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We formulate and discuss models for the spread of infectious diseases with variable population
sizes and vaccinations on the susceptible individuals. First, we assume that the susceptible indi-
viduals are vaccinated continuously. We establish the threshold-like results for the existence and
global stability of the disease-free and the endemic equilibriums for these systems. Especially, we
prove the global stability of the endemic equilibriums by converting the systems into integrodif-
ferential equations. Second, we suppose that vaccinations occur once per time period. We obtain
the existence and global stability of the disease-free periodic solutions for such systems with im-
pulsive effects. By a useful bifurcation theorem, we acquire the existence of the endemic periodic
solutions when the disease-related deaths do not occur. At last, we compare the results with vacci-
nations and without vaccinations and illustrate our results by numerical simulations.

1. Introduction

Confidence that the infectious diseases would soon be eliminated was created by the impro-
ved sanitation, effective antibiotics and vaccination programs in the 1960s, but it collapsed
now. Human and animal invasions of new ecosystems, global warming, environmental deg-
radation, and increased international travels provide many opportunities for the spread and
the eruption of infectious diseases. It is clear that new infectious diseases are emerging, and
some eliminated diseases are reemerging since the infectious agents’ evolvement and adap-
tation to the environment. Moreover, these infectious diseases lead to terrible suffering and
mortality. Consequently, infectious diseases are receiving more and more attention in devel-
oping countries, even in the developed countries.

The emerging and reemerging of infectious diseases have been studied by many sci-
entists in different fields. Mathematical models are important tools to analyze and control
the spread of infectious diseases. Hethcote [1] gives a review on the mathematics of infec-
tious diseases. Most models for the transmission of infectious diseases descend from the
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pioneering work of Kermark-Mckerdrick on SIR (susceptible-infectious-removal), in which
vital dynamics (birth and death) is negligible for the short incubation of infectious diseases.
The possible and realistic situations would be to discuss epidemicmodels with varying popu-
lation size, whichmay refer toMena-Lorca andHethcote [2], Anderson andMay [3], Gao and
Hethcote [4], Li and Graef [5], and Brauer and Driessche [6]. Thresholds are obtained which
determine whether the diseases die out or break out. The existence and stability of equili-
brium points are investigated for each model, but there is still some work to do. Such as in
[4], the global stability of the endemic equilibrium points was not obtained. We complete this
in the present paper.

Vaccination programs have been applied to prevent and control the yield and spread
of infectious diseases, which achieved a lot. Models with vaccination are constructed and
analyzed by Shulgin et al. [7], Stone et al. [8], Li and Ma [9], Greenhalgh and Das [10] and
Greenhalgh [11]. Some useful results are obtained, and results with vaccination and without
vaccination are compared. But they assumed that the susceptible is vaccinated continuously.
In fact, it would be more realistic and reasonable that the susceptible is assumed to be vac-
cinated in a single pulse or at fixed moments. In this paper, we consider not only a constant
flow of new members into the susceptible but also vaccinating continuously and impulsively
on the susceptible. We will investigate the dynamical behaviors of these epidemic models,
which are described by continuous or impulsive differential equations. The models of infec-
tious diseases with impulsive effects had been discussed in [12], where the birth, rather than
the vaccination, is assumed to be impulsive.

We denote by S(t) the number of members of a population who are susceptible to an
infection at time t, I(t) the number of members who are infective at time t, and R(t) the num-
ber of members at time t who have been removed as the result of recovery from the infec-
tion with temporary immunity against reinfection. The total population size at time t is rep-
resented by N(t) with N(t) = S(t) + I(t) + R(t). In addition, basic hypotheses are needed to
formulate our models:

(1) there is a constant flow of A new members into the susceptible in unit time;

(2) a fraction p ≥ 0 of the susceptible is vaccinated in unit time or in a single pulse once
per time period, which will enter directly into the removal owing to obtaining the
immunity;

(3) there is a constant per capita natural death rate d > 0 in each group;

(4) a fraction α ≥ 0 of the infective dies from the infection, and a fraction γ ≥ 0 of the
infective recovers in unit time;

(5) a fraction δ ≥ 0 of the removal loses their immunity and becomes the susceptible in
unit time;

(6) the force of the infection is βI, where β is the effective per capita contact rate of the
infective individuals and the incidence rate is βSI.

In the next section, an SIR model with variable population size and continuous vaccination is
analyzed. The existence and stability of the equilibrium points for this model are discussed.
The global stability of the disease-free equilibrium is proved by differential comparison theo-
rem, and the global stability of the endemic equilibrium is obtained by converting the system
into an integrodifferential equation. In Section 3, we consider an impulsive differential epi-
demic model, of which the stability and the existence of disease-free periodic solution are
discussed. Further, the existence of endemic periodic solution is also studied for such a system
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with α = 0, which implies that the disease-related deaths are not considered. At last, we give
some examples to illustrate our results by numerical simulation.

2. An SIR Model with Continuous Vaccination

In this section, we discuss the disease transmission model, which is described by

Ṡ(t) = A − dS − βSI + δR − pS,

İ(t) = βSI − (
γ + α + d

)
I,

Ṙ(t) = γI − (δ + d)R + pS.

(2.1)

Denoting N = S + I + R, and adding these three equations, we have

Ṅ = A − dN − αI. (2.2)

Therefore, we may obtain system (2.3), which is equivalent to system (2.1), and consider the
following system:

Ṅ(t) = A − dN − αI,

İ(t) = β(N − I − R)I − (
γ + α + d

)
I,

Ṙ(t) = pN +
(
γ − p

)
I − (

d + δ + p
)
R.

(2.3)

For nonnegative initial conditions (N(0), I(0), R(0)), it is easily known that N(t), I(t), and
R(t) remain nonnegative, and the total population size N(t) is ultimately upper bounded by
A/d. Moreover, we have

N(t) = N(0)e−dt +
A

d

(
1 − e−dt

)
− α

∫ t

0
e−d(t−s)I(s)ds,

R(t) = R(0)e−(d+δ+p)t +
(
γ − p

)
∫ t

0
e−(d+δ+p)(t−s)I(s)ds + p

∫ t

0
e−(d+δ+p)(t−s)N(s)ds

=
Ap

d
(
d + δ + p

)+

[
pN(0)
p + δ

− Ap

d
(
p + δ

)

]

e−dt+

[

R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) +
Ap

d
(
p + δ

)

]

× e−(d+δ+p)t − αp

p + δ

∫ t

0
e−d(t−s)I(s)ds +

(
γ − p +

αp

p + δ

)∫ t

0
e−(d+δ+p)(t−s)I(s)ds.

(2.4)
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Substituting them into the second equation of (2.3), then

İ(t) = βI

{
A(d + δ)

d
(
d + δ + p

) +

[
δN(0)
p + δ

− Aδ

d
(
p + δ

)

]

e−dt −
(
γ − p +

αp

p + δ

)∫ t

0
e−(d+δ+p)(t−s)I(s)ds

−I(t)− αδ

p + δ

∫ t

0
e−d(t−s)I(s)ds−

[

R(0)− pN(0)
p + δ

− Ap

d
(
d + δ + p

)+
Ap

d
(
p + δ

)

]

e−(d+δ+p)t
}

− (
γ + α + d

)
I.

(2.5)

With respect to equilibriums of (2.3), we have the following.

Theorem 2.1. There only exists the disease-free equilibrium E0(N0, 0, R0), which is globally asymp-
totically stable ifAβ(δ+d) < d(γ +α+d)(d+δ+p). Here,N0 = A/d and R0 = Ap/(d(d+δ+p)).

Proof. The existence and uniqueness of the disease-free equilibrium E0 for system (2.3) are
easily obtained if inequality Aβ(δ + d) < d(γ + α + d)(d + δ + p) holds. Next, we first discuss
the local stability of E0. The Jacobian matrix of system (2.3) at a point E(N, I, R) is

J(E) =

⎡

⎣
−d −α 0
βI β(N − R − 2I) − (

γ + α + d
) −βI

p γ − p −(d + δ + p
)

⎤

⎦. (2.6)

Thus,

J
(
E0

)
=

⎡

⎢⎢
⎣

−d −α 0

0
Aβ(d + δ)

d
(
d + δ + p

) − (
γ + α + d

)
0

p γ − p −(d + δ + p
)

⎤

⎥⎥
⎦, (2.7)

and J(E0) has three eigenvalues with negative real part if inequality Aβ(δ + d) < d(γ + α +
d)(d + δ + p) is true, which shows that the disease-free equilibrium E0 is locally stable.

Further, we assume γ ≤ p. It is easily known that for any ε1 > 0, that there exists T1 > 0
such that

N(t) ≤ A

d
+ ε1, t > T1. (2.8)

Hence, we obtain from the third equation of (2.3) that

Ṙ(t) < p

[
A

d
+ ε1

]
− (

d + δ + p
)
R, t > T1. (2.9)
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Then, for any ε2 > 0, there exists T2 > T1 such that

R(t) ≤ Ap

d
(
δ + d + p

) + ε1 + ε2, t > T2. (2.10)

Therefore, we have

Ṡ(t) <
A(d + δ)

(
d + p

)

d
(
d + δ + p

) + δ(ε1 + ε2) −
(
d + p

)
S, t > T2. (2.11)

This shows that for any ε3 > 0, there exists T3 > T2 such that

S(t) <
A(d + δ)

d
(
d + δ + p

) +
δ(ε1 + ε2)
d + p

+ ε3, t > T3. (2.12)

Moreover, we have

İ(t) ≤ I

[
Aβ(d + δ)

d
(
d + δ + p

) +
δ(ε1 + ε2) +

(
d + p

)
ε3

d + p
− (

γ + α + d
)
]

, t > T3. (2.13)

By the assumption of Aβ(δ + d) < d(γ + α + d)(d + δ + p), we may choose ε1, ε2, and ε3, are
small enough such that

βA(d + δ)
d
(
d + δ + p

) +
δ(ε1 + ε2) +

(
d + p

)
ε3

d + p
− (

γ + α + d
)
< 0, t > T3. (2.14)

Therefore, we obtain

lim
t→+∞

I(t) = 0. (2.15)

This leads to

lim
t→+∞

N(t) =
A

d
= N0, lim

t→+∞
R(t) =

Ap

d
(
d + δ + p

) = R0. (2.16)

If γ ≥ p, we obtain from (2.5)

İ(t) ≤ βI

{
A(d + δ)

d
(
d + δ + p

) +

[
δN(0)
p + δ

− Aδ

d
(
p + δ

)

]

e−dt

−
[

R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) +
Ap

d
(
p + δ

)

]

e−(d+δ+p)t −
(
γ + α + d

)

β

}

.

(2.17)
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Since limt→+∞e−dt = 0, limt→+∞e−(d+δ+p)t = 0, and Aβ(δ + d) < d(γ + α + d)(d + δ + p), then
there exists � > 0 and T > 0 such that

İ(t) ≤ −�βI, t > T. (2.18)

Thus, we prove that (2.15) is held. Further, (2.16) is obtained.

Theorem 2.2. The unstable disease-free equilibrium E0 and the local stable endemic equilibrium
E∗(N∗, I∗, R∗) of system (2.3) coexist if Aβ(δ + d) > d(γ + α + d)(d + δ + p) holds. Here,

N∗ =
A − αI∗

d
, I∗ =

A(δ + d) − d
(
d + δ + p

)
S∗

(
γ + α + d

)
(d + δ) − γδ

, R∗ =
pS∗ + γI∗

d + δ
, S∗ =

γ + α + d

β
.

(2.19)

Proof. It is easily known that system (2.3) has unique positive equilibrium E∗(N∗, I∗, R∗)
except the disease-free equilibrium E0(N0, 0, R0) if inequalityAβ(δ+d) > d(γ+α+d)(d+δ+p)
holds.

Moreover, we may obtain the Jacobian matrix of (2.3) at equilibrium E∗ as

J(E∗) =

⎡

⎣
−d −α 0
βI∗ −βI∗ −βI∗
p γ − p −(d + δ + p

)

⎤

⎦. (2.20)

The characteristic equation of J(E∗) is given by

λ3 +Q1λ
2 +Q2λ +Q3 = 0, (2.21)

and the coefficients Qi (i = 1, 2, 3) are

Q1 = βI∗ + 2d + δ + p,

Q2 = βI∗
(
2d + γ + α + δ

)
+ d

(
d + δ + p

)
,

Q3 = βI∗
[
d
(
γ + d + δ

)
+ α(d + δ)

]
.

(2.22)

Clearly, Qi > 0 (i = 1, 2, 3) and Q1Q2 > Q3. By Routh-Hurwitz criterion, there exist three
eigenvalues with negative real part for Jacobian matrix J(E∗), which shows that equilibrium
E∗ is locally stable.

Further, we study the global stability of E∗.

Theorem 2.3. If (γ − p)(p + δ) + αp > 0 is held besides Aβ(δ + d) > d(γ + α + d)(d + δ + p), then
the positive equilibrium E∗ of (2.3) is globally asymptotically stable.

Proof. Since I∗ > 0, we may make the change of variable I(t) = I∗ey(t), thus

ẏ(t) =
İ(t)
I(t)

, y(t) = ln
I(t)
I∗

, (2.23)



Journal of Applied Mathematics 7

and (2.5) is equivalent to

ẏ(t) = β

{
A(d + δ)

d
(
d + δ + p

) +

[
δN(0)
p + δ

− Aδ

d
(
p + δ

)

]

e−dt −
(
γ − p +

αp

p + δ

)
I∗

∫ t

0
e−(d+δ+p)(t−s)ey(s)ds

− I∗ey(t) − αδ

p + δ
I∗

∫ t

0
e−d(t−s)ey(s)ds −

[

R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) +
Ap

d
(
p + δ

)

]

×e−(d+δ+p)t
}

− (
γ + α + d

)
.

(2.24)

Further, we define g(y) = ey − 1 and

a(s) =

⎧
⎪⎨

⎪⎩

0, s ≤ 0,

βI∗
[
1 +

αδ

p + δ

∫ s

0
e−dudu +

(
γ − p +

αp

p + δ

)∫ s

0
e−(d+δ+p)udu

]
, s > 0,

(2.25)

so that a(s) has a jump βI∗ at s = 0 and ȧ(s) = βI∗[αδ/(p + δ)e−ds + (γ − p + αp/(p + δ))
e−(d+δ+p)s] > 0 for s > 0 if (γ − p)(p + δ) + αp > 0, then

∫ t

0
g
(
y(t − s)

)
da(s)=βI∗

[
αδ

p + δ

∫ t

0
e−d(t−u)ey(u)du +

(
γ − p

)(
p + δ

)
+ αp

p + δ

∫ t

0
e−(d+δ+p)(t−u)ey(u)du

]

− βI∗
[

αδ

p + δ

1 − e−dt

d
+

(
γ − p

)(
p + δ

)
+ αp

p + δ

1 − e−(d+δ+p)t

d + δ + p

]

.

(2.26)

Hence, system (2.3) is reduced to a single integrodifferential equation

ẏ(t) = −
∫ t

0
g
(
y(t − s)

)
da(s) − h

(
y(t)

)
+ f(t). (2.27)

Here, h(y) = βI∗(ey − 1) and

f(t) = β

{[
δN(0)
p + δ

− Aδ

d
(
p + δ

) +
αδI∗

d
(
p + δ

)

]

e−dt

−
[

R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) +
Ap

d
(
p + δ

) +

((
γ − p

)(
p + δ

)
+ αp

)
I∗

(
d + δ + p

)(
p + δ

)

]

e−(d+δ+p)t
}

+

{
Aβ(d + δ)

d
(
d + δ + p

) − αδβI∗

d
(
p + δ

) −
((
γ − p

)(
p + δ

)
+ αp

)
βI∗

(
d + δ + p

)(
p + δ

) − βI∗ − (
γ + α + d

)
}

.

(2.28)
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With the equilibrium condition of (2.3), f(t) can be simplified as

f(t) = β

{[
δN(0)
p + δ

− Aδ

d
(
p + δ

) +
αδI∗

d
(
p + δ

)

]

e−dt

−
[

R(0) − pN(0)
p + δ

− Ap

d
(
d + δ + p

) +
Ap

d
(
p + δ

) +

((
γ − p

)(
p + δ

)
+ αp

)
I∗

(
d + δ + p

)(
p + δ

)

]

e−(d+δ+p)t
}

,

(2.29)

which is negative exponential.
Obviously, the equilibrium I∗ of (2.5) corresponds to the equilibrium y(t) ≡ 0 of (2.27).

According to Theorem 18.2.3 of Gripenberg et al. [13], since a(s) is of strong positive type
([14, 15]), g(y) is continuous and

∫y
0 g(y)dy → ∞ as |y| → ∞, ḣ(y) is also continuous and

g(y)h(y) ≥ 0 for −∞ < y < +∞, f(t), and ḟ(t) are in L2(0,∞), it follows that every bounded
solution of (2.27) satisfies limt→∞g(y(t)) = 0. Owing to g(y) = 0 only for y = 0, this implies
that every solution of (2.27) tends to zero as t → ∞ and therefore the equilibrium I∗ of (2.5)
is globally asymptotically stable. As (2.5) is equivalent to system (2.3), the unique positive
equilibrium (N∗, I∗, R∗) of (2.3) is globally asymptotically stable.

It is similar to the classical SIR models that there exists the threshold quantity and it is
given by R1 = A/d ·β/(γ +α+d) · (δ+d)/(δ+d+p) for the model (2.1). If R1 < 1, then system
(2.1) has only the globally asymptotically stable disease-free equilibrium. This shows that the
epidemic disease will die out. Otherwise, if R1 > 1, system (2.1) has a locally stable positive
equilibrium except disease-free equilibrium. Moreover, the global asymptotical stability of
positive equilibrium is obtained under the assumption of (γ −p)(p+δ)+αp > 0. This reveals a
fact that the disease may be “invaded” or always exists in the population forever. According
to the expression of R1, it is the convenient and important policy to control the occurrence of
the disease that the flow of the members decreases, the vaccinated members increase, and the
infectious period shortens.

3. An SIR Model with Impulsive Vaccinations

In this section, the assumption that the susceptible is vaccinated continuously is replaced by
the assumption that the susceptible is vaccinated impulsively, that is, the susceptible is vac-
cinated at the fixedmoments. At themoment nτ , the vaccinated susceptible will enter directly
to the removal owing to acquiring the temporary immunity, which leads to the following
system:

Ṡ(t) = A − dS − βSI + δR, İ(t) = βSI − (
γ + α + d

)
I, Ṙ(t) = γI − (δ + d)R, t /=nτ,

S(nτ+) =
(
1 − p

)
S(nτ), I(nτ+) = I(nτ), R(nτ+) = R(nτ) + pS(nτ),

(3.1)



Journal of Applied Mathematics 9

where τ > 0 is the vaccinated period. Clearly, system (3.1) is equivalent to the system

Ṡ(t)=A − dS − βSI + δ(N − S − I), İ(t)=βSI − (
γ + α + d

)
I, Ṅ(t)=A − dN − αI,

t/=nτ,

S(nτ+) =
(
1 − p

)
S(nτ), I(nτ+) = I(nτ), N(nτ+) = N(nτ).

(3.2)

Let I = 0, then system (3.2) is simplified as

Ṡ(t) = A − (d + δ)S + δN, Ṅ(t) = A − dN, t /=nτ,

S(nτ+) =
(
1 − p

)
S(nτ), N(nτ+) = N(nτ).

(3.3)

Lemma 3.1. Consider the following system:

ẋ(t) = a − bx(t), t /=nτ, x(nτ+) =
(
1 − p

)
x(nτ). (3.4)

Then there exists a positive periodic solution x∗(t), which is globally attractive. Here x∗(t) = a/b(1 −
(p(e−b(t−nτ))/(1 − (1 − p)e−bτ))) for nτ < t ≤ (n + 1)τ .

The proof is so simple that we omit it.
By Lemma 3.1, we can easily know that there exists a positive periodic solution

(S̃(t), Ñ(t)) for system (3.3), and their expression is

S̃(t) =
A

d

(

1 − pe−(d+δ)(t−nτ)

1 − (
1 − p

)
e−(d+δ)τ

)

, Ñ(t) =
A

d
, t /=nτ,

S̃(nτ+) =
A

d

[(
1 − p

)(
1 − e−(d+δ)τ

)

1 − (
1 − p

)
e−(d+δ)τ

]

.

(3.5)

This indicates that system (3.2) has a disease-free periodic solution (S̃(t), 0, Ñ(t))with period
τ , and its local stability may be determined by considering the behavior of small-amplitude
perturbation of the solution. Define (S(t), I(t),N(t)) = (S̃(t) + x(t), y(t), Ñ(t) + z(t)), than
these may be written

⎡

⎢
⎣

x(t)
y(t)
z(t)

⎤

⎥
⎦ = Φ(t)

⎡

⎢
⎣

x(0)
y(0)
z(0)

⎤

⎥
⎦, (3.6)

where Φ(t) satisfies

dΦ(t)
dt

=

⎡

⎢
⎣
−(d + δ) −

(
δ + βS̃(t)

)
δ

0 βS̃(t) − (
γ + α + d

)
0

0 −α −d

⎤

⎥
⎦Φ(t) (3.7)
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with Φ(0) = I, the identity matrix. The resetting impulsive conditions of (3.2) become

⎡

⎢
⎣

x(nτ+)
y(nτ+)
z(nτ+)

⎤

⎥
⎦ =

⎡

⎢
⎣

1 − p 0 0
0 1 0
0 0 1

⎤

⎥
⎦

⎡

⎢
⎣

x(nτ)
y(nτ)
z(nτ)

⎤

⎥
⎦. (3.8)

Hence, if all eigenvalues μj(j = 1, 2, 3) of the monodromy matrix M,

M =

⎡

⎢
⎣

1 − p 0 0
0 1 0
0 0 1

⎤

⎥
⎦Φ(τ) =

⎡

⎢
⎢
⎣

(
1 − p

)
e−(d+δ)τ

(
1 − p

)
a12(τ)

(
1 − p

)
a13(τ)

0 e−(γ+α+d)τ+β
∫τ
0 S̃(t)dt 0

0 a32(τ) e−dτ

⎤

⎥
⎥
⎦, (3.9)

have absolute value less than one, then the τ-periodic solution (S̃(t), 0, Ñ(t)) is locally stable.
Actually, a12(τ), a13(τ), and a32(τ) need not to be solved out, andwe have μ1 = (1−p)e−(d+δ)τ ,
μ2 = e−(γ+α+d)τ+β

∫τ
0 S̃(t)dt, and μ3 = e−dτ . Therefore, if −(γ + α + d)τ + β

∫τ
0 S̃(t)dt < 0, which is

equivalent to A/d · β/(γ + α + d) · (1 − p(e(d+δ)τ − 1)/((d + δ)(e(d+δ)τ − 1 + p)τ)) < 1, then
|μj | < 1 (j = 1, 2, 3) holds. And we have the following.

Theorem 3.2. If inequalityA/d ·β/(γ +α+d) · (1−p(e(d+δ)τ − 1)/((d+δ)(e(d+δ)τ − 1+p)τ)) < 1
holds, then there exists a disease-free periodic solution (S̃(t), 0, Ñ(t)) for (3.2), which is locally stable.
Moreover, it is globally asymptotically stable.

Proof. Denote that R2 = A/d ·β/(γ +α+d) ·(1−p(e(d+δ)τ −1)/((d+δ)(e(d+δ)τ −1+p)τ)). In fact,
we only prove that limt→∞S(t) = S̃(t), limt→∞I(t) = 0, and limt→∞Ñ(t) = A/d for R2 < 1.

For every solution (S(t), I(t),N(t)) of (3.2) with positive initial value (S(0+), I(0+),
N(0+)), it is clear that Ṅ(t) ≤ A − dN, which leads to

N(t) ≤ A

d
+ ε1, t > mτ. (3.10)

Here, ε1 > 0 may be arbitrary small, and a positive integer m may be large enough. Hence,
we have

Ṡ(t) ≤ A

d
(d + δ) + δε1 − (d + δ)S, mτ ≤ nτ < t ≤ (n + 1)τ,

S(nτ+) =
(
1 − p

)
S(nτ).

(3.11)

Furthermore, we consider the system

Ṡ1(t) =
A

d
(d + δ) + δε1 − (d + δ)S1, mτ ≤ nτ < t ≤ (n + 1)τ,

S1(nτ+) =
(
1 − p

)
S1(nτ).

(3.12)

Therefore, we have S(t) ≤ S1(t), and S1(t) is the solution of (3.12) with the initial value
S1(mτ+) = S(mτ+). In addition, for system (3.12), it is easily known that there exists a positive
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periodic solution S̃1(t), and every solution with positive initial value S1(0+) > 0 is globally
attractive by Lemma 3.1. Here,

S̃1(t) =
(
A

d
+

δε1
d + δ

)(

1 − pe−(d+δ)(t−nτ)

1 − (
1 − p

)
e−(d+δ)τ

)

, nτ < t ≤ (n + 1)τ,

S̃1(nτ+) =
(
A

d
+

δε1
d + δ

) (
1 − p

)
e−(d+δ)τ

1 − (
1 − p

)
e−(d+δ)τ

.

(3.13)

Thus, for an arbitrary small ε2 > 0, there exists a positive integer m1 > m such that

S1(t) < S̃1(t) + ε2, t ≥ m1τ. (3.14)

As a result, we have

İ(t) <
[
β
(
S̃1(t) + ε2

)
− (

γ + α + d
)]
I, t ≥ m1τ. (3.15)

So,

0 ≤ I(t) ≤ I(m1τ
+)e

∫ t
m1τ

[β(S̃1(t)+ε2)−(γ+α+d)]dt, t ≥ m1τ. (3.16)

Since R2 < 1 holds, we may choose ε1 and ε2 small enough such that
∫τ
0 [β(S̃1(t) + ε2)− (γ +α+

d)]dt < 0, which leads to

lim
t→∞

I(t) = 0. (3.17)

And since

N(t) = N(0)e−dt +
A

d

(
1 − e−dt

)
− α

∫ t

0
e−d(t−s)I(s)ds, (3.18)

by (3.17), we have

lim
t→∞

N(t) =
A

d
. (3.19)

Therefore, for an arbitrary small ε3 > 0, there exists a positive integer m2(>m1) such that

0 < I(t) < ε3, 0 <
A

d
− ε3 < N(t) <

A

d
+ ε3, t ≥ m2τ. (3.20)
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Then, we have

Ṡ(t) >
[
A(d + δ)

d
− 2δε3

]
− (

d + δ + βε3
)
S, m2τ < nτ < t ≤ (n + 1)τ,

S(nτ+) =
(
1 − p

)
S(nτ), nτ > m2τ.

(3.21)

Considering the system

Ṡ2(t) =
[
A(d + δ)

d
− 2δε3

]
− (

d + δ + βε3
)
S2, m2τ < nτ < t ≤ (n + 1)τ,

S2(nτ+) =
(
1 − p

)
S2(nτ), nτ > m2τ,

(3.22)

we have S(t) ≥ S2(t), where S2(t) is the solution of (3.22) with initial value S2(m2τ
+) =

S(m2τ
+). Denote that S̃2(t) is the globally asymptotically attractive and positive periodic solu-

tion; thus, for an arbitrary small number ε4 > 0, there is a positive integer m3 such that

S̃2(t) − ε4 < S2(t) < S̃2(t) + ε4, t ≥ m3τ, (3.23)

and since S(t) > S2(t), we may get

S̃2(t) − ε4 < S(t), t ≥ m3τ. (3.24)

Let ε = min{ε1, ε2, ε3, ε4} and M = max{m2, m3}, then for t > Mτ , we have

S̃2(t) − ε < S(t) < S̃1(t) + ε. (3.25)

And since S̃1(t) and S̃2(t)will approach the positive periodic solution S̃(t) of system (3.3) for
ε → 0, therefore, we have

lim
t→∞

S(t) = S̃(t). (3.26)

Thus, the global stability of the boundary periodic solution (S̃(t), 0, A/d) has been proven.
This indicates that the disease-free periodic solution (S̃(t), 0, R̃(t)) of (3.1) is also globally
asymptotically stable.

Clearly, if A/d · β/(γ + α + d) < 1 holds, then R2 < 1 is true. So, we have the following.

Corollary 3.3. If A/d · β/(γ + α + d) < 1 holds, then system (3.2) has a unique disease-free periodic
solution (S̃(t), 0, Ñ(t)) for arbitrary p > 0 and τ > 0, which is globally asymptotically stable.

In the following, one only considers the case: A/d · β/(γ + α + d) > 1.
Denote f(τ) � (Aβ/d−(γ+α+d))τ+Aβ/d·p/(d+δ)·(1−exp((d+δ)τ))/(exp((d+δ)τ)−

1 + p). Notice that the function satisfies f(τ) is continuous on [0,+∞), f(0) = 0, f(+∞) = +∞,
f ′(0) = −(γ+α+d) < 0, f ′(+∞) = Aβ/d−(γ+α+d) > 0; moreover, f ′′(τ) = (d+δ)p2e(d+δ)τAβ/d·
(e(d+δ)τ + 1 − p)/(e(d+δ)τ − 1 + p)3 > 0. Then one has the following.
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Lemma 3.4. If A/d · β/(γ + α + d) > 1, then there exists and only exists a root τ0 in (0,+∞) for
function y = f(τ), and f(τ) < 0 for τ < τ0 and f(τ) > 0 for τ > τ0.

Noting that f(τ) < 0 is equivalent to R2 < 1, one has the following.

Corollary 3.5. For system (3.2), if A/d · β/(γ + α + d) > 1, then there exists τ0 > 0 such that sys-
tem (3.2) has a unique disease-free periodic solution (S̃(t), 0, Ñ(t)) for τ < τ0, which is globally asym-
ptotically stable.

Now, we are in the position of studying the behaviors of (3.1) under the assumption of
R2 > 1. Here, we only discuss the existence of endemic periodic solution (S∗(t), I∗(t), R∗(t)) of
system (3.1) with α = 0. From the viewpoint of biology, we neglect the death-related disease.
At this time, system (3.1) can be rewritten as follows:

Ṡ(t) = A − dS − βSI + δ(N − S − I), İ(t) = βSI − (
γ + d

)
I Ṅ(t) = A − dN, t /=nτ,

S(nτ+) =
(
1 − p

)
S(nτ), I(nτ+) = I(nτ), N(nτ+) = N(nτ).

(3.27)

If (3.27) has a periodic solution, it is certain that N(t) ≡ A/d. Then, we may change to con-
sider the two-dimensional system (3.28), which is equivalent to (3.27).

Ṡ(t) =
A

d
(d + δ) − (d + δ)S − δI − βSI, İ(t) = βSI − (

γ + d
)
I, t /=nτ,

S(nτ+) =
(
1 − p

)
S(nτ), I(nτ+) = I(nτ).

(3.28)

Note that there exists a positive periodic solution S◦(t) of system

Ṡ = (d + δ)
(
A

d
− S

)
, t /=nτ,

S(nτ+) =
(
1 − p

)
S(nτ),

(3.29)
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where

S◦(t) =
A

d

[

1 − pe−(d+δ)(t−nτ)

1 − (
1 − p

)
e−(d+δ)τ

]

, nτ < t ≤ (n + 1)τ,

S◦(nτ+) =
A

d

[(
1 − p

)(
e(d+δ)τ − 1

)

e(d+δ)τ − 1 + p

]

,

(3.30)

then system (3.28) has a boundary periodic solution ζ(t) = (S◦(t), 0). With bifurcation tech-
nique and the important Theorem [16], we may obtain the positive periodic solution (S∗(t),
I∗(t)) of (3.28). As

d′
0 = 1 − exp

∫ τ

0

(
βS◦(t) − (

γ + d
))
dt,

a′
0 = 1 − (

1 − p
)
exp

∫ τ

0
(−(d + δ))dt > 0,

b′0 = −(1 − p
)
∫ τ

0
exp

(∫ τ

u

−(d + δ)dr
)
(−βS◦(u) − δ

)
exp

(∫u

0

(
βS◦(u) − (

γ + d
))
dr

)

× du > 0,

∂2Φ2(τ,X0)
∂x1∂x2

= βτ exp
∫ τ

0

∂F2(ς(r))
∂x2

dr > 0;

∂2Φ2(τ,X0)
∂x2

2

= β

∫ τ

0

{∫u

0

[

exp

(∫u

p

(−(d+ δ))dr

)
(−δ − βS◦(p

))
exp

(∫p

0

(
βS◦(r) − (

γ + d
))
dr

)]

dp

}

×
{
exp

(∫ τ

u

(
βS◦(r) − (

γ + d
))
dr

)}
du < 0,

∂2Φ2(τ,X0)
∂τ∂x2

=
(
βS◦(τ) − (

γ + d
))

exp
(∫ τ

0

(
βS◦(r) − (

γ + d
))
dr

)
;

∂Φ1(τ,X0)
∂τ

= Ṡ◦(τ) > 0,

(3.31)

and if we choose τ0, the unique root of d′
0 = f(τ) = 0, to be the bifurcated parameter, then we

can easily see that ∂2Φ2(τ0, X0)/∂τ∂x2 > 0. Further, we have B < 0 andC > 0. According to the
theorem of Lakmeche and Arino [16], the supercritical bifurcation occurs for system (3.28).

Theorem 3.6. If τ > τ0 and is close to τ0 enough, then there exists positive periodic solution (S∗(t),
I∗(t)) for system (3.28). Here, τ0 is the root of d′

0 = 0.

Further, one has the following.

Corollary 3.7. For system (3.1), if τ > τ0 and is close to τ0 enough, then there exists positive periodic
solution (S∗(t), I∗(t), A/d − S∗(t) − I∗(t)). Here, τ0 is defined in Theorem 3.6.
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The time series graph for t-S(t)
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Thus, we complete the discussion on the epidemic model with impulsive vaccination.
And we know that if the period of vaccination is smaller than τ0, the disease will die out
forever, but once it is larger than τ0, the infectious disease is going to be the endemic disease.

4. Discussion and Numerical Simulation

In this paper, we first assume that the susceptible is vaccinated continuously. Themodel is for-
mulated by a continuous differential system. Similar to most models for the spread of infec-
tious diseases, there is a threshold parameterR1 = A/d·β/(γ+α+d)·(δ+d)/(δ+d+p). IfR1 < 1,
the disease-free equilibrium is approached by all solutions; if R1 > 1, the disease-free equi-
librium is unstable and the endemic equilibrium exists, which is locally stable. Especially, we
prove that the endemic equilibrium is globally asymptotically stable if (γ − p)(p + δ) +αp > 0.
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The time series graph for t-R(t)

8

9

10

11

12

13

R

1140 1150 1160 1170 1180 1190 1200

t

Figure 5

Obviously, there is a unique p0 such that R1 = 1. If p exceeds p0, then R1 < 1, and if p is less
than p0, then R1 > 1. We show that increasing the vaccinated members is helpful to control
the spread of the infectious diseases.

LetA = 1, d = 0.1, β = 0.1, δ = 0.2, p = 0.4, γ = 0.1, and α = 0.3, then we have R1 < 1.
By Theorem 2.1, we know that system (2.1) has a unique disease-free equilibriumE0(S0, 0, R0)
with S0 = 4.285714286, R0 = 5.714285714, which is globally asymptotically stable. The time
series of solutions with initial value [S(0) = 3, I(0) = 1.5, R(0) = 1] are given in Figure 1.

If we choose p := 0.1, then R1 > 1 and (γ − p)(p + δ) + αp > 0. By Theorem 2.2,
there exists a globally asymptotically stable endemic equilibrium E∗(S∗, I∗, R∗) with S∗ =
5.000000000, I∗ = 0.7692307692, and R∗ = 1.923076923. Setting the initial values S(0) = 3,
I(0) = 1.5, and R(0) = 1, we draw the time series graph of the solution of (2.1) in Figure 2.
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The time series graph for t-S(t)
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We continue to analyze our results. Let p = 0, that is, without vaccination on the sus-
ceptible. The model was discussed, and a threshold parameter R = A/d · β/(γ + α + d) was
obtained for such a model in [4]. It is clear that R is identical to R1 with p = 0. In addition,
in [4], the global stability of the endemic equilibrium was not proved. By our conclusion, we
know that the endemic equilibrium is globally asymptotically stable ifR1 > 1, that is, we gene-
ralize the results in [4].

Second, the susceptible is supposed to be vaccinated at fixed moments. Such an epi-
demic model is described by an impulsive differential system, which also has a threshold
parameter R2. If R2 < 1, the disease-free periodic solution is globally stable, while it is un-
stable for R2 > 1. Clearly, if A/d · β/(γ + α + d) < 1, then R2 < 1. Hence, there exists a unique
globally asymptotically disease-free periodic solution. If A/d · β/(γ + α + d) > 1, then there
exists a unique globally asymptotically disease-free periodic solution for τ < τ0, and τ0 is the
root of R2 = 1. With respect to the existence of positive periodic solution, we only consider
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a simple model, in which α = 0, that is, the disease-related death is neglected for the infective.
The positive periodic solution exists if the vaccinated period τ satisfies τ > τ0 and is close
to the critical value τ0 enough. It is implied that the epidemic disease may be controlled by
shortening the vaccination period.

Let A = 2, d = 0.1, β = 0.02, δ = 0.2, p = 0.5, γ = 0.1, α = 0 and τ = 2. Then R2 =
0.9636347352 < 1 for impulsive system (3.1). Hence, there exists a disease-free periodic solu-
tion. Moreover, it is globally asymptotically stable. Figures 3, 4, and 5 are the time series of
the solution with initial values S(0) = 5, I(0) = 8, and R(0) = 5, and Figure 6 is the trajectory
phase for it, which implies that this solution tends to the disease-free periodic solution (S̃(t),
0, R̃(t))with S̃(t) + R̃(t) = A/d = 20.

If we extend the period τ of the vaccination and choose τ = 2.3, then R2 =
1.035848923 > 1. By Corollary 3.7, we know that there exists a positive periodic solution
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The graph of endemic periodic trajectory
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(S∗(t), I∗(t), R∗(t))with period T = 2.3. We draw its time-series in Figures 7, 8, and 9. And the
graph of its trajectory is drawn in Figure 10.
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