Θ(x) is strongly convex with modulus β0. This completes the proof.

It is easy to verify thatX = {x ∈ R
n : x ∈ S(x)} is a convex subset when S(x) = S+Nx.

Thus, Theorem 4.2 indicates that problem (2.5) is a convex program. From the proof details
of Theorem 4.2, we can also get that problem (2.8) is a convex program. Hence we can obtain
a global optimal solution using existing solution methods.

5. Convergence of Solutions and Stationary Points

In this section, we will investigate the limiting behavior of the optimal solutions and
stationary points of (2.8).

Note that if the conditions of Theorem 4.1 are satisfied, then the set X is closed, and

E‖M(ω)‖ < ∞, E[‖M(ω)‖ + ‖Q(ω)‖ + c]2 < ∞, (5.1)

where c is a constant.
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Theorem 5.1. Suppose that the conditions of Theorem 4.1 are satisfied. Let xk be an optimal solution
of problem (2.8) for each k. If x∗ is an accumulation point of {xk}, then it is an optimal solution of
problem (2.5).

Proof. Without loss of generality, we assume that xk itself converges to x∗ as k tends to infinity.
It is obvious that x∗ ∈ X.

We first show that

lim
k→∞

∣
∣
∣Θk

(
xk
)
−Θk(x∗)

∣
∣
∣ = 0. (5.2)

It follows from mean-value theorem that

∣
∣∣Θk

(
xk
)
−Θk(x∗)

∣
∣∣ =

∣
∣
∣∣∣
1
Nk

∑

ωi∈Ωk

[
fα
(
xk,ωi

)
− fα(x∗, ωi)

]
∣
∣
∣∣∣

≤ 1
Nk

∑

ωi∈Ωk

∣∣∣fα
(
xk,ωi

)
− fα(x∗, ωi)

∣∣∣

≤ 1
Nk

∑

ωi∈Ωk

∥∥∥∇xfα
(
yk
i , ωi

)∥∥∥
∥∥∥xk − x∗

∥∥∥,

(5.3)

where yk
i = γki x

k + (1 − γki )x
∗ and γki ∈ [0, 1]. From the proof details of Theorem 4.1, we have

∥∥∥∇xfα
(
yk
i , ωi

)∥∥∥ ≤
(
1 +

2‖G‖
λmin

)(
1 +
∥∥∥yk

i

∥∥∥
)
(‖M(ωi)‖ + ‖Q(ωi)‖)‖I −N‖

+
2

αλmin

(
1 +
∥∥∥yk

i

∥∥∥
)
(‖M(ωi)‖ + ‖Q(ωi)‖)2.

(5.4)

Since limk→+∞xk = x∗, there exists a constant C such that ‖xk‖ ≤ C for each k. By the
definition of yk

i , we know that ‖yk
i ‖ ≤ C. Hence,

∥∥∥∇xfα
(
yk
i , ωi

)∥∥∥ ≤
(
1 +

2‖G‖
λmin

)
(1 + C)(‖M(ωi)‖ + ‖Q(ωi)‖)‖I −N‖

+
2

αλmin
(1 + C)(‖M(ωi)‖ + ‖Q(ωi)‖)2

≤ C′(‖M(ωi)‖ + ‖Q(ωi)‖ + 1)2,

(5.5)

where

C′ = max
{(

1 +
2‖G‖
λmin

)
(1 + C)‖I −N‖, 2

αλmin
(1 + C)

}
. (5.6)
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It follows that

∣
∣
∣Θk

(
xk
)
−Θk(x∗)

∣
∣
∣ ≤ C′ 1

Nk

∑

ωi∈Ωk

(‖M(ωi)‖ + ‖Q(ωi)‖ + 1)2
∥
∥
∥xk − x∗

∥
∥
∥ −→ 0, (5.7)

which means that (5.2) holds.
Now, we show that x∗ is an optimal solution of problem (2.5). It follows from (5.2) and

∣
∣
∣Θk

(
xk
)
−Θ(x∗)

∣
∣
∣ ≤
∣
∣
∣Θk

(
xk
)
−Θk(x∗)

∣
∣
∣ + |Θk(x∗) −Θ(x∗)|, (5.8)

that limk→+∞Θk(xk) = Θ(x∗). Since xk is an optimal solution of problem (2.8) for each k, we
have that, for any x ∈ X,

Θk

(
xk
)
≤ Θk(x). (5.9)

Letting k → ∞ above, we get from (5.2) and Lemma 2.2 that

Θ(x∗) ≤ Θ(x), (5.10)

which means x∗ is an optimal solution of problem (2.5). This completes the proof.

In general, it is difficult to obtain a global optimal solution of problem (2.8), whereas
computation of stationary points is relatively easy. Therefore, it is important to study the
limiting behavior of stationary points of problem (2.8).

Definition 5.2. xk is said to be stationary to problem (2.8) if

〈
∇xΘk

(
xk
)
, y − xk

〉
≥ 0, ∀y ∈ X, (5.11)

and x∗ is said to be stationary to problem (2.5) if

〈∇xΘ(x∗), y − x∗〉 ≥ 0, ∀y ∈ X. (5.12)

Theorem 5.3. Let xk be stationary to problem (2.8) for each k. If the conditions of Theorem 4.1 are
satisfied, then any accumulation point x∗ of {xk} is a stationary point of problem (2.5).

Proof. Without loss of generality, we assume that {xk} itself converges to x∗.
At first, we show that

lim
k→∞

∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥ = 0. (5.13)
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It follows from (2.1) and the nonexpansivity of the projection operator that

∥
∥
∥yα

(
xk,ω

)
− yα(x∗, ω)

∥
∥
∥

≤ 1
√
λmin

∥
∥
∥yα(xk,ω) − yα(x∗, ω)

∥
∥
∥
G

=
1

√
λmin

∥
∥
∥ProjS,G

(
xk −Nxk − α−1G−1F

(
xk,ω

))

−ProjS,G
(
x∗ −Nx∗ − α−1G−1F(x∗, ω)

)∥∥
∥
G

≤ 1
√
λmin

∥
∥
∥xk −Nxk − α−1G−1F

(
xk,ω

)
−
[
x∗ −Nx∗ − α−1G−1F(x∗, ω)

]∥∥
∥
G

≤
√

λmax

λmin

∥∥∥xk −Nxk − α−1G−1F
(
xk,ω

)
−
[
x∗ −Nx∗ − α−1G−1F(x∗, ω)

]∥∥∥

≤
√

λmax

λmin

(
‖I −N‖ + α−1

∥∥∥G−1
∥∥∥‖M(ω)‖

)∥∥∥xk − x∗
∥∥∥.

(5.14)

Thus,

∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥

≤ 1
Nk

∑

ωi∈Ωk

∥∥∥∇xfα
(
xk,ωi

)
− ∇xfα(x∗, ωi)

∥∥∥

=
1
Nk

∑

ωi∈Ωk

∥∥∥(I −N)
[
M(ωi)xk +Q(ωi)

]
− [M(ωi) − α(I −N)G]

×
[
yα

(
xk,ωi

)
− (I −N)xk

]

− {(I −N)[M(ωi)x∗ +Q(ωi)] − [M(ωi) − α(I −N)G]

×[yα(x∗, ωi) − (I −N)x∗]}
∥∥∥

≤ 2
∥∥∥xk − x∗

∥∥∥‖I −N‖ 1
Nk

∑

ωi∈Ωk

‖M(ωi)‖ + α‖I −N‖2‖G‖
∥∥∥xk − x∗

∥∥∥

+
1
Nk

∑

ωi∈Ωk

‖M(ωi) − α(I −N)G‖
∥∥∥yα

(
xk,ωi

)
− yα(x∗, ωi)

∥∥∥

≤ 2
∥∥∥xk − x∗

∥∥∥‖I −N‖ 1
Nk

∑

ωi∈Ωk

‖M(ωi)‖ + α‖I −N‖2‖G‖
∥∥∥xk − x∗

∥∥∥

+

√
λmax

λmin

1
Nk

∑

ωi∈Ωk

‖M(ωi) − α(I −N)G‖
[
‖I −N‖ + α−1

∥∥∥G−1
∥∥∥‖M(ωi)‖

]∥∥∥xk − x∗
∥∥∥
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≤
⎡

⎣2 +

√
λmax

λmin

(
‖G‖
∥
∥
∥G−1

∥
∥
∥ + 1

)
⎤

⎦‖I −N‖ 1
Nk

∑

ωi∈Ωk

‖M(ωi)‖
∥
∥
∥xk − x∗

∥
∥
∥

+

⎛

⎝1 +

√
λmax

λmin

⎞

⎠α‖I −N‖2‖G‖
∥
∥
∥xk − x∗

∥
∥
∥

+ α−1
∥
∥
∥G−1

∥
∥
∥

√
λmax

λmin

1
Nk

∑

ωi∈Ωk

‖M(ωi)‖2
∥
∥
∥xk − x∗

∥
∥
∥

−→ 0,

(5.15)

which means that (5.13) is true.
Next, we show that

lim
k→∞

∇xΘk

(
xk
)
= ∇xΘ(x∗). (5.16)

It follows from Lemma 2.2 and Theorem 4.1 that

lim
k→∞

∇xΘk(x∗) = lim
k→∞

1
Nk

∑

ωi∈Ωk

∇xfα(x∗, ωi) = E∇xfα(x∗, ω) = ∇xΘ(x∗). (5.17)

By (5.13), we have

∥∥∥∇xΘk

(
xk
)
− ∇xΘ(x∗)

∥∥∥ ≤
∥∥∥∇xΘk

(
xk
)
− ∇xΘk(x∗)

∥∥∥ + ‖∇xΘk(x∗) − ∇xΘ(x∗)‖

−→ 0,
(5.18)

which implies that (5.16) is true.
Now we show that x∗ is a stationary point of problem (2.5). Since xk is stationary to

problem (2.8), that is, for any y ∈ X,

〈
∇xΘk

(
xk
)
, y − xk

〉
≥ 0. (5.19)

Letting k → ∞ above, we get from (5.16) that

〈∇xΘ(x∗), y − x∗〉 ≥ 0. (5.20)

Thus, x∗ is a stationary point of problem (2.5). This completes the proof.
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