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p(≥2)-cyclic and contractive self-mappings on a set of subsets of a metric space which are sim-
ultaneously accretive on the wholemetric space are investigated. The joint fulfilment of the p-cyclic
contractiveness and accretive properties is formulated as well as potential relationships with
cyclic self-mappings in order to be Kannan self-mappings. The existence and uniqueness of best
proximity points and fixed points is also investigated as well as some related properties of com-
posed self-mappings from the union of any two adjacent subsets, belonging to the initial set of
subsets, to themselves.

1. Introduction

In the last years, important attention is being devoted to extend the fixed point theory by
weakening the conditions on both the mappings and the sets where those mappings operate
[1, 2]. For instance, every nonexpansive self-mappings on weakly compact subsets of a
metric space have fixed points if the weak fixed point property holds [1]. Another increasing
research interest field relies on the generalization of fixed point theory to more general spaces
than the usual metric spaces, for instance, ordered or partially ordered spaces (see, e.g., [3–
5]). It has also to be pointed out the relevance of fixed point theory in the stability of complex
continuous-time and discrete-time dynamic systems [6–8]. On the other hand, Meir-Keeler
self-mappings have received important attention in the context of fixed point theory perhaps
due to the associated relaxing in the required conditions for the existence of fixed points
compared with the usual contractive mappings [9–12]. Another interest of such mappings is
their usefulness as formal tool for the study p-cyclic contractions even if the involved subsets
of the metric space under study of do not intersect [10]. The underlying idea is that the best
proximity points are fixed points if such subsets intersect while they play a close role to fixed
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points, otherwise. On the other hand, there are close links between contractive self-mappings
and Kannan self-mappings [2, 13–16]. In fact, Kannan self-mappings are contractive for
values of the contraction constant being less than 1/3, [15, 16] and can be simultaneously p-
cyclic Meir-Keeler contractive self-mappings. The objective of this paper is the investigation
of relevant properties of contractive p(≥2)-cyclic self-mappings of the union of set of subsets
of a Banach space (X, ‖ ‖) which are simultaneously λ∗-accretive on the whole X, while in-
vestigating the existence and uniqueness of potential fixed points on the subsets of X if they
intersect and best proximity points. For such a purpose, the concept of λ∗-accretive self-map-
ping is established in terms of distances as a, in general, partial requirement of that of an
accretive self-mapping. Roughly speaking, the self-mapping T from X to X under study can
be locally increasing on X but it is still p-cyclic contractive on the relevant subsets Ai (i ∈ p)
of X. For the obtained results of boundedness of distances between the sequences of iterates
through T , it is not required for the set of subsets of X to be either closed or convex. For
the obtained results concerning fixed points and best proximity points, the sets Ai (i ∈ p) are
required to be convex but they are not necessarily closed if the self-mapping T can be defined
on the union of the closures of the sets Ai (i ∈ p). Consider a metric space (X, d) associated
to the Banach space (X, ‖ ‖) and a self-mapping T : A ∪ B → A ∪ B such that T(A) ⊆ B and
T(B) ⊆ A, where A and B are nonempty subsets of X. Then, T : A ∪ B → A ∪ B is a 2-cyclic
self-mapping. It is said to be a 2-cyclic k-contraction self-mapping if it satisfies, furthermore,

d
(
Tx, Ty

) ≤ kd(x, y) + (1 − k)dist(A,B); ∀x ∈ A, ∀y ∈ B, (1.1)

for some real k ∈ [0, 1). A best proximity point of convex subsets A or B of X is some z ∈
cl(A ∪ B) such that d(z, Tz) = dist(A,B). If A and B are closed then either z (resp., Tz) or
Tz (resp., z) is in A (resp., in B). The distance between subsets A and B of the metric space
dist(A,B) = 0 if either A ∩ B /= ∅ or if either A or B is open with Fr(A) ∩ Fr(B)/= ∅. In this
case, if z is a best proximity point either z or Tz is not inA∪B (in particular, neither z nor Tz
is inA∪B if both of them are open). It turns out that ifA∩B /= ∅ then z ∈ Fix(T) ⊂ A∪B; that
is, z is a fixed point of T since dist(A,B) = 0, [9–11]. If k = 1 then d(Tx, Ty) ≤ d(x, y); for all
x ∈ A, for all y ∈ B and T : A ∪ B → A ∪ B is a 2-cyclic nonexpansive self-mapping, [10].

1.1. Notation

R0+ := R+ ∪ {0}; Z0+ := Z+ ∪ {0}; p :=
{
1, 2, . . . , p

} ⊂ Z+, (1.2)

superscript T denotes vector or matrix transpose, Fix(T) is the set of fixed points of a self-
mapping T on some nonempty convex subsetA of ametric space (X, d)clA andA denote, res-
pectively, the closure and the complement inX of a subsetA ofX,Dom(T) and Im(T) denote,
respectively, the domain and image of the self-mapping T and 2X is the family of subsets of
X, dist(A,B) = dAB denotes the distance between the setsA and B for a 2-cyclic self-mapping
T : A∪B → A∪B which is simplified as dist(Ai,Ai+1) = dAiAi+1 = di; for all i ∈ p for distances
between adjacent subsets of p-cyclic self-mappings T on

⋃p

i=1Ai.
BPi(T)which is the set of best proximity points on a subset Ai of a metric space (X, d)

of a p-cyclic self-mapping T on
⋃p

i=1Ai, the union of a collection of nonempty subsets of
(X, d) which do not intersect.
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2. Some Definitions and Basic Results about
2-Cyclic Contractive and Accretive Mappings

Let (X, ‖ ‖) be a normed vector space and (X, d) be an associate metric space endowed with a
metric (or distance function or simply “distance”) d : X×X → R0+. For instance, the distance
functionmay be induced by the norm ‖ ‖ on X. If themetric is homogeneous and translation-
invariant, then it is possible conversely to define the norm from the metric. Consider a self-
mapping T : X → X which is a 2-cyclic self-mapping restricted as T : Dom(T) ⊆ X | A ∪
B → Im(T) ⊆ X | A ∪ B, where A and B are nonempty subsets of X. Such a restricted self-
mapping is sometimes simply denoted as T : A ∪ B → A ∪ B. Self-mappings which can
be extended by continuity to the boundary of its initial domain as well as compact self-
mappings, for instance, satisfy such an extendibility assumption. In the cases that the sets
A and B are not closed, it is assumed that Dom(T) ⊃ cl(A ∪ B) and Im(T) ⊃ cl(A ∪ B) in
order to obtain a direct extension of existence of fixed points and best proximity points. This
allows, together with the convexity of A and B, to discuss the existence and uniqueness of
fixed points or best proximity points reached asymptotically through the sequences of iterates
of the self-mapping T . In some results concerning the accretive property, it is needed to extend
the self-mapping T : Dom(T) ⊆ X → Im(T) ⊆ X in order to define successive iterate points
through the self-mapping which do not necessarily belong toA∪B. The following definitions
are then used to state the main results.

Definition 2.1. T : Dom(T) ⊂ X → X is an accretive mapping if

d
(
x, y

) ≤ d(x + λTx, y + λTy
)
; ∀x, y ∈ Dom(T), (2.1)

for any λ ∈ R0+.
Note that, sinceX is also a vector space, x + λTx is inX for all x inX and all real λ. This

fact facilitates also the motivation of the subsequent definitions as well as the presentation
and the various proofs of the mathematical results in this paper. A strong convergence
theorem for resolvent accretive operators in Banach spaces has been proved in [17]. Twomore
restrictive (and also of more general applicability) definitions than Definition 2.1 to be then
used are now introduced as follows.

Definition 2.2. T : Dom(T) ⊂ X → X is a λ∗-accretive mapping, some λ∗ ∈ R0+ if

d
(
x, y

) ≤ d(x + λTx, y + λTy
)
; ∀x, y ∈ Dom(T); ∀λ ∈ [0, λ∗], (2.2)

for some λ∗ ∈ R0+. A generalization is as follows: T : Dom(T) ⊂ X → X is [λ∗1 , λ
∗
2 ]-accretive

for some λ∗1, λ
∗
2(≥ λ∗1) ∈ R0+ if

d
(
x, y

) ≤ d(x + λTx, y + λTy
)
; ∀x, y ∈ Dom(T); ∀λ ∈ [λ∗1, λ∗

]
. (2.3)

Definition 2.3. T : Dom(T) ⊂ X → X is a weighted λ-accretive mapping, for some function
λ : X ×X → R0+, if

d
(
x, y

) ≤ d(x + λ
(
x, y

)
Tx, y + λ

(
x, y

)
Ty

)
; ∀x, y ∈ Dom(T). (2.4)
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The above concepts of accretive mapping generalize that of a nondecreasing function. Con-
tractive and nonexpansive 2-cyclic self-mappings are defined as follows on unions of subsets
of X.

Definition 2.4. T : A ∪ B → A ∪ B is a 2-cyclic k-contractive (resp., nonexpansive) self-map-
ping if

d
(
Tx, Ty

) ≤ kd(x, y) + (1 − k)dist(A,B); ∀x ∈ A, ∀y ∈ B, (2.5)

for some real k ∈ [0, 1) (resp., k = 1), [12, 13].
The concepts of Kannan-self mapping and 2-cyclic (α, β)-Kannan self-mapping which

can be also a contractive mapping, and conversely if k < 1/3, [16], are defined below.

Definition 2.5. T : X → X is a α-Kannan self-mapping if

d
(
Tx, Ty

) ≤ α(d(x, Tx) + d(y, Ty)); ∀x, y ∈ X, (2.6)

for some real α ∈ [0, 1/2), [12, 13].

Definition 2.6. T : A ∪ B → A ∪ B is an 2-cyclic (α, β)-Kannan self-mapping for some real
α ∈ [0, 1/2) if it satisfies, for some β ∈ R+.

d
(
Tx, Ty

) ≤ α(d(x, Tx) + d(y, Ty))

+ β(1 − α)dist(A,B); ∀x ∈ A, ∀y ∈ B.
(2.7)

The relevant concepts concerning 2-cyclic self-mappings are extended to p(≥2)-cyclic self-
mappings in Section 3. Some simple explanation examples follow.

Example 2.7. Consider the scalar linear mapping from X ≡ A ≡ R to X as Tx = γx + γ0 with
γ, γ0 ∈ R endowed with the Euclidean distance d(x, y) = |x − y|; for all x, y ∈ X. Then,

d
(
x + λTx, y + λTy

)
=
∣
∣x − y + λγ

(
x − y)∣∣ = ∣∣1 + λγ

∣∣∣∣x − y∣∣

=
∣∣1 + λγ

∣∣d
(
x, y

) ≥ d(x, y),
(2.8)

for all x, y ∈ R for any λ ∈ R0+ provided that γ ∈ R0+. In this case, T : A ∪ B → X is accretive.
It is also k-contractive if since d(Tx, Ty) = |Tx − Ty| = γ, d(z, y) ≤ kd(x, y); for all x, y ∈ R.
Also, if γ ∈ R−, then d(x+λTx, y+λTy) ≥ |λ|γ | −1|d(x, y) ≥ d(x, y); for all x, y ∈ R if λ|γ | ≥ 2,
that is, if λ ≥ λ∗1 := 2|γ |−1. Then, T : R → R is [λ∗1,∞)-accretive and k-contractive if |γ | ≤ k < 1.

Example 2.8. Consider the metric space (R, d) with the distance being homogeneous and
translation-invariant and a self-mapping T : R → R defined by Tx = −t|x|psgne x = −t|x|p−1x
with t ∈ R0+, p ∈ R0+, and sgne x = sgnx if x /= 0 and sgne0 = 0. If pt = 0, then T : R → R is
accretive since

d
(
x + λTx, y + λTy

)
= d

(
x, y

)
; ∀x, y ∈ X; ∀λ ∈ R0+. (2.9)
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Furthermore, if t = 0, then 0 ∈ R is the unique fixed point with Tjx = 0; for all j ∈ Z+. If p = 0
then, Tjx = tj → z = 0 as j → ∞ if |t| < 1 and then z = 0 is again the unique fixed point of T .
In the general case, Tx = t|x|psgnex implies

T2x = T(Tx) = −t(−t|x|psgnex
)psgneTx = tp+1|x|2p(sgnex

)p+1
,

d
(
x + λTx, y + λTy

)
= d

((
1 + λtxp−1

)
x,
(
1 + λtyp−1

)
y
)

≥ min
(∣∣
∣1 − λt|x|p−1

∣∣
∣,
∣∣
∣1 − λt

∣
∣y
∣
∣p−1

∣∣
∣
)
d
(
x, y

)
,

≥ d(x, y); ∀x, y ∈ X, ∀λ ∈ [0, λ∗], some λ∗ ∈ R+,

(2.10)

holds if λ∗|t| |x|p−1 ≤ 1 that is, T : R → R is weighted λ∗(x, y)-accretive with λ∗(x, y) := t −1

min(|x|1−p, |y|1−p). The restricted self-mapping T : [−1, 1] ⊂ X → [−1, 1] is λ∗(≡ t−1)-accretive.
Furthermore, if p ≥ 1, then T : [−1, 1] ⊂ X → [−1, 1] is |t|-contractive if |t| < 1 and the iteration
Tjx → 0 as j → ∞with z = 0 being the unique fixed point since

d
(
Tx, Ty

) ≤ |t|min
(
|x|p−1, ∣∣y∣∣p−1

)
d
(
x, y

) ≤ |t|d(x, y); ∀x, y ∈ [−1, 1]. (2.11)

Note from the definition of the self-mapping Tx = −t|x|p−1x on [−1, 1] that it is also a 2-cyclic
self-mapping from [−1, 0] ∪ [0, 1] to itself with the property T([−1, 0]) = [0, 1] and T([0, 1]) =
[−1, 0].

All the given definitions can also be established mutatis-mutandis if X is a normed
vector space. A direct result from inspection of Definitions 2.1 and 2.2 is the following.

Assertions 1. (1) If T : D(T) ⊂ X → X is an accretive mapping, then it is λ∗-accretive, for all
λ∗ ∈ R0+. (2) If T : D(T) ⊂ X → X is λ∗-accretive, then it is λ∗1-accretive; for all λ

∗
1 ∈ [0, λ∗].

(3) Any nonexpansive self-mapping T : D(T) ⊂ X → X is 0∗-accretive and conversely.

Theorem 2.9. Let (X, ‖ ‖) be a Banach vector space with (X, d) being the associated complete metric
space endowed with a norm-induced translation-invariant and homogeneous metric d : X ×X → R0+.
Consider a self-mapping T : X → X which restricted to T : A ∪B → A ∪B is a 2-cyclic k-contractive
self-mapping where A and B are nonempty subsets of X. Then, the following properties hold.

(i) Assume that the self-mapping T : X → X satisfies the constraint:

d
(
Tx, Ty

) ≤ kd(x, y) + (1 − k)dAB
≤ kd(x + λTx, y + λTy

)
+ (1 − k)dAB; ∀x ∈ A, ∀y ∈ B

(2.12)

with k, λ ∈ R0+ satisfying the constraint k(1 + kλ) < 1. Then, the restricted self-mapping
T : A ∪ B → A ∪ B satisfies

lim sup
j→∞

d
(
Tjx, Tjy

)
<∞; ∀x ∈ A, ∀y ∈ B (2.13)

irrespective of A and B being bounded or not.
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If, furthermore, A and B are closed and convex and A ∩ B /= ∅, then there exists a unique fixed point
ω ∈ A ∩ B of T : A ∪ B → A ∪ B such that there exists limj→∞d(Tjx, Tjy) = 0; for all x ∈ A, for all
y ∈ B, implying that limj→∞Tjx = limj→∞Tjy = ω. If, in addition, dist(A,B) > 0 so that
A ∩ B = ∅, then there exists limj→∞d(Tjx, Tjy) = d (z, Tz); for all x ∈ A, for all y ∈ B for some
best proximity points z ∈ A, Tz ∈ B which depend in general on x and y. Furthermore, if (X, ‖ ‖)
is a uniformly convex Banach space, then T2jx, T2j+1y → z1 ∈ A and T2jy, T2j+1x → Tz1 ∈ B
as → ∞; for all (x, y) ∈ A × B, where z1 and z2 are unique best proximity points in A and B of
T : A ∪ B → A ∪ B.

(ii) Assume thatA and B are nondisjoint. Then, T : A∪B → X is also kc contractive and λ∗-
accretive for any nonnegative λ∗ ≤ k−2(kc − k) and any kc ∈ [k, 1). It is also nonexpansive
and λ∗-accretive for any nonnegative λ∗ ≤ k−2(1 − k).

(iii) If k = 0 then T : A ∪ B → X is weighted λ-accretive for λ : X × X → R0+ for any λ∗ ∈ R+

and its restriction T : A ∪ B → A ∪ B is 2-cyclic 0-contractive.

(iv) T : A ∪ B → X is weighted λ-accretive for λ : X × X → R0+ satisfying λ(x, y) ≤
k−2(kc(x, y)−k)(d(x, y)−dAB) for some kc : X ×X → [k,∞). The restricted self-mapping
T : A∪B → A∪B is also kc-contractive with kc ∈ [k, kc) ⊆ [k, 1) if kc : X ×X → [k, kc)
with kc < 1. Also, T : A ∪ B → X is nonexpansive and weighted λ-accretive for λ : X ×
X → R0+ satisfying λ(x, y) ≤ k−2(kc(x, y) − k)(d(x, y) − dAB) if kc : X × X → [k, 1]
which implies, furthermore, that λ : X ×X → R0+ is bounded.

Proof. Let us denote dAB := dist(A,B). Consider that the two following relations are verified
simultaneously:

d
(
x, y

) ≤ d(x + λTx, y + λTy
)

for some λ ∈ R0+; ∀x ∈ A, ∀y ∈ B,
d
(
x, y

) ≤ kd(x, y) + (1 − k)dAB for some k ∈ [0, 1) ∈ R, λ ∈ R0+; ∀x ∈ A, ∀y ∈ B.
(2.14)

Since the distance d : X ×X → R0+ is translation-invariant and homogeneous, then the sub-
stitution of (2.14) yields if A and B are disjoint sets, after using the subadditive property of
distances, the following chained relationships since 0 ∈ X:

d
(
Tx, Ty

) ≤ kd(x, y) + (1 − k)dAB ≤ kd(x + λTx, y + λTy
)
+ (1 − k)dAB

≤ kd(x + λTx, y + λTx + λTy − λTx) + (1 − k)dAB
≤ kd(x + λTx, y + λTx

)
+ kd

(
y + λTx, y + λTx + λTy − λTx) + (1 − k)dAB

= kd
(
x, y

)
+ kλd

(
0, λTy − λTx) + (1 − k)dAB

≤ kd(x, y) + k2λd(0, y − x) + (1 − k)dAB
≤ kd(x, y) + k2λd(x, y) + (1 − k)dAB ≤ k(1 + kλ)d(x, y) + (1 − k)dAB
≤ kcd

(
x, y

)
+ (1 − k)dAB; ∀x ∈ A, ∀y ∈ B; ∀λ ∈ [0, λ∗], for λ∗ ≤ k−2(1 − k),

(2.15)
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with kc := k(1 + kλ∗) ≥ k. Note from (2.15) that

dAB ≤ d
(
Tjx, Tjy

)
≤ kjcd

(
x, y

)
+ (1 − k)dAB

(
j−1∑

i=0

kic

)

= kjcd
(
x, y

)
+ (1 − k)dAB

⎛

⎝
∞∑

i=0

kic −
∞∑

i=j

kic

⎞

⎠ ≤ kjcd
(
x, y

)
+
(1 − k)

(
1 − kjc

)

1 − kc dAB; ∀x ∈ A, ∀y ∈ B,
(2.16)

and, if kc < 1, then

dAB ≤ lim sup
j→∞

d
(
Tjx, Tjy

)
≤ 1 − k

1 − kc dAB

=
1 − k

1 − k(1 + kλ)dAB <∞; ∀x ∈ A, ∀y ∈ B.
(2.17)

If dAB = 0 then limj→∞d(Tjx, Tjy) = 0. It is first proven that the existence of the limit of the
distance implies that of the limit limj→∞Tjz; for all z ∈ A ∪ B. Let be xj = Tjx, yj = Tjy with
xj , yj ∈ A ∪ B. Then,

lim
j→∞

d
(
Tjx, Tjy

)
= lim

j→∞
d
(
xj , yj

)
= lim

j→∞
d
(
T�xj , T

�yj
)
= 0; ∀� ∈ Z0+

=⇒
(
xj
(
= Tjx

)
−yj

(
= Tjy

))
−→ T�

(
xj − yj

) −→ 0 as j −→ ∞; ∀� ∈ Z0+

(2.18)

since T : A ∪ B → A ∪ B being contractive is globally Lipschitz continuous. Then,
limj→∞d(Tjx, Tjy) = d(limj→∞Tjx, limj→∞Tjy) = 0 since, because the fact that the metric is
translation-invariant, one gets

lim
j→∞

d
(
Tjx, Tjy

)
= d

(
lim
j→∞

Tjx, lim
j→∞

Tjy

)
= lim

j→∞
d
(
0, T jy − Tjx

)
,

= d
(
0, lim

j→∞

(
Tjy − Tjx

))
= 0.

(2.19)

As a result, limj→∞d(Tjx, Tjy) = 0 if dAB = 0 what implies which limj→∞(Tjx − Tjy) = 0; for
all x ∈ A, for all y ∈ B, since T : A ∪ B → A ∪ B is globally Lipschitz continuous since it is
contractive.

In addition, there exists limj→∞Tjx = limj→∞Tjy = ω ∈ A ∪ B; for all x ∈ A, for all
y ∈ B. Assume not so that there exists x ∈ A such that ¬∃limj→∞Tjx and there exists a sub-
sequence on nonnegative integers {jk}k∈ Z0+

such that Tjk+1x /= Tjkx. If so, one gets by taking
y = Tx ∈ B that d(Tjk(Tx), T jkx) > 0 which contradicts limj→∞d(Tj(Tx), T jx) = 0. Then
{Tjx}j∈Z0+

is a Cauchy sequence for any x ∈ A ∪ B and then converges to a limit. Furthermore,
ω ∈ A ∪ B since Tj(A ∪ B) ⊆ A ∪ B for any j ∈ Z0+ and as j → ∞ sinceA and B are nonempty
and closed. It has been proven that limj→∞Tjx = limj→∞Tjy = ω ∈ A ∪ B; for all x ∈ A, for
all y ∈ B.
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It is now proven that ω = Tω ∈ Fix(T). Assume not, then, from triangle inequality,

0 < d(Tω,ω) ≤ d
(
ω, Tjω

)
+ d

(
Tω, Tjω

)
; ∀j ∈ Z0+ =⇒ lim inf

j→∞
d
(
ω, Tjω

)
> 0, (2.20)

which contradicts limj→∞ Tjω = ω so that ω = Tω ∈ Fix(T). It is now proven that ω ∈
Fix(T) ∩ (A ∩ B). Assume not, such that, for instance, Tjx ∈ A and Tj+1x ∈ A ∩ B. If so, since
T(A) ⊆ B; T(B) ⊆ A, then the existing limit fulfils limj→∞Tjx ∈ A ∩ A(= ∅) which is im-
possible so that there would be no existing limit limj→∞Tjx inA∪B, contradicting the former
result of its existence. Then, ω ∈ Fix(T) ∩ (A ∩ B) implying that Fix(T) ⊂ A ∩ B.

It is now proven by contradiction that ω = limj→∞Tjx; for all x ∈ A ∪ B is the unique
fixed point of T : A ∪ B → A ∪ B. Assume that ∃ω1(/=ω) ∈ Fix(T), then limj→∞Tjy1 = ω1 for
some y1(/=y) ∈ B with no loss in generality and all x ∈ A. Thus, limj→∞d(Tjx, Tjy1) =
d(ω, ω1) = 0 =⇒ ω = ω1 which contradicts ω/=ω 1 so that Fix(T) = {ω}.

Now, assume thatA and B do not intersect so that dist (A,B) = dAB > 0. Then, one gets
from the first inequality in (2.15) that for all x ∈ A, y ∈ B, one gets

d
(
Tjx, Tjy

)
≤ kjd(x, y) + (1 − k)dAB

( ∞∑

i=0

kj
)

= kjd
(
x, y

)
+ dAB; ∀j ∈ Z,

lim sup
j→∞

d
(
Tjx, Tjy

)
≤ dAB.

(2.21)

Note that since T(A) ⊆ B, T(B) ⊆ A and dist(A,B) = dAB > 0, then x ∈ A ⇒ Tjx ∈ A
and Tjx /∈ B if j is even and Tjx ∈ B and Tjx /∈ A if j is odd y ∈ B ⇒ Tjy ∈ B and Tjy /∈ A if
j is even and Tjy ∈ A and Tjy /∈ B if j is odd.

Then, Tjx and Tjy are not both in either A or B if x and y are not both in either A or B
for any j ∈ Z0+. As a result, limj→∞ supd(Tjx, Tjy) < dAB is impossible so that

∃ lim
j→∞

d
(
Tjx, Tjy

)
= lim sup

j→∞
d
(
Tjx, Tjy

)
= dAB = d(z, Tz), (2.22)

for some best proximity points z ∈ A and Tz ∈ B or conversely. Then,

lim
j→∞

d
(
Tj+1x, Tj+1y

)
= lim

j→∞
d
(
Tzj , T

2zj
)
= dAB ≤ k lim

j→∞
d
(
Tjx, Tjy

)
+ (1 − k)d(z, Tz)

= k lim
j→∞

d
(
zj , Tzj

)
+ (1 − k)d(z, Tz) = k lim

j→∞
d
(
zj , Tzj

)
+ (1 − k)dAB,

(2.23)

where zj = Tjx. Thus, limj→∞d (zj , Tzj) = dAB = d(z, Tz). It turns out that dist(zj ,Fr(A∪B))
→ 0 and dist(Tzj ,Fr(A ∪ B)) → 0 as j → ∞. Otherwise, it would exist an infinite subse-
quence {d(zj , Tzj)}j ∈ Ẑ0+

of {d (zj , Tzj)}j ∈ Z0+
with Ẑ0+ being an infinite subset of Z0+ such

that d(zj , Tzj) > dAB for j ∈ Ẑ0+. On the other hand, since (X, ‖ ‖) is a normed space, then
by taking the norm-translation invariant and homogeneous induced metric and since there
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exists limj→∞d (Tj+1x, Tj+1y) = dAB, it follows that there exist j1 ∈ Z0+ and δ = δ(ε, j1) ∈ R+

such that

2dAB + δ < d
(
Tjx + Tj+1y, 0

)
≤ d

(
Tjx, 0

)
+ d

(
Tj+1y, 0

)
,

≤ 2(dAB + δ) =⇒ d
(
Tjx, Tj+1y

)
< ε,

(2.24)

for any given ε ∈ R+; for all x ∈ A, for all y ∈ Bwith Tjx ∈ A, Tj+1y ∈ A for any even j(≥ j1) ∈
Z0+ and Tjx ∈ B, Tj+1y ∈ B, for any odd j(≥ j1) ∈ Z0+. As a result, by choosing the positive real
constant arbitrarily small, one gets that T2jx → T2j+1y → z = z(x, y) ∈ A (a best proximity
point of A) and T2j+1x → T2jy → Tz ∈ B (a best proximity point of B), or vice-versa, as
j → ∞ for any given x ∈ A and y ∈ B. A best proximity point z ∈ A ∪ B fulfils z = T2z.
Best proximity points are unique in A and B as it is now proven by contradiction. Assume
not, for instance, and with no loss in generality, assume that there exist two distinct best
proximity points z1 and z2 in A. Then T2z1 = z1 and T2z1 = z2 contradict z1 /= z2 so that
necessarily z1 = T2z1 /= z2 = T2z2. Since (X, ‖ ‖) is a uniformly convex Banach space, we take
the norm-induced metric to consider such a space as the complete metric space (X, d) to
obtain the following contradiction:

dAB = d(z1, Tz1) = d(z1, Tz2) =
∥∥∥∥
Tz2 − z1

2
+
Tz2 − z1

2

∥∥∥∥ < 2
∥∥∥∥
Tz2 − z1

2

∥∥∥∥ = dAB, (2.25)

since (X, ‖ ‖) is also a strictly convex Banach space and A and B are nonempty closed and
convex sets. Then, z = T2z ∈ A is the unique best proximity point of T : A ∪ B → A ∪ B in
A and Tz is its unique best proximity point in B. Then, Property (i) has been fully proven.
Since A and B are not disjoint, then dAB = 0, and T : A ∪ B → A ∪ B is kc-contractive and λ∗-
accretive if λ∗ = k−2(kc−k)with kc ∈ [k, 1). By taking kc = 1, note that T : A ∪B → X is nonex-
pansive and k−2(1 − k)-accretive. Property (ii) has been proven.

To prove Property (iii), we now discuss if

d
(
Tx, Ty

) ≤ k(1 + kλ)d(x, y) + (1 − k)dAB ≤ kcd
(
x, y

)
+ (1 − kc)dAB;

∀x ∈ A, ∀y ∈ B.
(2.26)

is possible with 1 ≥ kc and dAB > 0. Note that dAB = dist(A,B) = d(z, Tz) for some z ∈ A.
Define d := max(dA, dB) = kDdAB, if dAB /= 0 for some kDA, kDB, kD ∈ R+, where dA :=
diamA = kDAdAB and dB := diamB = kDBdAB. Three cases can occur in (2.26), namely,

(a) If k = kc then k2λd(x, y) ≤ 0 ⇔ [kλ = 0 ∨ d(x, y) ≤ 0] which is untrue if x /=y and
kλ > 0 and it holds for either k = 0 or λ = 0,

(b) kc > k, then (2.26) is equivalent to

d
(
x, y

) ≥ kc − k
kc − k(1 + kλ)dAB; ∀x ∈ A, ∀y ∈ B. (2.27)

Take x ∈ A to be a best proximity point with so that d(x, Tx) = dAB ≥ (kc − k)/(kc −
k(1 + kλ))dAB > dAB which is untrue if kλ > 0 and true for kλ = 0,
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(c) 1 ≥ k(1+kλ) ≥ kc < k, then (2.16) is equivalent to (k−kc)dAB ≥ [k(1+kλ)−kc]d(x, y);
for all x ∈ A, for all y ∈ B, but d(x, y) ≤ 2d + dAB = (2kD + 1)dAB. Thus, the
above constraint is guaranteed to hold in the worst case if k − kc ≥ (k + k2λ − kc)
(2kD + 1) > k − kc which is a contradiction.

Property (iii) follows from the above three cases (a)–(c).
To prove Property (iv), consider again (2.26) by replacing the real constants λ and kc

with the real functions λ : X × X → R0+ and kc : X × X → [k, 1). Note that (2.26) holds
through direct calculation if λ(x, y) ≤ k−2(kc(x, y) − k)(d(x, y) − dAB); for all x ∈ A, for all
y ∈ B for some kc : X × X → [k,∞). Thus, the self-mapping T : A ∪ B → X is weighted λ-
accretive for λ : X ×X → R0+ satisfying λ(x, y) ≤ k−2(kc(x, y)−k)(d(x, y)−dAB) for some kc :
X ×X → [k,∞); and it is also kc-contractive with kc ∈ [k, kc) ⊆ [k, 1) if kc : X ×X → [k, kc)
with kc < 1 and nonexpansive if kc : X × X → [k, 1]. On the other hand, note that d(x, y) −
dAB ≤ kDAdA + kDBdB ≤ 2kDd. If A and B are bounded and kc : X ×X → [k, 1], then

λ
(
x, y

) ≤ k−2(kc
(
x, y

) − k)(d(x, y) − dAB
) ≤ k−2(kc

(
x, y

) − k)(kDAdA + kDBdB)

≤ 2k−2
(
kc
(
x, y

) − k)kDd ≤ ∞; ∀x ∈ A, ∀y ∈ B.
(2.28)

Property (iv) has been proven.

Remark 2.10. Note that Theorem 2.9 (iii) allows to overcome the weakness of Theorem 2.9 (ii)
when A and B are disjoint by introducing the concept of weighted accretive mapping since
for best proximity points z ∈ A ∪ B, λ(z, Tz) = 0.

Remark 2.11. Note that the assumption that (X, ‖ ‖) is a uniformly convex Banach space could
be replaced by a condition of strictly convex Banach space since uniformly convex Banach
spaces are reflexive and strictly convex, [18]. In both cases, the existence and uniqueness of
best proximity points of the 2-cyclic T : A∪B → A∪B inA and B are obtained provided that
both sets are nonempty, convex, and closed.

Remark 2.12. Note that if either A or B is not closed, then its best proximity point of T :
A ∪ B → A ∪ B is in its closure since T(A) ⊆ B ⊆ cl B, T(B) ⊆ A ⊆ cl A leads to T(A ∪ B) ⊆
A ∪ B ⊆ cl(A ∪ B) and Tk(A ∪ B) ⊆ cl(A ∪ B) for finitely many and for infinitely many
iterations through the self-mapping T : A ∪ B → A ∪ B and Theorem 2.9 is still valid under
this extension.

Note that the relevance of iterative processes either in contractive, nonexpansive and
pseudocontractive mappings is crucial towards proving convergence of distances and also in
the iterative calculations of fixed points of a mapping or common fixed points of several map-
pings. See, for instance, [19–25] and references therein. Some results on recursive multi-
estimation schemes have been obtained in [26]. On the other hand, some recent results on
Krasnoselskii-type theorems and related to the statement of general rational cyclic contractive
conditions for cyclic self-maps in metric spaces have been obtained in [27] and [28], res-
pectively. Finally, the relevance of certain convergence properties of iterative schemes for
accretive mappings in Banach spaces has been discussed in [29] and references therein. The
following result is concerned with norm constraints related to 2-cyclic accretive self-map-
pings which can eventually be also contractive or nonexpansive.
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Theorem 2.13. The following properties hold.

(i) Let (X, d) be a metric space endowed with a norm-induced translation-invariant and homo-
geneous metric d : X ×X → R0+. Consider the λ∗-accretive mapping T : A ∪ B → X for
some λ∗ ∈ R0+ which restricted as T : A ∪ B → A ∪ B is 2-cyclic, where A and B are non-
empty subsets of X subject to 0 ∈ A ∪ B. Then,

d
(
(I + λT)jx, 0

)
≥ 1; ∀j ∈ Z0+, ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗]. (2.29)

If, furthermore, T : A ∪ B → A ∪ B is k-contractive, then

1 ≤ d
(
(I + λT)jx, 0

)
< k−1; ∀j ∈ Z+, ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗]. (2.30)

T : A∪B → A∪B is guaranteed to be nonexpansive (resp., asymptotically nonexpansive)
if

d
(
(I + λT)jx, 0

)
= 1; ∀j ∈ Z+, ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗], (2.31)

respectively,

lim sup
j→∞

d
(
(I + λT)jx, 0

)
= 1; ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗]. (2.32)

(ii) Let (X, ‖ ‖) be a normed vector space. Consider a λ∗-accretive mapping T : A ∪ B −→ X for
some λ∗ ∈ R0+ which restricted to T : A ∪ B −→ A∪B is 2-cyclic, whereA and B are non-
empty subsets of X subject to 0 ∈ A ∪ B then

∥∥∥(I + λT)j
∥∥∥ ≥ 1; ∀j ∈ Z0+, ∀λ ∈ [0, λ∗]. (2.33)

If, furthermore, T : A ∪ B → A ∪ B is k-contractive, then

1 ≤
∥∥∥(I + λT)j

∥∥∥ < k−1; ∀j ∈ Z+, ∀λ ∈ [0, λ∗]. (2.34)

T : A ∪ B → A ∪ B is nonexpansive (resp., asymptotically nonexpansive, [30]) if

∥∥∥(I + λT)j
∥∥∥ = 1; ∀j ∈ Z+, ∀λ ∈ [0, λ∗], (2.35)

respectively,

lim sup
j→∞

∥∥∥(I + λT)j
∥∥∥ = 1; ∀λ ∈ [0, λ∗]. (2.36)
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Proof. To prove Property (i), define an induced by the metric norm as follows ‖x‖ = d(x, 0)
since the metric is homogeneous and translation-invariant. Define the norm of T : A ∪ B →
A ∪ B, that is, the norm of T on X restricted to A ∪ B as follows:

‖T‖ : = min{c ∈ R0+ : ‖Tx‖ ≤ c‖x‖; ∀x ∈ A ∪ B}
≡ min{c ∈ R0+ : d(Tx, 0) ≤ cd(x, 0); ∀x ∈ A ∪ B},

(2.37)

with the above set being closed, nonempty, and bounded from below. Since T : A ∪ B → A ∪ B
is 2-cyclic and T : A ∪ B → X is λ∗-accretive (Definition 2.2), one gets by proceeding recur-
sively

d
(
x, y

) ≤ d(x + λTx, y + λTy
) ≤ d(x + λTx + λT(x + λTx), y + λTy

)

= d
(
(I + λT)2x, (I + λT)2y

)

≤ · · · ≤ d
(
(I + λT)jx, (I + λT)jy

)
≤
∥∥∥(I + λT)j

∥∥∥d
(
x, y

)
;

∀x ∈ A, ∀y ∈ B, ∀j ∈ Z0+, ∀λ ∈ [0, λ∗],

(2.38)

since the metric is homogeneous and 0 ∈ A ∪ B, and I is the identity operator on X, where

∥∥∥(I + λT)j
∥∥∥ := min

{
c ∈ R0+ :

∥∥∥(I + λT)jx
∥∥∥ ≤ c‖x‖; ∀x ∈ A ∪ B

}
,

≡ min
{
c ∈ R0+ : d

(
(I + λT)jx, 0

)
≤ cd(x, 0); ∀x ∈ A ∪ B

}
,

(2.39)

with the above set being closed, nonempty, and bounded from below. If ‖(I + λT)j‖ < 1 for
some ‖(I + λT)j‖ < 1, then we get the contradiction d(x, y) < d(x, y); for all x ∈ A, for all
y ∈ B in (2.38). Thus, ‖(I + λT)j‖ = d((I + λ T)jx, 0) ≥ 1; for all j ∈ Z0+, for all x(/= 0) ∈ A ∪B,
for all λ ∈ [0, λ∗]. If now x and y are replaced with Tix and Tiy for any i ∈ Z0+ in (2.30), one
gets if T : A ∪ B → A ∪ B is a 2-cyclic k-contractive for some real k ∈ [0, 1) and λ∗-accretive
mapping:

d
(
Tix, T iy

)
≤ d

(
(I + λT)jT ix, (I + λT)jT iy

)
≤
∥∥∥(I + λT)j

∥∥∥d
(
Tix, T iy

)

≤ ki
∥∥∥(I + λT)j

∥∥∥d
(
x, y

)
+ (1 − k)dAB < d

(
x, y

)
+ (1 − k)dAB,

(2.40)

for all x ∈ A, for all y(/=x) ∈ B, for all j(≥ i) ∈ Z+, for all i ∈ Z+, for all λ ∈ [0, λ∗]. Then,
1 ≤ ‖(I + λT)j‖ = d((I + λT)jx, 0) < k−1; for all j ∈ Z+, for all x(/= 0) ∈ A ∪ B, for all λ ∈ [0, λ∗].
If ‖(I + λT)j‖ = d((I + λT)jx, 0) = 1; for all j ∈ Z+, for all x(/= 0) ∈ A ∪ B, for all λ ∈ [0, λ∗], it
turns out that T : A∪B → X is λ∗-accretive and T : A∪B → A∪B is a 2-cyclic nonexpansive
self-mapping. It is asymptotically nonexpansive if limj→∞ sup d((I + λT)jx, 0) = 1; for all
x(/= 0) ∈ A ∪ B, for all λ ∈ [0, λ∗]. Property (i) has been proven. The proof of Property (ii) for
(X, ‖ ‖) being a normed vector space is identical to that of Property (i)without associating the
norms to a metric.



Journal of Applied Mathematics 13

Example 2.14. Assume that X = R,A = R−, B = R+ and the 2-cyclic self-mapping T(≡) t : (A∪
B) × Z0+ → (A ∪ B) × Z0+ defined by the iteration ruleA ∪ B � xj+1 = kj xj ∈ A ∪ Bwith R �
kj(∈ [−k, k]) ≤ k ≤ 1, sgn kj+1 = −sgn kj = sgn xj ; for all j ∈ Z0+, and x0 ∈ A ∪ B. Let d :
R0+ → R0+ be the Euclidean metric.

(a) If k < 1, then limj→∞
∏j

i=0[kj] = 0 so that for any x0 ∈ A ∪ B, xj ∈ A ∪ B; for all j ∈
Z0+xj → z = 0 /∈ A ∪B as j → ∞with 0 ∈ cl(A∪B), Fix(t) = {0} ⊂ cl(A ∩ B) but it
is not in A ∩ B which is empty. If k = 1 and limj→∞

∏j

i=0[kj] = 0 (i.e., there are
infinitely many values |ki| being less than unity), then the conclusion is identical. If
A and B are redefined as A = R0−, B = R0+, then Fix(t) = {0} ⊂ A ∩ B /= ∅.

(b) If kj = k = 1; for all j ∈ Z0+ the self-mapping t : (A ∪B) ×Z0+ → (A ∪B) ×Z0+ is not
expansive and there is no fixed point.

(c) If k = 1 − σ for some σ(< 1) ∈ R+, then for R0 � λ ∈ [0, λ∗],

d
(
tx, ty

) ≤ Kd(x, y) ≤ k(1 + λ)∣∣x − y∣∣ ≤ k∣∣x − y∣∣;
d
(
x, y

) ≤ d(x + λx, y + λy
) ≤ (1 + λ)

∣∣x − y∣∣,
(2.41)

so that t : (A ∪ B) × Z0+ → (A∪B)×Z0+ is also λ∗-accretive and k1 ∈ [k, 1)-contrac-
tive with λ∗ = k1k−1 − 1.

(d) Now, define closed sets Rε+ := {r(≥ ε) ∈ R+} and Rε− := {r(≤ −ε) ∈ R+} for any
given ε ∈ R0+ so that dAB = ε. The 2-cyclic self-mapping T(≡) t : (A ∪ B) × Z0+ →
(A ∪ B) × Z0+ is re-defined by the iteration xj+1 = xj+1 if |xj+1| ≥ ε and xj+1 =
−ε sgn xj , for i = 1, 2, otherwise, where xj+1 = kjxj for i = 1, 2 with the real se-
quence {kj}j∈Z0+

being subject to kj(∈ [−k, k]) ≤ k ≤ 1, sgn kj+1 = − sgn kj = sgn x
(i)
j ;

i = 1, 2, for all j ∈ Z0+ and x0 ∈ A ∪ B.
Then, for any ε ∈ R+ and any x0 ∈ A ∪ B, there are two best proximity points
z = −ε ∈ A and z1 = ε ∈ B fulfilling −ε = tε = −t2ε and dAB = d(z, z1) = d(z, tz) =
d(tz1, z1).

(e) RedefineX = R2 so thatR2 � x = (x(1), x(2))T with x(1), x(2) ∈ R;A = R2
ε−, B = R2

ε+. In
the case that ε = 0, then A and B are open disjoint subsets (resp., A = R2

0−, B = R2
0+

are closed nondisjoint subsets with A ∩ B = {(0, x)T : x ∈ R}).
The 2-cyclic self-mapping T(≡) t : (A∪B)×Z0+ → (A∪B)×Z0+ is re-defined by the
iteration rule:

x
(i)
j+1 = x

(i)
j+1, if

∣∣∣x(i)
j+1

∣∣∣ ≥ ε,

x
(i)
j+1 = −ε sgn x

(i)
j , for i = 1, 2,

(2.42)

otherwise, where

x
(i)
j+1 = kjx

(i)
j , for i = 1, 2 (2.43)

with the real sequence {kj}j ∈ Z0+
being subject to kj(∈ [−k, k]) ≤ k ≤ 1, sgn kj+1 =

− sgn kj = sgnx(i)
j ; for i = 1, 2; for all j ∈ Z0+ and x0 ∈ A ∪ B.
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The same parallel conclusions to the above ones (a)–(c) follow related to the existence of the
unique fixed point z = 0 in the closure of A and B but not in its empty intersection if either A
or B is open, respectively, in the intersection ofA and B (the vertical real line of zero abscissa)
if they are closed. The same conclusion of (d) is valid for the best proximity points if ε > 0.

The following result which leads to elementary tests is immediate from Theorem 2.13.

Corollary 2.15. The following properties hold.

(i) Let (X, ‖ ‖) be a normed vector space with (X, d) being the associate metric space endowed
with a norm-induced translation-invariant and homogeneous metric d : X × X → R0+

and consider the self-mapping T : X → X so that the restricted T : A ∪ B → X is λ∗-
accretive for some λ∗ ∈ R0+, whereA and B are nonempty subsets ofX subject to 0 ∈ A∪B,
and the restricted T : A ∪ B → A ∪ B is 2-cyclic. Then,

d((I + λT)x, 0) ≥ 1; ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗]. (2.44)

If, furthermore, T : A ∪ B → A ∪ B is k-contractive, then

1 ≤ d((I + λT)x, 0) < k−1; ∀x(/= 0) ∈ A ∪ B, ∀λ ∈ [0, λ∗]. (2.45)

T : A∪B → A∪B is guaranteed to be nonexpansive (resp., asymptotically nonexpansive)
if

(ii) Let (X, ‖ ‖) be a normed vector space. Then if T : A ∪ B → X is a λ∗-accretive mapping
and T : A ∪ B → A ∪ B is 2-cyclic for some λ∗ ∈ R0+ where A and B are nonempty sub-
sets of X subject to 0 ∈ A ∪ B, then

‖I + λT‖ ≥ 1; ∀λ ∈ [0, λ∗]. (2.46)

If, furthermore, T : A ∪ B → A ∪ B is 2-cyclic k (∈ [0, 1))-contractive, then

1 ≤ ‖I + λT‖ < k−1; ∀λ ∈ [0, λ∗]. (2.47)

Outline of Proof

It follows since the basic constraint of T : A ∪ B → X being λ∗-accretive holds if

‖I + λT‖ ≥ 1 =⇒ ‖I + λT‖j ≥
∥∥∥(I + λT)j

∥∥∥ ≥ 1; ∀j ∈ Z+, ∀λ ∈ [0, λ∗], (2.48)

while it fails if

‖I + λT‖ < 1 =⇒
∥∥∥(I + λT)j

∥∥∥ ≤ ‖I + λT‖j < 1; ∀j ∈ Z+, ∀λ ∈ [0, λ∗]. (2.49)
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Remark 2.16. Theorem 2.13 and Corollary 2.15 are easily linked to Theorem 2.9 as follows.
Assume that T : A ∪ B → A ∪ B is 2-cyclic k-contractive and T : A ∪ B → X is a λ∗-accretive
mapping. Assume that there exists x ∈ A∪B such that ‖x‖ = d(x, 0) ≤ 1. Then, 1 ≤ ‖I +λT‖ <
k−1; for all λ ∈ [0, λ∗] from (2.47). This is guaranteed under sufficiency-type conditions with

‖T‖ = max
‖x‖≤1

d(Tx, 0) = max
d(x,0)≤1

d(Tx, 0) ≤ k

if 1 ≤ ‖I + λT‖ ≤ 1 + λ‖T‖ ≤ 1 + λk < k−1; ∀λ ∈ [0, λ∗],

⇐⇒ (1 + λk)k ≤ kc < 1; ∀λ ∈ [0, λ∗],

(2.50)

with λ∗ = k−2(kc − k) for some real constants kc ∈ [k, 1), k ∈ [0, 1). It is direct to see that
Fix(T) = {0 ∈ Rn} if 0 ∈ A ∩ B.

Example 2.17. Constraint (2.50) linking Theorem 2.13 and Corollary 2.15 to Theorem 2.9 is
tested in a simple case as follows. LetA ≡ Dom(T) = B ≡ Im(T) ⊂ X ≡ Rn.Rn is a vector space
endowed with the Euclidean norm induced by the homogeneous and translation-invariant
Euclidean metric d : X ×X → R0+. T is a linear self-mapping from Rn to Rn represented by a
nonsingular constant matrix T in Rn×n. Then, ‖T‖ is the spectral (or �2-) norm of the k-
contractive self-mapping T : X → X which is the matrix norm induced by the corresponding
vector norm (the vector Euclidean norm being identical to the �2 vector norm as it is well-
known) fulfilling

‖T‖ = max
Dom(T)�‖x‖2≤1

‖Tx‖2 = max
Dom(T)�‖x‖2=1

‖Tx‖2,

= d(Tx, 0) = λ1/2max

(
TTT

)
≤ k < 1,

d
(
Tjx, Tjy

)
=
∥∥∥Tj

(
x − y)

∥∥∥
2
≤
[
λ1/2max

(
TTT

)]j∥∥x − y∥∥2,

=
[
λ1/2max

(
TTT

)]j
d
(
x, y

) ∀x, y ∈ Dom(T) ⊂ X,

(2.51)

with the symmetric matrix TTT being a matrix having all its eigenvalues positive and less
than one, since T is nonsingular, upper-bounded by a real constant k which is less than one.
Thus, T : A ∪ B → X is also λ∗-accretive for any real constant λ∗ < k−2(1−k) and kc-contractive
for any real kc ∈ [k, 1). Assume now that

T = diag

⎛

⎜
⎝k1k2 · · · kp

n−p
︷︸︸︷
0 · · · 0

⎞

⎟
⎠ (2.52)
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for some integer 0 < p ≤ nwith

A = Dom(T) = X = Rn,

B = Im(T) =

⎧
⎪⎨

⎪⎩
x ∈ X : x =

⎛

⎜
⎝x1x2 · · ·xp

n−p
︷︸︸︷
0 · · · 0

⎞

⎟
⎠

T⎫
⎪⎬

⎪⎭
⊂ X = Rn,

(2.53)

−k ≤ ki(/= 0) ≤ k < 1; for all i ∈ p. If p = n, then Fix(T) = {0 ∈ Rn}. Also, Fix(T) = {0 ∈ Rn}for
any integer 0 < p < n (then T is singular) but the last (n − p)-components of any x ∈ A =
X = Rn are zeroed at the first iteration via T so that if ei is the ith unit vector in Rn with its ith
component being one, then

eTi T
jx /= 0; ∀i ∈ p, ∀x(/= 0) ∈ Rn; ∀j ∈ Z0+,

eTi T
jx = 0; ∀i(> p) ∈ n, ∀x ∈ Rn; ∀j ∈ Z0+,

T jx −→ 0; ∀x ∈ Rn as j −→ ∞.

(2.54)

Now, assume that the matrix T is of rank one with its first column being of the form

t1 =

⎛

⎜
⎝k1k2 · · · kp

n−p
︷︸︸︷
0 · · · 0

⎞

⎟
⎠

T

(2.55)

with 0 < p < n, −k ≤ ki(/= 0) ≤ k < 1; for all i ∈ p. Then, (2.54) still holds by changing x /= 0 in
the first equation to x1 /= 0. Finally, assume that

T = diag

⎛

⎜
⎝k1k2 · · · kp

n−p
︷︸︸︷
1 · · · 1

⎞

⎟
⎠ (2.56)

with 0 < p < n. Then, the self-mapping T : X → X is nonexpansive also noncontractive and
Fix(T) = {0 ∈ Rp} ⊕ Rn−p which is a vector subspace of Rn, that is, there exist infinitely many
fixed points each one being reached depending on the initial x in X with the property
∃limj→∞ Tjx = (0T , yT ) ∈ Fix(T) for any given x = (zT , yT )T ∈ Rn with x ∈ Rp, y ∈ Rn−p.

The following result is concerned with the distance boundedness between iterates
through the self-mapping T : A ∪ B → A ∪ B.

Theorem 2.18. Let (X, ‖ ‖) be a normed vector space with (X, d) being the associated metric space
endowed with a norm-induced translation-invariant and homogeneous metric d : X ×X → R 0+. Let
T : X | A∪B → X | A∪B be a 2-cyclic k-contractive self-mapping so that T : A ∪B → X is λ∗-accre-
tive for some λ∗ ∈ R0+ where A and B are nonempty subsets of X. Then,

d
(
Tjx, Tj+1x

) ≤ m1d(x, 0) +m2; ∀x ∈ A ∪ B; ∀j ∈ Z+, (2.57)
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for some finite real constants m1 ∈ R+, and m2 ∈ R0+, which are independent of x and the jth power,
and m2 is zero if A and B intersect. Furthermore, limj→∞ sup d(Tjx, Tj+1x) is finite irrespective of
x ∈ A ∪ B.

Proof. One gets for λ ∈ [0, λ∗], some λ∗ ∈ R0+ and x ∈ A ∪ B that

d(x, Tx) ≤ d
(
x + λTx, Tx + λT2x

)
= d

(
λTx, Tx + λT2x − x

)

= d
(
Tx + (λ − 1)Tx, T2x + (λ − 1)T2x + Tx − x

)

= d
(
Tx, T2x + (1 − λ)Tx + (λ − 1)T2x + Tx − x

)

≤ d
(
Tx, T2x

)
+ d

(
T2x, T2x + (1 − λ)Tx + (λ − 1)T2x + Tx − x

)

= d
(
Tx, T2x

)
+ d

(
(λ − 1)Tx, (λ − 1)T2x + Tx − x

)

= d
(
Tx, T2x

)
+ d

(
λTx, (λ − 1)T2x − x

)

≤ d
(
Tx, T2x

)
+ d

(
λTx, λT2x

)
+ d

(
λT2x, (λ − 1)T2x − x

)

= d
(
Tx, T2x

)
+ d

(
λTx, λT2x

)
+ d

(
T2x,−x

)

= d
(
Tx, T2x

)
+ d

(
λTx, λT2x

)
+ d

(
T2x, 0

)
+ d(x, 0)

≤ kd(x, Tx) + (1 − k)dAB + kλd(x, Tx) + λ(1 − k)dAB + kd(Tx, 0)

+ (1 − k)dAB + d(x, 0) ≤ kd(x, Tx) + (1 − k)dAB + kλd(x, Tx)

+λ(1 − k)dAB + k2d(x, 0) + k(1 − k)dAB + (1 − k)dAB + d(x, 0)

≤ k(1 + λ)d(x, Tx) + (1 − k)(2 + λ + k)dAB +
(
k2 + 1

)
d(x, 0); ∀λ ∈ [0, λ∗],

(2.58)

so that one has for λ∗ := 1 − k−1ε with ε ∈ [ε0, 1) for some real constant ε0 ∈ [0, 1) provided
that k ∈ (0, 1):

d(x, Tx) ≤ (2 + λ + k)(1 − k)
1 − k(1 − λ) dAB +

k2 + 1
1 − k(1 − λ)d(x, 0)

≤ 1
ε0

(
(2 + λ + k)(1 − k)dAB +

(
k2 + 1

)
d(x, 0)

)
,

(2.59)

and if k = 0 then

d(x, Tx) ≤ (2 + λ)dAB + d(x, 0); ∀λ ∈ R0+. (2.60)
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Also,

d
(
Tjx, Tj+1x

)
≤ (2 + λ + k)(1 − k)

1 − k(1 − λ) dAB +
k2 + 1

1 − k(1 − λ)d
(
Tjx, 0

)

≤
[

2 + λ + k +
(
k2 + 1

)( j−1∑

i=0

ki
)]

1 − k
1 − k(1 − λ)dAB +

(
k2 + 1

)
kj

1 − k(1 − λ)d(x, 0)

≤
[

2 + λ + k +
(
k2 + 1

)( j−1∑

i=0

ki
)]

1 − k
ε0

dAB +

(
k2 + 1

)
kj

ε0
d(x, 0)

=

[

2 + λ + k +

(
k2 + 1

)(
1 − kj)

1 − k

]
1 − k
ε0

dAB +

(
k2 + 1

)
kj

ε0
d(x, 0)

≤ 1
ε0

[(
3 + λ +

2
1 − k

)
dAB + 2d(x, 0)

]
; ∀λ ∈ [0, λ∗], ∀j ∈ Z+

(2.61)

lim sup
j→∞

d
(
Tjx, Tj+1x

)
≤
(
3 + λ + k + k2

)
(1 − k)

ε0
dAB ≤ 5 + λ

ε0
dAB; ∀λ ∈ [0, λ∗] (2.62)

if k ∈ (0, 1), and

d
(
Tjx, Tj+1x

)
≤ 3 + λ

ε0
dAB; ∀λ ∈ R0+, ∀j ∈ Z+ (2.63)

lim sup
j→∞

d
(
Tjx, Tj+1x

)
≤ 3 + λ

ε0
dAB; ∀λ ∈ [0, λ∗] (2.64)

if k = 0.

The subsequent result has a close technique for proof to that of Theorem 2.18.

Theorem 2.19. Let (X, ‖ ‖) be a normed space with an associate metric space (X, d) endowed with a
norm-induced translation-invariant and homogeneous metric d : X ×X → R0+ and let T : X → X
be a self-mapping on X which is k-contractive with k ∈ [0, 1/3) and 2-cyclic on A ∪ B, where A and
B are nonnecessarily disjoint nonempty subsets of X. If such sets A and B intersect then T : X → X
is also kc-contractive with kc := k/(1−2k) = k/(1−(2+λ∗)k) ∈ [0, 1) and λ∗-accretive with λ∗ = ∞
if kc = k = 0 and with λ∗ = k−1 − k−1c − 2 if k ∈ (0, 1/3). Irrespective of A and B being disjoint or
not, T : A ∪ B → X is still λ∗-accretive and the following inequalities hold:

d
(
Tx, Ty

) ≤ kcd
(
x, y

)
+mdAB; ∀(x, y) ∈ A × B, ∀λ ∈ [0, λ∗], (2.65)

d
(
Tjx, Tjy

)
≤ kjcd

(
x, y

)
+mdAB

(
j−1∑

i=0

kic

)

= kjcd
(
x, y

)
+
1 − kjc
1 − kcmdAB; ∀j ∈ Z+,

∀(x, y) ∈ A × B, ∀λ ∈ [0, λ∗],
(2.66)
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lim sup
j→∞

d
(
Tjx, Tjy

)
≤ mdAB

1 − kc <∞; ∀j ∈ Z+, ∀
(
x, y

) ∈ A × B, ∀λ ∈ [0, λ∗]. (2.67)

Proof. Direct calculations yield

d
(
Tx, Ty

) ≤ d
(
Tx + λT2x, Ty + λT2y

)

= d
(
T2x + (λ − 1)T2x, T2y + (λ − 1)T2y + Ty − Tx

)

= d
(
T2x, T2y + (λ − 1)T2y + (1 − λ)T2x + Ty − Tx

)

≤ d
(
T2x, T2y

)
+ d

(
T2y, T2y + (λ − 1)T2y + (1 − λ)T2x + Ty − Tx

)

= d
(
T2x, T2y

)
+ d

(
λT2x, λT2y − T2y + T2x + Ty − Tx

)

≤ d
(
T2x, T2y

)
+ λd

(
T2x, T2y

)
+ d

(
λT2y, λT2y − T2y + T2x + Ty − Tx

)

= d
(
T2x, T2y

)
+ λd

(
T2x, T2y

)
+ d

(
T2y − Ty, T2x − Tx

)

≤ d
(
T2x, T2y

)
+ λd

(
T2x, T2y

)
+ d

(
T2y, T2x

)
+ d

(
Tx, Ty

)

≤ (2 + λ)
(
kd
(
Tx, Ty

)
+ (1 − k)dAB

)
+ kd

(
x, y

)
+ (1 − k)dAB;

∀(x, y) ∈ A × B, ∀λ ∈ [0, λ∗],

(2.68)

which leads to the inequalities (2.65)–(2.67) with kc := k/(1 − (2 + λ∗)k) ∈ [0, 1) and m :=
(3+λ)(1−k)/kkc where kc ∈ [0, 1)with λ∗ := ∞ if k = kc = 0 and λ∗ := k−1−k−1c −2 ≥ 0 if kc := k/
(1 − 2k) ∈ (0, 1) which holds if and only if k ∈ (0, 1/3). The proof is complete.

Remark 2.20. Compared to Theorem 2.9, Theorem 2.19 guarantees the simultaneous main-
tenance of the λ∗-accretive and contractive properties if the subsets of X intersect. Otherwise,
the contractive property is not guaranteed if k > 0 to be λ∗-accretive for the nontrivial case of
λ∗ > 0 sincemdAB is larger than (1−kc)dAB in general. However, the guaranteed value of λ∗ is
larger than that guaranteed in Theorem 2.9 to make compatible the accretive and contractive
properties of the self-mapping. Also, the relevant properties (2.65)–(2.67) hold irrespective of
the sets A and B being bounded or not. Note, in particular, that the uniformly bounded limit
superior distance (2.67) is also independent of the boundedness or not of such subsets of X.

The following result follows directly from Theorem 2.9 concerning 2-cyclic Kannan
self-mappings which are also contractive (see [16])which are proven to be accretive.

Theorem 2.21. Let (X, ‖ ‖) be a normed vector space withA and B being bounded nonempty subsets
ofX and 0 ∈ A∪B. Consider a 2-cyclic (k < 1/3)-contractive self-mapping T : A∪B → A∪B with
k ∈ [0, 1/3). Then, T : A ∪ B → A ∪ B is also a (kc/(1 − kc), β)-Kannan self-mapping and T : A ∪
B → X is (1/3 − k)k−2-accretive for kc(∈ R+) = k(1 + k λ∗), for all β(∈ R+) ≥ β0 := (2λ∗ + 1 −√

1 + 4λ∗kc)/2λ∗(1 − α).
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Proof. Since T : A ∪ B → A ∪ B is a 2-cyclic k(<1/3)-contractive self-mapping, then one gets
for that the following relationships hold from the distance sub-additive property from the
proof of Theorem 2.9(i), (2.15):

d
(
Tx, Ty

) ≤ kd(x, y) + (1 − k)dAB ≤ kd(x + λTx, y + λTy
)
+ (1 − k)dAB

≤ kcd
(
x, y

)
+ (1 − k)dAB

≤ kc
(
d(x, Tx) + d

(
y, Ty

))
+ kcd

(
Tx, Ty

)
+ (1 − k)dAB; ∀x ∈ A, ∀y ∈ B

=⇒ d
(
Tx, Ty

) ≤ α(d(x, Tx) + d(y, Ty)) + (1 − k)dAB
≤ α(d(x, Tx) + d(y, Ty)) + β(1 − α)dAB; ∀x ∈ A, ∀y ∈ B,

(2.69)

provided that

α :=
kc

1 − kc <
1
2

(
=⇒ kc <

1
3

)
,

kc := k(1 + kλ∗),

β ≥ β0 := 2λ∗ + 1 −
√
1 + 4λ∗kc

2λ∗(1 − α) ,

(2.70)

since 1/3 > kc := k(1+k λ∗) ≥ k if λ∗ := (1/3−k)k−2 so that T : A∪B → X is (1/3−k)k−2-ac-
cretive. Note that the function k = k(kc) for a contractive self-mapping is the positive solution
of λ∗k2 + k − kc = 0, that is, k = (1+ 2λ∗ −

√
1 + 4λ∗kc) /2λ∗, which is wellposed since 0 ≤ k < 1

for 0 ≤ kc < 1. Thus, T : A ∪ B → A ∪ B is also a 2-cyclic (kc/(1−kc), β)-Kannan self-mapping
from Definition 2.6 since 0 ≤ kc < 1/3 implies α := kc/(1 − kc ) < 1/2 with

β ≥ β0 := 2λ∗ + 1 −
√
1 + 4λ∗kc

2λ∗(1 − α) , λ∗ ≤ K−2(1 −K). (2.71)

3. Extended Results for p-Cyclic Nonexpansive, Contractive,
and Accretive Mappings

This section generalizes the main results of Section 2 to p-cyclic self-mappings with p ≥ 2.
Now, it is assumed that there are p nonempty subsets Ai of X; for all i ∈ p which can be
disjoint or not and a so-called p-cyclic self-mapping T :

⋃
i∈p Ai →

⋃
i∈p Aisuch that T (Ai) ⊆

T(Ai+1)withAp+1 ≡ A1. Inspired in the considerations of Remark 2.12 claiming that Theorem
2.9 can be directly extended to the case that the subsets A and B are not necessarily closed,
it is not assumed in the sequel that the subsets Ai of X; for all i ∈ p are necessarily closed. A
simple notation for distances between adjacent sets is dist(Ai,Ai+1) = dAiAi+1 := di. Definition
2.4 is generalized as follows.

Definition 3.1. T :
⋃
i∈p Ai → ⋃

i∈p Ai is a p-cyclic weakly k-contractive (resp., weakly nonex-
pansive) self-mapping if

d
(
Tx, Ty

) ≤ kid
(
x, y

)
+ (1 − ki)di; ∀x ∈ Ai, ∀y ∈ Ai+1; ∀i ∈ p, (3.1)
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for some real constants ki ∈ R0+ (resp., ki ∈ R+); for all i ∈ p [12, 13] such that k :=
∏

i∈p[ki] < 1
(resp., k = 1).

Definition 3.2. T :
⋃
i∈p Ai →

⋃
i∈p Ai is a p-cyclic k-contractive (resp., nonexpansive) p-cyclic

self-mapping if

d
(
Tx, Ty

) ≤ kid
(
x, y

)
+ (1 − ki)di; ∀x ∈ Ai, ∀y ∈ Ai+1; ∀i ∈ p, (3.2)

for some real constants ki ∈ [0, 1) (resp., ki = 1); for all i ∈ p [12, 13].

Assertion 1. A p-cyclic weakly nonexpansive self-mapping T :
⋃
i∈p Ai → ⋃

i∈p Ai may be lo-
cally expansive for some (x, y) ∈ Ai × Ai+1; for all i ∈ p which cannot be best proximity
points.

Proof. Assume that ki > 1. Then, the following inequalities can occur for given x ∈ Ai, y ∈
Ai+1:

(1)

d
(
Tx, Ty

) ≤ kid
(
x, y

)
+ (1 − ki)di ≤ d

(
x, y

)
=⇒ d

(
x, y

) ≤ di =⇒ d
(
Tx, Ty

) ≤ di, (3.3)

In this case, and since d(x, y) < di is impossible, one concludes that

d
(
Tx, Ty

) ≤ kid
(
x, y

)
+ (1 − ki)di ≤ d

(
x, y

)
=⇒ d

(
x, y

)
= di =⇒ d

(
Tx, Ty

) ≤ di, (3.4)

so that (3.3) can only hold for best proximity points x ∈ Ai, y = Tx ∈ Ai+1 for which
T :

⋃
i∈p Ai → ⋃

i∈p Ai is nonexpansive. If di = di+1, then the last inequality of (3.4)
becomes d(Tx, Ty) = di = di+1 so that Ty ∈ Ai+2 is also a best proximity point if Ai

are convex, for all i ∈ p,
(2)

d
(
Tx, Ty

) ≤ d(x, y) ≤ kid
(
x, y

)
+ (1 − ki)di =⇒ d

(
x, y

) ≥ di, (3.5)

and then T :
⋃
i∈p Ai →

⋃
i∈p Ai is nonexpansive for (x, y) ∈ Ai ×Ai+1;

(3)

d
(
x, y

)
< d

(
Tx, Ty

) ≤ kid
(
x, y

)
+ (1 − ki)di =⇒ d

(
x, y

)
> di =⇒ d

(
Tx, Ty

)

> d
(
x, y

)
> di,

(3.6)

and then T :
⋃
i∈p Ai →

⋃
i∈p Ai, is expansive for (x, y) ∈ Ai ×Ai+1 which cannot be

best proximity points since d (x, y) > di.

Remark 3.3. Note from Definitions 3.1 and 3.2 that a p-cyclic weakly contractive (resp., con-
tractive) self-mapping is also weakly nonexpansive (resp., weakly contractive). Also,
a nonexpansive (resp., contractive) self-mapping is also weakly nonexpansive (resp., weakly
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contractive). Note that if T :
⋃
i∈p Ai →

⋃
i∈p Ai, is p-cyclic weakly nonexpansive and di = d1;

for all i ∈ p, then

d
(
Tjx, Tjy

)
≤ ki+j−1d

(
Tj−1x, Tj−1y

)
+
(
1 − ki+j−1

)
d1,

≤
(

j∏

i=1

[ki]

)

d
(
x, y

)
+

(

1 −
j∏

i=1

[ki]

)

d1;

∀x ∈ Ai, ∀y ∈ Ai+1,

(3.7)

where k�p+i = ki; for all � ∈ Z0+, for all i ∈ p − 1 ∪ {0}. Note that if d( Tj−1x, Tj−1y) > d1; that
is, Tj−1x, Tj−1y are not best proximity points, then if ki+j−1 > 1, then d(Tjx, Tjy) >
d(Tj−1x, Tj−1y) since ki+j−1d(Tj−1x, Tj−1y) + (1 − ki+j−1)d1 > d(Tj−1x, Tj−1y). Thus, a weakly
nonexpansive self-mapping is not necessarily nonexpansive for each iteration. However, the
composed self-mapping T :

⋃
i∈p Ai → ⋃

i∈p Ai defined as Tx = T(Tp−1x) = Tpx; for all x ∈⋃
i∈p Ai is nonexpansive in the usual sense since if j = p, then k =

∏
i∈p[ki] = 1, implies

d
(
Tjx, Tjy

)
≤ d

(
Tj−1x, Tj−1y

)
≤ d(x, y); ∀x ∈ Ai, ∀y ∈ Ai+1. (3.8)

It has been commented in Remark 2.12 for the case of 2-cyclic self-mappings that results about
best proximity and fixed points are extendable to the case that some of the subsets are not
closed by using their closures. We use this idea to formulate the main results for p-cyclic
self-mappings with p ≥ 2. The following technical result stands related to the fact that nonex-
pansive p-cyclic self-mappings have identical distances between all the adjacent subsets in
the set {Ai ⊂ X : i ∈ p}.

Lemma 3.4. Assume that T :
⋃
i∈p Ai → ⋃

i∈p Ai is p-cyclic and nonexpansive. Then, di = d1; for
all i ∈ p.

Proof. If
⋂

i∈p cl Ai /= ∅ (i.e., the closures of the subsets intersect), then the proof is direct since
di = 0; for all i ∈ p. Now, assume that 0 ≤ dj < d1 /= 0 for some j ∈ p. Let z ∈ A1 and z1 = Tz ∈
A2 best proximity points such that

d
(
Tj+1z, Tj+1z1

)
= dj ≤ d

(
Ti+1z, Ti+1z1

)
= di ≤ d(Tz, Tz1) ≤ d(z, z1) = d1;

∀j, i(<j) ∈ p,
(3.9)

since T :
⋃
i∈p Ai → ⋃

i∈p Ai is a p-cyclic nonexpansive self-mapping. Thus, any iterates Tjz
and Tjz1 are also best proximity points of some subset in {Ai ⊂ X : i ∈ p}; for all j ∈ Z+. If dj =
d1; for all j ∈ p, does not hold, then from (3.9):

d
(
Tj+1z, Tj+1z1

)
< d(Tz, Tz1); ∀j ∈ p =⇒ ∃ lim

j→∞
d
(
Tz, Tjz1

)
= 0. (3.10)

Then di = 0; for all i ∈ p which contradicts 0 ≤ dj < d1 /= 0 for some j ∈ p what is a con-
tradiction or di = 0; for all i ∈ p, and ⋂ i∈p Ai /= ∅.
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Note that Lemma 3.4 applies even if the subsets are neither bounded or closed. In this
way, note that the contradiction to 0 ≤ dj < d1 /= 0 for some j ∈ p established in the second part
of the proof does not necessarily imply that

⋂
i∈p cl Ai /= ∅ which would require for the sub-

sets Ai, for all i ∈ p, to be bounded and, in particular,
⋂

i∈p Ai /= ∅ if such subsets are bounded
and closed. The following result stands concerning the limit iterates of p-cyclic nonexpansive
self-mappings:

Lemma 3.5. The following properties hold.

(i) If T :
⋃
i∈p Ai →

⋃
i∈p Ai is a p-cyclic weakly nonexpansive self-mapping, then

lim sup
j→∞

d
(
Tjp+�x, Tjp+�y

)
≤
⎛

⎝
i+�∏

μ=i

[
kμ
]
⎞

⎠lim sup
j→∞

d
(
Tjpx, Tjpy

)

+
i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]

⎞

⎠(
1 − kμ

)
dμ

≤ lim
j→∞

⎡

⎣

⎛

⎝
i+�∏

μ=i

[
kμ
]
⎞

⎠kj

⎤

⎦d
(
x, y

)
+

i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]

⎞

⎠(
1 − kμ

)
dμ

=
i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]

⎞

⎠(
1 − kμ

)
dμ; ∀x ∈ Ai, ∀y ∈ Ai+1

(3.11)

if i, � ∈ p satisfy

i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]

⎞

⎠(
1 − kμ

)
dμ ≥ di

lim sup
j→∞

d
(
Tjpx, Tjpy

)
≤ d

(
T�px, T�py

)
≤ d(x, y); ∀x ∈ Ai, ∀y ∈ Ai+1,

∀i ∈ p, ∀� ∈ Z+.

(3.12)

(ii) If T :
⋃
i ∈p Ai →

⋃
i ∈p Ai is a p-cyclic nonexpansive self-mapping, then

lim sup
j→∞

d
(
Tjp+�x, Tjp+�y

) ≤ d(T�px, T�py) ≤ d(x, y);

∀x ∈ Ai, ∀y ∈ Ai+1, ∀i ∈ p, ∀� ∈ Z+

(3.13)
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(iii) If T :
⋃
i∈p Ai →

⋃
i∈p Ai is a p-cyclic weakly contractive self-mapping, then

lim sup
j→∞

d
(
Tjp+�x, Tjp+�y

)
≤

i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]
(
1 − kμ

)
⎞

⎠dμ;

∃ lim
j→∞

d
(
Tjpx, Tjpy

)
= di,

(3.14)

for all x ∈ Ai, for all y ∈ Ai+1 if i, � ∈ p satisfy the feasibility constraints
∑i+�

μ =i(
∏i+�

σ=μ+1[kσ])(1 − kμ)dμ ≥ di and
∑i+p

μ =i(
∏i+p

σ=μ+1 [kσ])(1 − kμ)dμ = di. If di = d1;
for all i ∈ p, then

lim sup
j→∞

d
(
Tjp+�x, Tjp+�y

)
≤ d1

⎛

⎝
i+�∑

μ=i

⎛

⎝
i+�∏

σ=μ+1

[kσ]
(
1 − kμ

)
⎞

⎠

⎞

⎠;

∃ lim
j→∞

d
(
Tjpx, Tjpy

)
= d1

(3.15)

for all x ∈ Ai, for all y ∈ Ai+1, for all �, i ∈ p if i, � ∈ p satisfy the feasibility constraints
∑i+�

μ =i(
∏i+�

σ=μ+1 [kσ])(1 − kμ) ≥ 1 and
∑i+p−1

μ =i (
∏i+p−1

σ=μ+1 [kσ])(1 − kμ) = 1

(iv) If T :
⋃
i ∈p Ai →

⋃
i ∈p Ai is a p-cyclic contractive self-mapping, then

lim sup
j→∞

d
(
Tjp+�x, Tjp+�y

) ≤ d1 =⇒ ∃ lim
j→∞

d
(
Tjp+�x, Tjp+�y

)
= d1;

∀x ∈ Ai, ∀y ∈ Ai+1, ∀�, i ∈ p.
(3.16)

(v) If
⋂

i∈p Ai /= ∅ and T :
⋃
i∈p Ai → ⋃

i∈p Ai is a p-cyclic weakly contractive self-mapping,
then

∃ lim
j→∞

d
(
Tjp+�x, Tjp+�y

)
= lim

j→∞
d
(
Tjpx, Tjpy

)
= 0; ∀x ∈ Ai, ∀y ∈ Ai+1, ∀i, � ∈ p. (3.17)

Proof. Property (i) follows from (3.7) for k =
∏

i∈p[ki] = 1. Property (iii) follows from Prop-

erty (i) since k < 1implies (
∏p+i

μ=i[kμ])
j
= kj → 0 as j → ∞. Property (ii) Follows from Prop-

erty (i) for ki = 1; for all i ∈ p since di = d1; for all i ∈ p from Lemma 3.4. Property (iv) follows
from Property (ii) for ki < 1; for all i ∈ p since di = d1; for all i ∈ p from Lemma 3.4.
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Property (v) follows from Property (iii) since if all the subsets Ai; i ∈ p intersect, then it
follows necessarily di = d1 = 0; for all i ∈ p so that

lim
j→∞

d
(
Tjpx, Tjpy

)
= 0; ∀x ∈ Ai, ∀y ∈ Ai+1, ∀i ∈ p

lim
j→∞

d
(
Tjp+�x, Tjp+�y

) ≤
(

�∏

μ=i

[
kμ
]
)

lim
j→∞

d
(
Tjpx, Tjpy

)
= 0;

∀x ∈ Ai, ∀y ∈ Ai+1, ∀i, � ∈ p.

(3.18)

Remark 3.6. Note that Lemma 3.5(v) also applies to contractive self-mappings since contrac-
tive self-mappings are weakly contractive.

The following result is concerned to the identical distance between adjacent subsets
for p-cyclic contractive self-mappings. A parallel result is discussed in [10] for Meir-Keeler
contractions.

Theorem 3.7. Assume that T :
⋃
i∈p Ai → ⋃

i∈p Ai is a p-cyclic weakly k-contractive self-mapping
and the closures of the p subsets Ai; i ∈ p of X intersect. Then, it exists a unique fixed point in⋂

i∈p cl Ai which is also in
⋂

i∈p Ai if all such subsets Ai; for all i ∈ p of X, are closed.

Proof. The existence of a fixed point follows from Lemma 3.5(v). Its uniqueness follows by
contradiction. Assume that there exist z1, z2(/= z1) ∈ Fix(T) ⊂ ⋂

i ∈ p cl Ai. Then, for some
i ∈ p, ∃x ∈ Ai, y ∈ Ai+1 such that Tjx → z1 and Tjy → z2 as j → ∞. Then, by using triangle
inequality for distances,

d(z1, z2) ≤ d
(
z1, T

jx
)
+ d

(
Tjx, Tjy

)
+ d

(
z2, T

jy
)
; ∀j ∈ Z0+ (3.19)

which implies by using Lemma 3.5(v)

d(z1, z2) ≤ lim sup
j→∞

(
d
(
z1, T

jx
)
+ d

(
Tjx, Tjy

)
+ d

(
z2, T

jy
))

= 0

=⇒ d(z1, z2) ⇐⇒ z1 = z2,

(3.20)

what contradicts z1 /= z2. Therefore, Fix(T) consists of a unique point in
⋂

i∈p cl Ai which is
also in

⋂
i∈p Ai if the sets Ai; i ∈ p are all closed.

Theorem 3.7 also applies to p-cyclic contractive self-mappings since they are weakly
contractive. The following result follows from Theorem 2.9, Lemma 3.5 and some parallel
result provided in [12].

Theorem 3.8. Let (X, ‖ ‖) be a uniformly convex Banach space endowed with the translation-invar-
iant and homogeneous metric d : X × X → R0+ with nonempty convex subsets Ai ⊂ X, for all
i ∈ p of pair-wise disjoint closures. Let T :

⋃
i∈p Ai → ⋃

i∈p Ai be a p-cyclic weakly k-contractive
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self-mapping so that the composed 2-cyclic self-mappings. Ti : Ai ∪ Ai+1 → Ai ∪ Ai+1, for all i ∈ p
are defined as Tix = T(Tp−1x); for all x ∈ Ai ∪Ai+1; for all i ∈ p. Then, the following properties hold:

(i) Any composed 2-cyclic self-mapping Ti : Ai∪Ai+1 → Ai∪Ai+1, i ∈ p is k-contractive pro-
vided that the constraint

∑i+p
μ =i(

∏i+p
σ=μ+1 [kσ])(1 − kμ)dμ = di holds. If, furthermore, it is

assumed thatAi andAi+1 are convex, then the 2-cyclic self-mapping Ti : Ai∪Ai+1 → Ai∪
Ai+1 self-mapping is extendable to Ti : cl(Ai ∪Ai+1) → cl(Ai ∪Ai+1), and that T(clAi) ⊆
clAi+1; for all i ∈ p. Thus, the iterates Tijx = T (Tjp−1x) and Tijy = T(Tjp−1y); for all
x ∈ Ai, for all y ∈ Ai+1 converge as j → ∞ to best proximity points in cl(Ai) and cl(Ai+1)
which are also in Ai if Ai is closed, respectively, in Ai+1 if Ai+1 is closed.

(ii) If for some given i ∈ p, the sets Ai and Ai+1 are convex and closed, if any, then both best
proximity points of Ti : Ai ∪ Ai+1 → Ai ∪Ai+1 of Property (i) are unique and belong, res-
pectively, to Ai and Ai+1.

(iii) Assume that the subsets Ai of X are convex, for all i ∈ p. If
⋂

i ∈ p clAi /= ∅, then the best
proximity points of Property (i) become a unique fixed point for all the composed 2-cyclic
self-mappingsTi : Ai ∪Ai+1 → Ai∪Ai+1 which are k-contractive, for all i ∈ p. Such a fixed
point is in

⋂
i∈p cl Ai (and also in

⋂
i∈p Ai if all the subsets Ai, i ∈ p, are closed).

Proof. Since T(Ai) ⊆ Ai+1; for all i ∈ p, then for any i ∈ p, x ∈ Ai ⇒ Tix ∈ Ai and x ∈ Ai+1 ⇒
Tix ∈ Ai+1 if p is even and x ∈ Ai ⇒ Tix ∈ Ai+1 and x ∈ Ai+1 ⇒ Tix ∈ Ai if p is odd. Since
T :

⋃
i∈p Ai → ⋃

i∈p Ai is p-cyclic weakly k-contractive then k =
∏p

i=1[ki] < 1, then Ti :

Ai ∪Ai+1 → Ai ∪Ai+1 is 2-cyclic contractive provided that
∑i+p

μ =i(
∏i+p

σ=μ+1 [kσ])(1− kμ)dμ = di;

i ∈ p. One has from Lemma 3.5(iv) that ∃limj→∞d (T2j
i x, T

2j
i y) = di = d(z, z1); for all x ∈ Ai,

for all y ∈ Ai+1 for the given i ∈ p, where z = z (i) ∈ cl(Ai)(z ∈ Ai ifAi is closed), z1 = z1(i) ∈
cl(Ai+1)(z ∈ cl(Ai)(z ∈ Ai+1 ifAi+1 is closed)) are best proximity points. Using Theorem 2.9(i)
for 2-cyclic self-mappings in uniformly convex Banach spaces endowed with translation-
invariant and homogeneous metric, one gets T2j

i x → z and T2j
i y → z1 as j → ∞; for all

i ∈ p. Property (i) has been proven. Property (ii)was proven in Theorem 3.10, [12] for 2-cyclic
k-contractive self- mappings in uniformly convex Banach spaces since they can be directly
endowed with a norm-induced metric. The proof is valid here for a norm- induced distance
in a uniformly convex Banach space since such distances are translation-invariant and
homogeneous. It is also valid if the subsets are not closed with the fixed point then being in
the nonempty intersection of their closures. Property (iii) follows directly fromLemma 3.5(v),
which implies that Ti : Ai ∪Ai+1 → Ai ∪Ai+1 is k-contractive for all i ∈ p, and the fact that all
distances between the closures of all pairs of adjacent subsets are zero since (X, d) is a com-
plete metric space since X is a Banach space.

Theorem 3.8 also applies to the composed 2-cyclic self-mappings of k-contractive p-
cyclic self-mappings. However, we have the following extension containing stronger results
for such a case:

Theorem 3.9. Let (X, ‖ ‖) be a uniformly convex Banach space endowed with the norm-induced
translation-invariant and homogeneous metric d : X ×X → R0+ with nonempty subsetsAi ⊂ X, for
all i ∈ p of pair-wise disjoint closures. Let T :

⋃
i∈p Ai →

⋃
i∈p Ai be a p-cyclic k-contractive self-map-

ping so that the composed 2-cyclic self-mappings Ti : Ai ∪ Ai+1 → Ai ∪ Ai+1, for all i ∈ p, are de-
fined as Tix = T(Tp−1x); for all x ∈ Ai ∪ Ai+1; for all i ∈ p. Assume also that Ai is convex and
T(clAi) ⊆ cl Ai+1; for all i ∈ p. Then, the following properties hold.
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(i) As j → ∞, the iterates Tjx and Tjy; for all x ∈ Ai, for all y ∈ Ai+1 converge to best proxi-
mity points in cl(Ai) and cl(Ai+1) which are also in Ai if Ai is closed, respectively, in
Ai+1 if Ai+1 is closed for any i ∈ p. Also, for any given i ∈ p such that the sets Ai and
Ai+1 are convex and closed, if any, then both best proximity points of T : Ai ∪ Ai+1 →
Ai ∪ Ai+1 of Property (i) are unique and belong, respectively, to Ai and Ai+1. If, further-
more,

⋂
i∈p cl Ai /= ∅, then the best proximity points of Property (i) become a unique fixed

point for the p-cyclic k-contractive self-mapping T : Ai ∪Ai+1 → Ai ∪Ai+1. Such a fixed
point is in

⋂
i∈p cl Ai (and also in

⋂
i∈p Ai if all the subsets Ai ⊂ X, i ∈ p are closed).

(ii) All the composed 2-cyclic self-mappings Ti : Ai∪Ai+1 → Ai∪Ai+1, for all i ∈ p are k-con-
tractive. Thus, the iterates Tijx = T(Tjp−1x) and Tijy = T(Tjp−1y); for all x ∈ Ai, for all
y ∈ Ai+1converge as j → ∞ to best proximity points in cl(Ai) and cl(Ai+1) which are also
in Ai if Ai is closed, respectively in Ai+1 if Ai+1 is closed. For any given i ∈ p such that
the sets Ai and Ai+1 are closed and convex, if any, then both best proximity points of Ti :
Ai ∪Ai+1 → Ai ∪Ai+1 of Property (i) are unique and belong, respectively, to Ai and Ai+1.
If, furthermore,

⋂
i ∈ p cl Ai /= ∅, then the best proximity points of Property (i) become a

unique fixed point for all the composed 2-cyclic self-mappings Ti : Ai ∪Ai+1 → Ai ∪Ai+1

which are k-contractive; i ∈ p. Such a fixed point is in
⋂

i∈p cl Ai (and also in
⋂

i∈p Ai if
all the subsets Ai, i ∈ p are closed).

Outline of Proof

Property (ii) is the direct version of Theorem 3.8 applicable to the composed 2-cyclic self-
mappings Ti : Ai ∪ Ai+1 → Ai ∪ Ai+1 which are all k-contractive since T :

⋃
i ∈p Ai →⋃

i ∈p Ai is a p-cyclic k-contractive self-mapping. Since p-cyclic contractive self-mappings are
nonexpansive, all the distances between adjacent subsets are identical (Lemma 3.4) so that
there is no mutual constraint on distances contrarily to Theorem 3.8(i). Property (i) is close
to Property (ii) by taking into account that T :

⋃
i∈p Ai →

⋃
i∈p Ai is also k-contractive.

Definition 2.5 is extended to p-cyclic self-mappings as follows.

Definition 3.10. T :
⋃
i∈p Ai → ⋃

i∈p Ai is a 2-cyclic (α, β)-Kannan self-mapping for some real
α ∈ [0, 1/2) if it satisfies for some β ∈ R+:

d
(
Tx, Ty

) ≤ α(d(x, Tx) + d(y, Ty)) + β(1 − α)dist(A,B); ∀x ∈ A, ∀y ∈ B. (3.21)

Now, Theorem 2.9 and Theorems 2.18–2.21 for 2-cyclic accretive and Kannan self-mappings
extend directly with direct replacements of their relevant parts as follows.

Theorem 3.11. Let (X, ‖ ‖) be a Banach space so that (X, d)is its associate complete metric space
endowed with a norm-induced translation-invariant and homogeneous metric d : X ×X → R0+. Con-
sider a self-mapping T : X → X which is also a p-cyclic k-contractive self-mapping if restricted t
T :

⋃
i ∈p Ai →

⋃
i ∈p Ai, whereAi are nonempty convex subsets of X; for all i ∈ p. Then, Theorem 2.9

holds “mutatis-mutandis” by replacing the subsetsA and B for pairs of adjacent subsetsAi and Ai+1,
i ∈ p, A ∪ B → ⋃

i∈p Ai, cl(A ∩ B) → cl(
⋂

i∈p Ai), A ∩ B → ⋂
i∈p Ai and k → k :=

∏p

i=1[ki].
In the same way, Theorems 2.18, 2.19, and 2.21 still hold.

The above result extends directly to each composed 2-cyclic self-mappings Ti : Ai ∪
Ai+1 → Ai ∪ Ai+1; for all i ∈ p defined from the p-cyclic weak k-contractive self-mapping
T :

⋃
i∈p Ai →

⋃
i ∈p Ai since T :

⋃
i∈p Ai →

⋃
i∈p Ai; i ∈ p are k-contractive.
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