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Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity
of fluid motion and flexibility of oscillating structure. The set of governing equations based on
a variational principle is applied to a one- or two-layer fluid interacting with a horizontally
very large and elastic thin plate floating on the water surface. Calculation results of surface
displacements are compared with the existing experimental data, where a tsunami, in terms of
a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate
surface and internal waves due to a point load, such as an airplane, moving on a very large floating
structure in shallow water. The wave height of the surface or internal mode is amplified when the
velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

1. Introduction

A Very Large Floating Structure (VLFS), which should be designed for offshore airports,
large bridges, storage facilities, wind/solar power plants, emergency bases, and so forth,
has advantages including mobility. Such a floating platform is also good for the nearshore
environment because the sea water can flow under the structure. In coastal engineering, the
interaction between flexible platforms and fluids has been coped with in problems of ice-
plate motion on the sea, (e.g., Squire et al. [1]); the results are applicable to design of floating
structures.

In order to investigate interaction between a VLFS and a fluid, various numerical
models have been developed: for instance, the Boussinesq-type equations for surface waves
were solved in Takagi [2] using a finite difference method to examine the relation between
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bending moment and flexural rigidity of an elastic thin plate on a progressing solitary wave;
Sakai et al. [3] studied the interaction of a thin plate with a solitary wave by coupling a finite
element method and a boundary element method and found the wave disintegration near
front of strongly nonlinear solitary waves; Hermans [4] applied a boundary element method
for the interaction between thin-plate oscillation and fluid motion in a coexistence field of
linear waves and a current to simulate the plate response to a moving weight, which was
equivalent to an airplane running on a floating airport.

When density stratification is developed under floating structures, the oscillation
of a floating structure may generate internal waves, resulting in change of salinity and
temperature especially in the coastal environment through their propagation, shoaling,
and breaking. Xu and Lu [5] formulated a vertical two-dimensional problem within the
framework of a linear potential theory to treat the response of a floating thin plate to
a field where both surface and internal waves exist. In the present paper, interaction of
surface/internal water waves with floating platforms is discussed in consideration of both
nonlinearity of fluid motion and flexibility of oscillating structure. In a multilayer fluid
system, for example, Yamashita et al. [6], it is assumed that no fluids of different layers mix
together; since this leads to discontinuity of several variables at interfaces, an elastic plate
can be put in between two layers as shown in Figure 1. Then we can study multilayer fluids
interacting with horizontally large thin plates oscillating flexibly on/below the sea surface.
This concept was shown by Kakinuma [7], where nonlinear surface and internal waves were
simulated in shallow water.

The set of governing equations has been derived through vertical integration in each
fluid layer to satisfy nonlinear boundary conditions on the interfaces, such that the model
represents a multilayer fluid system interacting with horizontally very large and elastic thin
plates. Numerical simulation is performed for surface/internal waves with thin-plate oscil-
lations in the vertical plane. First, in a one-layer case, calculation results of surface displace-
ments are compared with the existing experimental data, where a solitary wave as a tsunami
propagates under a floating thin plate. Second, in two-layer cases, generation processes of
surface/internal waves are simulated due to a point load moving on a floating thin plate.

2. Governing Equations and Numerical Method

As illustrated in Figure 1, inviscid and incompressible fluids are assumed to be stable in still
water, where the fluid layers are represented as the i-layer (i = 1, 2, . . ., I) from top to bottom.
The i-layer, the thickness of which is denoted by hi(x) in still water, is sandwiched between
two elastic thin plates, where x is the coordinate in the horizontal plane, (x,y). None of the
fluids mix even in motion and the density ρi(ρ1 < ρ2 < · · · < ρI) is spatially uniform and
temporally constant in each layer.

Elevations of lower and upper interfaces of the i-layer are expressed by z = ηi,0(x, t) and
z = ηi,1(x, t), on which pressure is defined as pi,0(x, t) and pi,1(x, t), respectively. The thin plate
touching the upper interface of the i-layer is called the i-plate, whose density and vertical
width are mi and δi, respectively. If mi, δi, and flexural rigidity of the i-plate are zero, the
plate yields no resistance to fluid motion; this corresponds to the case where two immiscible
fluids touch each other directly without any plate. Surface tension and capillary action are
neglected; the friction is also neglected for simplicity.

Fluid motion is assumed to be irrotational, resulting in existence of velocity potential
φi defined as ui = ∇φi andwi = ∂φi/∂z, where ∇ = (∂/∂x, ∂/∂y), that is, a partial differential
operator in the horizontal plane.
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Figure 1: Thin plates and multilayer fluids.

In the i-layer, if both the elevation of one interface, z = ηi,1−j(x, t) (j = 0 or 1), and
the pressure at the other interface, pi,j(x, t), are known, then the unknown variables are the
velocity potential φi(x, z, t) and interface elevation ηi,j(x, t), such that the functional for the
variational problem [8] is determined in the i-layer by
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where Pi =
∑i−1

k=1{(ρi−ρk)ghk}; Wi =
∑i

k=1{(ρi−mk)gδk} in case of no buoyancy of structures;
the gravitational acceleration g is equal to 9.8m/s2.

The velocity potential in the i-layer, φi, is expanded into a power series of vertical
position above the still surface of the 1-layer, z, as

φi(x, z, t) =
N−1∑

α= 0

{
fi,α(x, t) · zα

} ≡ fi,αz
α, (2.2)

where, for instance, f2,3 means the weighting of z3 in the 2-layer; the sum rule of product is
adopted for subscript α in the right side.

We substitute (2.2) into (2.1), after which the functional Fi is integrated vertically;
then the variational principle is applied to obtain Euler-Lagrange equations, that is the fully
nonlinear equations for surface and internal waves as follows:
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where the sum rule of product is adopted for subscripts α, β, and γ . In the derivation process
of the equations, no assumption is used for nonlinearity and dispersion of waves, such that
the application of this model is expected to be theoretically free from limitations concerning
the relative thickness of fluid layers or the frequency band of surface/internal waves.
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On the other hand, it is assumed that the structure is horizontally very large, that is, the
horizontal length scale is much larger than the thickness of the plate, such that the difference
of curvature among the neutral plane, the upper surface, and the lower surface of the thin
plate is ignored, resulting in the following classical equation which describes the oscillation
of an elastic thin plate:

miδi
∂2ηi,1

∂t2
+ Bi∇2∇2ηi,1 +migδi + pi−1,0 − pi,1 = 0, (2.5)

where Bi is flexural rigidity of the i-plate between the (i −1)- and i-layers; both plate density
and vertical width, mi and δi, are constant throughout the i-plate, for simplicity. It should be
noted that the flexural rigidity Bi can be distributed along the thin plate.

The physical variables are nondimesionalized using representative wave height H,
wavelength λ, water depth h, and fluid density ρ, as
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(2.6)

where e = 0 and 1. The variables in (2.6) are substituted into (2.5), resulting in
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i δ
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i δ
∗
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where ε is wave height to water depth ratio, H/h, and σ is water depth to wavelength
ratio, h/λ. In the present paper, it is assumed that the wave nonlinearity is weak in water
of intermediate depth, that is, the orders of the parameters are O(ε) � 1 and O(σ) < 1;
then the first term of the left-hand-side of (2.7) can be neglected, such that the dimensional
equation for the i-plate is

Bi∇2∇2ηi,1 +migδi + pi−1,0 − pi,1 = 0. (2.8)

The set of governing equations, (2.3), (2.4), and (2.8), is solved to study interaction of
surface/internal water waves with a floating thin plate in the vertical two dimensions, using a
finite difference method similar to that of Nakayama and Kakinuma [9], which is a numerical
model to solve two-layer problems between two fixed horizontal plates. In computation,
physical variables around each lattice point are expanded in determinants, which are solved
to find a temporary solution, and then the solution is corrected by an iteration method. In
the present problems, the surface displacement is also an unknown variable, such that the
part of determinants relevant to the surface displacement is different from that of the two-
layer model [9]. In the initial condition, every weighting of the expanded velocity potential,
fi,α(x, 0), is zero, which means that the initial velocity is zero everywhere.
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Figure 2: Wave basin with a floating thin plate utilized in Sakai et al. [3]. The upper and lower figures
show its plan and side views, respectively.
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Figure 3: Computational domain with a thin plate floating on a one-layer fluid. The condition corresponds
to that of Figure 2.

3. Calculation Results in One-Layer Cases: Response of
a Thin Plate to a Tsunami

One-layer cases are treated to verify the present numerical model in comparison with the
existing experimental data. Figure 2 shows the water basin with a flexible thin plate floating
on the water surface in Sakai et al. [3]. The area 10m ≤ x ≤ 20m is covered with the
floating thin plate and a tsunami travels from the left wave generator/absorber shown in
the figure. The flexural rigidity of thin plate is 450.0Nm2. In the numerical calculation, the
computational domain as shown in Figure 3 is considered and the distribution of flexural
rigidity is given on the surface as drawn in Figure 4. If the thin plate is floating on a part of
the water surface in a state of equilibrium between the weight and buoyancy, that is, a part
of the water surface is an uncovered free surface, W1 in (2.4) is equal to zero. The grid width
Δx and the time-step interval Δt are equal to 5.0 × 10−2 m and 2.5 × 10−5 s, respectively.

Numerical results of surface displacements through the present model are compared
with the corresponding experimental data [3] in Figure 5, where the surface displacement
η1,1(x, t) is simply described as ζ(x, t) and the still water depth h is equal to 0.4m. In the
computation, the initial surface profile is described by

ζ(x, 0) =
0.08

(
2.0x + 2.0−x

) (3.1)
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Figure 4: Distribution of flexural rigidity B given on the surface in the numerical computation.

and the number of terms in the expanded velocity potential shown in (2.2), N, is equal to
one or two. When N = 1, the governing equations are reduced to nonlinear shallow water
equations without a wave-dispersion term, such that the waves are inclined forward more
strongly than the experimental data. On the other hand, when N = 2, the model takes
into account both linear and uniform vertical distributions of horizontal velocity ui and
vertical velocity wi, respectively, such that the balance between nonlinearity and dispersion
is considered, leading to the more accurate result than that when N = 1.

Numerical and experimental results of water surface displacements ζ are shown in
Figure 6 for the case where the still water depth h is equal to 0.2m and the initial surface
profile is given as

ζ(x, 0) =
0.08

(
10.0x + 10.0−x

) , (3.2)

such that the initial water depth is shallower and accordingly the incident wave height to
water depth ratio is larger, that is, the nonlinearity of incident wave is stronger, in the present
case than in the case of Figure 5. It should be noted that the result in the case N = 4 is in
agreement with that when N = 3, which means that the solution has been convergent. When
N = 3, the effects of both parabolic vertical distribution of ui and linear vertical distribution
ofwi are also considered. According to the results, the computation shows good accuracy for
the one-layer case when the number of terms in the expanded velocity potential, N, is two
and over, where a preceding short wave generated due to the nonlinearity of waves is also
successfully simulated through the numerical calculation.

4. Calculation Results in Two-Layer Cases: Surface/Internal Waves
due to a Point Load Moving on a Floating Thin Plate

In the preceding section, the accuracy of the calculation results was guaranteed for the fluid
motion interacting with a thin plate floating on the water surface, where the waves were long
as general tsunamis. On the other hand, the numerical model has been validated for two-
layer motion of fluids without thin plates (e.g., [6] and [10]). In this section, it is assumed
that the wavelength of surface and internal waves is enough long and their nonlinearity is
not so strong, such that the present model should be applicable to two-layer fluid motion
with a floating thin plate, where the density stratification is well developed of an almost
zero-thickness interface without energy dissipation between two layers.

A point load, intended as an airplane, moves on a thin plate floating on the surface of
a two-layer fluid as shown in Figure 7. The still water depth and fluid density in the upper
layer are h1 = 0.2m and ρ1 = 1000.0 kg/m3, respectively, while those in the lower layer are
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Figure 5: Surface displacements ζ at each point in one of the experimental cases by Sakai et al. [3]. The still
water depth and incident wave height are 0.4m and 0.02m, respectively. The flexural rigidity of thin plate
is 450.0Nm2. In the computation, the number of terms for velocity potential, N, is one or two.

h2 = 0.8m and ρ2 = 1020.0 kg/m3, respectively; the total still water depth h is equal to 1.0m.
The length of thin plate, Ls, is equal to 35.0m and the thin plate covers the water surface
from x = 5.0m to 40.0m. The point load, the weight of which is 0.2ρ1gh, moves from one
point where x = 10.0m to another where x = 10.0m + Lp at a constant velocity of vp = k

√
gh.
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Figure 6: Surface displacements ζ at each point in one of the experimental cases by Sakai et al. [3]. The still
water depth and incident wave height are 0.2m and 0.02m, respectively. The flexural rigidity of thin plate
is 450.0Nm2. In the computation, the number of terms for velocity potential, N, is equal to 2, 3, or 4.

The grid width Δx and the time-step interval Δt are equal to 5.0 × 10−2 m and 2.5 × 10−5 s,
respectively.

Calculation results of time variation of surface profiles are shown in Figure 8, where ζ
is surface displacement; flexural rigidity Bs = 500.0Nm2 and moving distance Lp = 5.0m; k =
0.5, 1.0, and 2.0; the number of terms for the expanded velocity potential, N, is equal to two.
The mark � indicates the position of moving point load at each time. When k = 1.0, that is,
vp =

√
gh, the surface-mode waves are remarkably generated, such that the deformation of

floating structure should disturb the airplane in its running. In the present case, the surface
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Figure 8: Time variation of surface profiles due to the point load moving on the floating thin plate, where
ζ is surface displacement. The length of thin plate, Ls, and moving distance of point load, Lp, are 35.0m
and 5.0m, respectively; Bs = 500.0Nm2. The number of terms for velocity potential,N, is equal to two. The
mark � indicates the position of moving point load.
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1.0m.

slope at the position of point load, ∂ζ/∂x, is positive, which means that the point load has to
proceed on a rising surface.

Calculation results of surface and interface profiles at the time t
√
g/h = 5.0, when the

point load stops movement, are shown in Figure 9, where ζ and η are surface and interface
displacements, respectively; Bs = 500.0Nm2 and Lp = 5.0m; k = 1.0; N = 2. According to the
figure, there is no phase shift in the interface profile with respect to the plate deformation,
which means that surface-mode waves are amplified also at the interface when vp =

√
gh.

Numerical results of bending moment M of the floating thin plate at the time when
the point load stops movement are shown in Figure 10, where Bs = 500.0Nm2 and Lp = 5.0m;
k = 0.5, 1.0, and 2.0; N = 2; unit width ω = 1.0m. When the coefficient of velocity, k, is equal to
0.5, the area where the absolute value of bending moment is large is restricted to the vicinity
of the position of point load; while when k = 1.0, the plate waves are amplified remarkably,
such that the absolute value of bending moment is relatively large at several points. When
k = 2.0, the generated shorter waves obtain larger curvature, such that the absolute value
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12.0m at a constant velocity.

of bending moment is also large, where the wavelength of the generated waves is about
0.05Ls, that is, 1.75h. In practice, it is required to confirm that even shorter waves generated
by a possible moving load are not significant because shorter waves of larger celerity may be
trapped to stay inside a thin plate for a longer period, although the structural-damping and
three-dimensional effects could decrease shorter waves more easily than longer waves.

Surface profiles at each time are shown in Figure 11, where k = 1.0 and N = 2, for the
following three cases:

Case A: Bs = 500.0Nm2 and Lp = 5.0m (Bs/ρ1gLs
4ω = 3.38 × 10−8 and Lp/Ls =

0.143),



12 Journal of Applied Mathematics

0

0.01

0.02

0.2 0.4 0.6 0.8 1 1.2 1.4

31.3

93.9

156.5

219.1

t
g
/
h

x/Ls

ζ/
h

Figure 13: Time variation of surface profile due to the point load moving on the floating thin plate, where
ζ is surface displacement; κ = 1.0; N = 2. The mark � indicates the position of moving point load.

0

0.01

0.02

0.2 0.4 0.6 0.8 1 1.2 1.4

31.3

93.9

156.5

219.1

N = 1
N = 2
N = 3

t
g
/
h

x/Ls

(η
+
h

1)
/
h

Figure 14: Time variation of interface profiles due to the point loadmoving on the floating thin plate, where
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Case B: Bs = 500.0Nm2 and Lp = 10.0m (Bs/ρ1gLs
4ω = 3.38 × 10−8 and Lp/Ls =

0.286),

Case C: Bs = 1000.0Nm2 and Lp = 5.0m (Bs/ρ1gLs
4ω = 6.67 × 10−8 and Lp/Ls =

0.143),

where unit width ω = 1.0m. According to the numerical results, the longer the moving
distance of point load on the floating thin plate is, the larger the wave height of generated
plate waves is; while the larger the flexural rigidity of thin plate is, the less and the longer the
wave height and wavelength of plate waves are, respectively.

Another two-layer system with a floating thin plate is shown in Figure 12, where the
still water depth and fluid density in the upper layer are h1 = 0.2m and ρ1 = 1000.0 kg/m3,
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respectively, while those in the lower layer are h2 = 0.8m and ρ2 = 1020.0 kg/m3, respectively;
the total still water depth h is equal to 1.0m. The thin plate, the length and flexural rigidity of
which are Ls = 14.0m andBs = 500.0Nm2, respectively, covers thewater surface from x = 1.0m
to 15.0m. The point load moves from one point where x = 4.0m to another where x = 12.0m
at a constant velocity of vp = κ

√
dgh1h2/h, where d = (ρ2 – ρ1)/ρ2. In the present calculation,

the weight of point load increases linearly, without generation of thin-plate oscillation due to
some impact, from 0 to 0.2ρ1gh between Point O (x = 4.0m) and Point P (x = 4.25m) and
then keeps constant at 0.2ρ1gh until the point load arrives at Point Q (x = 12.0m), after which
the point load stays at Point Q. The grid width Δx and the time-step interval Δt are equal to
5.0 × 10−2 m and 2.5 × 10−5 s, respectively.

Figure 13 shows a calculation result of time variation of surface profile, where ζ is
surface displacement; κ = 1.0, that is, vp =

√
dgh1h2/h; N = 2. The mark � indicates the

position of moving point load at each time. When the velocity of moving point load is the
same as the celerity of internal-mode waves in shallow water, the warped point of the thin
plate moves with the point load without generation of significant plate waves, which can be
also seen in the cases κ = 0.5 and 2.0, since the velocity of moving point load is much different
from the celerity of surface-mode waves, although not shown in the paper.

Computational results of interface profiles are shown in Figure 14, where η is interface
displacement; κ = 1.0; N = 1, 2, and 3. According to the figure, large internal-mode waves
grow at the interface as the velocity of moving point load equals to the celerity of internal-
mode waves in shallow water. WhenN is equal to two or more, the present numerical model
considers the balance between nonlinearity and dispersion of waves, resulting in the milder
steepness of internal waves with wave dispersion when N = 2 or 3 than when N = 1. Once
such large internal waves are generated and amplified, they would propagate to change the
salinity and temperature of water not only inside but also outside the area covered with the
thin plate.

5. Conclusions

The interaction of the surface/internal water waves with the floating thin plates was
discussed in the vertical two dimensions with the nonlinearity of fluid motion and the
flexibility of oscillating structure. The set of governing equations based on the variational
principle was applied to represent multilayer fluid systems interacting with horizontally very
large and elastic thin plates. The velocity potential in each fluid layer was expanded into the
power series of vertical position, such that the accuracy of computational results depended
on the number of expansion terms.

The calculation results of surface displacements were compared with the existing
experimental data, where the solitary wave propagated through the one-layer water covered
with the floating thin plate. In the present cases, two was the enough number of terms for the
expanded velocity potential to obtain accurate numerical results.

The surface and internal waves were also numerically simulated when the point load
moved on the thin plate floating on the surface of two-layer fluid system. When the velocity
of moving point load was equal to the celerity of surface-mode waves in shallow water, the
surface-mode waves were amplified at both the surface and interface. When the velocity of
moving point load was equal to, as well as on the order of twice, the celerity of surface-
mode waves in shallow water, relatively large bending moment appeared at the floating thin
plate in the present cases. On the other hand, when the velocity of moving point load was
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equal to the celerity of internal-mode waves in shallow water, the internal-mode waves were
generated at the interface.
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