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The robust stochastic stability for a class of uncertain neutral-type delayed neural networks driven
by Wiener process is investigated. By utilizing the Lyapunov-Krasovskii functional and inequality
technique, some sufficient criteria are presented in terms of linear matrix inequality (LMI) to
ensure the stability of the system. A numerical example is given to illustrate the applicability of
the result.

1. Introduction

In the past few years, neural networks and their various generalizations have drawn much
research attention owing to their promising potential applications in a variety of areas, such as
robotics, aerospace, telecommunications, pattern recognition, image processing, associative
memory, signal processing, and combinatorial optimization [1–3]. In such applications, it
is of prime importance to ensure the asymptotic stability of the designed neural networks.
Because of this, the stability of neural networks has been deeply investigated in the literature
[4–14].

It is known that time delays and stochastic perturbations are commonly encountered
in the implementation of neural networks, and may result in instability or oscillation. So
it is essential to investigate the stability of delayed stochastic neural networks [15, 16].
Moreover, uncertainties are unavoidable in practical implementation of neural networks
due to modeling errors and parameter fluctuation, which also cause instability and poor
performance [15, 17, 18]. Therefore, it is significant to introduce such uncertainties into
delayed stochastic neural networks.
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On the other hand, because of the complicated dynamic properties of the neural cells
in the real world, it is natural and important that systems will contain some information
about the derivative of the past state. Practically, such phenomenon always appears in the
study of automatic control, circuit analysis, chemical process simulation, and population
dynamics, and so forth. Recently, there has been increasing interest in the study of delayed
neural networks of neutral type, see [6–15, 18–24]. In [6, 8], the authors developed the global
asymptotic stability of neutral-type neural networks with delays by utilizing the Lyapunov
stability theory and LMI technique. In [9, 10], the global exponential stability of neutral-type
neural networks with distributed delays is studied. However, the stochastic perturbations
were not taken into account in those delayed neural networks [6–10].

In [23, 24], the authors discussed the robust stability for uncertain stochastic neural
networks of neutral-type with time-varying delays. However, the distributed delays were
not taken into account in the models. So far, there are only a few papers that not only deal
with the stochastic stability analysis for delayed neural networks of neutral-type, but also
consider the parameter uncertainties.

To the best of our knowledge, there are very few results on the stochastic stability
analysis for uncertain neutral-type neural networks with both discrete and distributed delays
driven by Wiener process. This motivates the research in this paper.

In this paper, a class of uncertain neutral-type delayed neural networks driven by
Wiener process is considered. By constructing a suitable Lyapunov functional, some new
stability criteria to guarantee the system to be stochastically asymptotically stable in the mean
square are given, which are less conservative than some existing reports. The structure of the
addressed system is more general than in the other papers. The criteria can be checked easily
by the LMI control toolbox in MATLAB. Moreover, a numerical example is given to illustrate
the effectiveness and improvement over some existing results.

2. Preliminaries

Notations. A < 0 denotes that A is a negative definite matrix. The superscript “T” stands for
the transpose of a matrix. (Ω, F, P) denotes a complete probability space, E(·) stands for the
mathematical expectation operator. ‖·‖ stands for the Euclidean norm. I is the identity matrix
of appropriate dimension, and the symmetric terms in a symmetric matrix are denoted by ∗.

Consider the following class of uncertain neutral-type delayed neural networks driven
by Wiener process:

d[x(t) − Cx(t − h(t))] =

[
−A(t)x(t) + B(t)f(x(t − τ(t))) +D(t)

∫ t

t−r(t)
f(x(s))ds

]
dt

+[H0(t)x(t) +H1(t)x(t − τ(t))]dw(t),

x(t0 + s) = ϕ(s), s ∈ [t0 − ρ, t0
]
,

(2.1)

where x = (x1, x2, . . . , xn)
T is the neuron state vector, A(t) = A + ΔA(t), B(t) = B + ΔB(t),

D(t) = D + ΔD(t), H0(t) = H0 + ΔH0(t), H1(t) = H1 + ΔH1(t), A = diag(ai)n×n is a
positive diagonal matrix, B,C,D ∈ Rn×n are the connection weight matrices, H0,H1 ∈
Rn×n are known real constant matrices, ΔA(t), ΔB(t), ΔD(t), ΔH0(t), ΔH1(t) represent the
time-varying parameter uncertain terms. f(x) = (f1(x1), f2(x2), . . . , fn(xn))

T is the neuron
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activation function with f(0) = 0.w(t) = (w1(t), w2(t), . . . , wn(t))
T is an n-dimensionalWiener

process defined on a complete probability space (Ω, F, P). r(t), τ(t), h(t) are nonnegative,
bounded, and differentiable time varying delays satisfying

0 < r(t) ≤ r < ∞,

0 < τ(t) ≤ τ < ∞, τ̇(t) ≤ η1 < ∞,

0 < h(t) ≤ h < ∞, ḣ(t) ≤ η2 < ∞.

(2.2)

The admissible parameter uncertain terms are assumed to be the following form:

[ΔA(t),ΔB(t),ΔD(t),ΔH0(t),ΔH1(t)] = UF(t)[M1,M2,M3,M4,M5], (2.3)

where U,Mi, i = 1, . . . , 5 are known real constant matrices, F(t) is the time-varying uncertain
matrix satisfying

FTF ≤ I. (2.4)

Suppose that f(·) is bounded and satisfies the following condition:

‖f(x)‖ ≤ ‖Gx‖, (2.5)

where G ∈ Rn×n is a known constant matrix.
Assume that the initial value ϕ : [−ρ, 0] → Rn is F0-measurable and continuously

differentiable, we introduce the following norm:

∥∥ϕ∥∥2
ρ = max

⎧⎨
⎩ sup

−α≤s≤0
E
∣∣ϕi(s)

∣∣2, sup
−h≤s≤0

E
∣∣ϕ′

i(s)
∣∣2
⎫⎬
⎭ < ∞, (2.6)

where ρ = max{τ, h, r}, α = max{τ, r}.
Under the above assumptions, it is easy to verify that there exists a unique equilibrium

point of system (2.1) (see [25]).

Definition 2.1. The equilibrium point of (2.1) is said to be globally robustly stochastically
asymptotically stable in the mean square, if the following condition holds:

lim
t→+∞

E
∣∣x(t, t0, ϕ)∣∣2 = 0, t ≥ t0, (2.7)

where x(t, t0, ϕ) is any solution of model (2.1) with initial value ϕ.

Lemma 2.2 (Schur complement [26]). Given constant matrices Ω1, Ω2, Ω3 with appropriate
dimensions, whereΩT

1 = Ω1 and ΩT
2 = Ω2 > 0, then

Ω1 +ΩT
3Ω

−1
2 Ω3 < 0, (2.8)
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if and only if

(
Ω1 ΩT

3

∗ −Ω2

)
< 0, or

(−Ω2 Ω3

∗ Ω1

)
< 0. (2.9)

Lemma 2.3 (see [26]). Given matricesD, E, and F with FTF ≤ I and a scalar ε > 0, then

DFE + ETFTDT ≤ εDDT + ε−1ETE. (2.10)

Lemma 2.4 (see [27]). For any constant matrix M ∈ Rn×n, M = MT > 0, a scalar γ > 0, vector
function x(t) : [0, γ] → Rn such that the integrations are well defined, then

[∫ γ

0
x(s)ds

]T
M
[∫ γ

0
x(s)ds

]
≤ γ

∫ γ

0
xT (s)Mx(s)ds. (2.11)

3. Main Results

Theorem 3.1. System (2.1) is globally robustly stochastically asymptotically stable in the mean
square, if there exist symmetric positive definite matrices P, Q, R, S, U1, U2 and positive scalars
δ, ε1, ε2 > 0 such that LMI holds:

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ1 A
T
PC PB − ε1MT

1M2 PD − ε1MT
1M3 ε2MT

4M5 H
T

0P −PU 0

∗ Γ2 −CTPB −CTPD 0 0 −CTPU 0

∗ ∗ Γ3 ε1MT
2M3 0 0 0 0

∗ ∗ ∗ Γ4 0 0 0 0

∗ ∗ ∗ ∗ Γ5 H
T

1P 0 0

∗ ∗ ∗ ∗ ∗ −P 0 PU

∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.1)

where Γ1 = −PA − A
T
P + Q + R + rGTSG + ε1MT

1M1 + ε2MT
4M4, Γ2 = −U1 − (1 − η2)R, Γ3 =

−δI + ε1MT
2M2, Γ4 = −r−1S + ε1MT

3M3, Γ5 = −U2 − (1 − η1)Q + δGTG + ε2MT
5M5.
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Proof. Using Lemma 2.2, the matrix Λ < 0 implies that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ1 A
T
PC PB − ε1MT

1M2 PD − ε1MT
1M3 ε2MT

4M5 H
T

0P

∗ Γ2 −CTPB −CTPD 0 0

∗ ∗ Γ3 ε1MT
2M3 0 0

∗ ∗ ∗ Γ4 0 0

∗ ∗ ∗ ∗ Γ5 H
T

1P

∗ ∗ ∗ ∗ ∗ −P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU 0

−CTPU 0

0 0

0 0

0 0

0 PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ε−11 I 0

∗ ε−12 I

⎞
⎠
⎛
⎝UTP −UTPC 0 0 0 0

0 0 0 0 0 UTP

⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ1 A
T
PC PB PD 0 H

T

0P

∗ Γ2 −CTPB −CTPD 0 0

∗ ∗ −δI 0 0 0

∗ ∗ ∗ −r−1S 0 0

∗ ∗ ∗ ∗ Φ2 H
T

1P

∗ ∗ ∗ ∗ ∗ −P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε−11

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε−12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

< 0,

(3.2)

where Φ1 = −PA −A
T
P +Q + R + rGTSG, Φ2 = −U2 − (1 − η1)Q + δGTG.
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From (2.3), (2.4), using Lemma 2.3, we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−PΔA(t) −ΔAT (t)P ΔAT (t)PC PΔB(t) PΔD(t) 0 ΔHT
0 (t)P

∗ 0 −CTPΔB(t) −CTPΔD(t) 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 ΔHT
1 (t)P

∗ ∗ ∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FT (t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FT (t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F(t)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

≤ ε1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−MT
1

0

MT
2

MT
3

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε−11

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PU

−CTPU

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT
4

0

0

0

MT
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+ ε−12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

PU

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

(3.3)
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Together with (3.2), we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ AT (t)PC PB(t) PD(t) 0 HT
0 (t)P

∗ Γ2 −CTPB(t) −CTPD(t) 0 0

∗ ∗ −δI 0 0 0

∗ ∗ ∗ −r−1S 0 0

∗ ∗ ∗ ∗ Φ2 HT
1 (t)P

∗ ∗ ∗ ∗ ∗ −P

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.4)

where Ψ = −PA(t) −AT (t)P +Q + R + rGTSG.
Utilizing Lemma 2.2 again, we obtain

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ AT (t)PC PB(t) PD(t) 0

∗ Γ2 −CTPB(t) −CTPD(t) 0

∗ ∗ −δI 0 0

∗ ∗ ∗ −r−1S 0

∗ ∗ ∗ ∗ Φ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

HT
0 (t)

0

0

0

HT
1 (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

HT
0 (t)

0

0

0

HT
1 (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

< 0. (3.5)

Constructing a positive definite Lyapunov-Krasovskii functional as follows:

V (t, x(t)) = yT (t)Py(t) +
∫ t

t−τ(t)
xT (s)Qx(s)ds +

∫ t

t−h(t)
xT (s)Rx(s)ds

+
∫0

−r(t)

∫ t

t+θ
fT (x(s))Sf(x(s))dsdθ +

∫T

t

xT (s − h(s))U1x(s − h(s))ds

+
∫T

t

xT (s − τ(s))U2x(s − τ(s))ds,

(3.6)

where y(t) = x(t) − Cx(t − h(t)), T > t is a constant.
By Ito’s differential formula, we get

dV (t, x(t)) ≤
{
2yT (t)P

[
−A(t)x(t) + B(t)f(x(t − τ(t))) +D(t)

∫ t

t−r(t)
f(x(s))ds

]

+ xT (t)Qx(t) − (1 − τ̇(t))xT (t − τ(t))Qx(t − τ(t)) + xT (t)Rx(t)

− (1 − ḣ(t)
)
xT (t − h(t))Rx(t − h(t)) + rfT (x(t))Sf(x(t))

−
∫ t

t−r(t)
fT (x(s))Sf(x(s))ds

− xT (t − h(t))U1x(t − h(t)) − xT (t − τ(t))U2x(t − τ(t))
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+[H0(t)x(t) +H1(t)x(t − τ(t))]TP[H0(t)x(t) +H1(t)x(t − τ(t))]

}
dt

+ 2yT (t)P[H0(t)x(t) +H1(t)x(t − τ(t))]dw(t)

≤
{
2[x(t) − Cx(t − h(t))]T

× P

[
−A(t)x(t) + B(t)f(x(t − τ(t))) +D(t)

∫ t

t−r(t)
f(x(s))ds

]

+ xT (t)Qx(t) − (1 − η1
)
xT (t − τ(t))Qx(t − τ(t)) + xT (t)Rx(t)

− (1 − η2
)
xT (t − h(t))Rx(t − h(t)) + rfT (x(t))Sf(x(t))

−
∫ t

t−r(t)
fT (x(s))Sf(x(s))ds

− xT (t − h(t))U1x(t − h(t)) − xT (t − τ(t))U2x(t − τ(t))

+[H0(t)x(t) +H1(t)x(t − τ(t))]TP[H0(t)x(t) +H1(t)x(t − τ(t))]

}
dt

+ 2yT (t)P[H0(t)x(t) +H1(t)x(t − τ(t))]dw(t).

(3.7)

From (2.5), for a scalar δ > 0, we have

−δ
[
fT (x(t − τ(t)))f(x(t − τ(t))) − xT (t − τ(t))GTGx(t − τ(t))

]
≥ 0. (3.8)

Using Lemma 2.4, we have

(∫ t

t−r(t)
f(x(s))ds

)T

r−1S

(∫ t

t−r(t)
f(x(s))ds

)
≤
∫ t

t−r(t)
fT (x(s))Sf(x(s))ds. (3.9)

Together (3.8), (3.9) with dV (t, x(t)), we obtain

dV (t, x(t)) ≤
{
xT (t)

[
−PA(t) −AT (t)P +Q + R + rGTSG

]
x(t) + xT (t)AT (t)PCx(t − h(t))

+ xT (t − h(t))CTPA(t)x(t) + xT (t)PB(t)f(x(t − τ(t)))

+ fT (x(t − τ(t)))BT (t)Px(t)

+ xT (t)PD(t)
∫ t

t−r(t)
f(x(s))ds +

(∫ t

t−r(t)
f(x(s))ds

)T

DT (t)Px(t)

+ xT (t − h(t))
[−U1 −

(
1 − η2

)
R
]
x(t − h(t)) − xT (t − h(t))CTPB(t)f(x(t − τ(t)))
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− fT (x(t − τ(t)))BT (t)PCx(t − h(t)) − xT (t − h(t))CTPD(t)
∫ t

t−r(t)
f(x(s))ds

−
(∫ t

t−r(t)
f(x(s))ds

)T

DT (t)PCx(t − h(t)) + xT (t − τ(t))

× [−U2 −
(
1 − η1

)
Q
]
x(t − τ(t))

−
(∫ t

t−r(t)
f(x(s))ds

)T

r−1S

(∫ t

t−r(t)
f(x(s))ds

)

+[H0(t)x(t) +H1(t)x(t − τ(t))]TP[H0(t)x(t) +H1(t)x(t − τ(t))]
}
dt

+ 2yT (t)P[H0(t)x(t) +H1(t)x(t − τ(t))]dw(t).

(3.10)

That is,

dV (t, x(t)) ≤ ξT (t)Σξ(t)dt + 2yT (t)P[H0(t)x(t) +H1(t)x(t − τ(t))]dw(t), (3.11)

where ξT (t) = (xT (t), xT (t − h(t)), fT (x(t − τ(t))), (
∫ t
t−r(t) f(x(s))ds)

T
, xT (t − τ(t))), and the

matrix Σ is given in (3.5).
Taking the mathematical expectation, we get

E
(
dV (t, x(t))

dt

)
≤ E

(
ξT (t)Σξ(t)

)
≤ λmax(Σ)E‖x(t)‖2. (3.12)

From (3.5), we know Σ < 0, that is, λmax(Σ) < 0. By Lyapunov-Krasovskii stability theorems,
the system (2.1) is globally robustly asymptotically stable. The proof is completed.

Remark 3.2. To the best of our knowledge, few authors have considered the stochastically
asymptotic stability for uncertain neutral-type neural networks driven by Wiener process.
We can find recent papers [18, 22–24]. However, it is assumed in [18] that the system is a
linear model and all delays are constants. In [22], it is assumed that the time-varying delays
satisfying τ̇(t) ≤ ρτ < 1, ḣ(t) ≤ ρh < 1, in this paper, we relax it to τ̇(t) ≤ ρτ < ∞, ḣ(t) ≤ ρh < ∞.
In [23, 24], the authors discussed the robust stability for uncertain stochastic neural networks
of neutral-type with time-varying delays. However, the distributed delays were not taken
into account in the models. Hence, our results in this paper have wider adaptive range.

Remark 3.3. Suppose that C = 0, D(t) = 0 (i.e., without neutral-type and distributed delays),
then the system (2.1) becomes the one investigated in [15].

Remark 3.4. In [17], the authors studied the global stability for uncertain stochastic neural
networks with time-varying delay by Lyapunov functional method and LMI technique.
However, the neutral term and distributed delays were not taken into account in the models.
Therefore, our developed results in this paper are more general than those reported in [17].



10 Journal of Applied Mathematics

Remark 3.5. It should be noted that the condition is given as linear matrix inequalities LMIs,
therefore, by using the MATLAB LMI Toolbox, it is straightforward to check the feasibility of
the condition.

4. Numerical Example

Consider the following uncertain neutral-type delayed neural networks:

d[x(t) − Cx(t − h(t))] =

[
− (A +UF(t)M1)x(t) + (B +UF(t)M2)f(x(t − τ(t)))

+(D +UF(t)M3)
∫ t

t−r(t)
f(x(s))ds

]
dt

+ [UF(t)M4x(t) +UF(t)M5x(t − τ(t))]dw(t),

(4.1)

where n = 2, fi(xi) = sinxi, i = 1, 2, η1 = 0.7, η2 = 0.5, 0 < r(t) ≤ r = 3, FT (t)F(t) ≤ I.
The constant matrices are

A =

(
3 0

0 3

)
, B =

(
0.2 0.16

0.04 0.08

)
, C =

(
0.2 0

0 0.2

)
,

D =

(
0.04 0.03

−0.02 0.05

)
, U =

(
0.1 0.5

0.5 0.3

)
, M1 =

(
0.6 0

0 0.6

)
,

M2 = M3 = M4 =

(
0.2 0

0 0.2

)
, M5 =

(
0.4 0

0 0.4

)
, G =

(
1 0

0 1

)
.

(4.2)

By using the MATLAB LMI Control Toolbox, we obtain the feasible solution as follows: δ =
2.0876, ε1 = 5.0486, ε2 = 8.0446,

P =

(
6.8465 −0.7257
−0.7257 6.6012

)
, Q =

(
9.9371 −0.2792
−0.2792 10.4388

)
, R =

(
8.0104 −2.3936
−2.3936 5.4991

)
,

S =

(
3.4984 −0.8143
−0.8143 1.9588

)
, U1 =

(
1.1111 0.3889

0.3889 1.1060

)
, U2 =

(
2.4193 −0.6561
−0.6561 2.6270

)
.

(4.3)

That is the system (4.1) is globally robustly stochastically asymptotically stable in the mean
square.

5. Conclusion

In this paper, the stochastically asymptotic stability problem has been studied for a class of
uncertain neutral-type delayed neural networks driven by Wiener process by utilizing the
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Lyapunov-Krasovskii functional and linear matrix inequality (LMI) approach. A numerical
example is given to illustrate the applicability of the result.
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