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Lyapunov drift is a powerful tool for optimizing stochastic queueing networks subject to stability.
However, the most convenient drift conditions often provide results in terms of a time average
expectation, rather than a pure time average. This paper provides an extended drift-plus-penalty
result that ensures stability with desired time averages with probability 1. The analysis uses the
law of large numbers for martingale differences. This is applied to quadratic and subquadratic
Lyapunov methods for minimizing the time average of a network penalty function subject to
stability and to additional time average constraints. Similar to known results for time average
expectations, this paper shows that pure time average penalties can be pushed arbitrarily close
to optimality, with a corresponding tradeoff in average queue size. Further, in the special case of
quadratic Lyapunov functions, the basic drift condition is shown to imply all major forms of queue
stability.

1. Introduction

This paper considers Lyapunov methods for analysis and control of queueing networks.
Landmark work in [1, 2] uses the drift of a quadratic Lyapunov function to design general
max-weight algorithms for network stability. Work in [3, 4] extends this result using a drift-
plus-penalty algorithm that leads to joint stability and penalty optimization. The results in
[1, 2] are developed for systems that evolve on ergodic Markov chains with countably
infinite-state space. The results in [3, 4] apply to more general systems but are stated in terms
of time average expectations, rather than pure time averages. Time average expectations can
often be translated into pure time averages when the system has a Markov structure and
some additional assumptions are satisfied, such as when the system regularly returns to a
renewal state. However, these additional assumptions often fail and can be difficult to verify
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for particular systems of interest. This paper seeks to provide simple conditions that ensure
desirable queue sample paths and desirable time average penalties with probability 1.

First, a basic drift condition for a general class of Lyapunov functions is shown to
imply two weak forms of queue stability, called rate stability and mean rate stability. Next,
this paper focuses on quadratic and subquadratic Lyapunov functions. Using the law of
large numbers for martingale differences, a simple drift-plus-penalty condition is shown
to ensure queue stability together with desirable time averages of an associated network
penalty function. In the special case of quadratic Lyapunov functions, it is shown that the
basic drift condition implies all major forms of queue stability, including rate and mean rate
stability, as well as four stronger versions. These results require only mild bounded fourth
moment conditions on queue difference processes and bounded second-moment conditions
on penalty processes and do not require a Markov structure or renewal assumptions. Two
simple examples are given in Appendix A to show what can go wrong if these bounded
moment conditions are violated.

Finally, these results are used to design and analyze a class of algorithms for
minimizing the time average of a network penalty subject to queue stability constraints
and additional time average constraints. It is shown that the time average penalty can be
pushed arbitrarily close to optimality, with a corresponding tradeoff in queue size. In the
special case of quadratic functions, the tradeoff results of [3, 4] are recovered in a stronger
form. They are shown to hold for time averages with probability 1 (rather than time average
expectations). The results for quadratic functions in this paper assume the problem is feasible
and that the constraints can be achieved with “ε-slackness” (similar to a Slater-type condition
of static optimization theory [5]). However, this paper also obtains results for subquadratics.
Algorithms based on subquadratics are shown to provide desired results whenever the
problem is feasible, without requiring the additional slackness assumption. This analysis
is useful for control of queueing networks, and for other stochastic problems that seek to
optimize time averages subject to time average constraints.

1.1. On Relationships between Time Average Expectations and Time Averages

It is known by Fatou’s Lemma that if a random process is deterministically lower bounded
(such as being nonnegative) and has time averages that converge to a constant with
probability 1, then this constant must be less than or equal to the lim inf time average
expectation (see, e.g., [6]). This can be used to translate the existing bounds in [4], which
hold for time average expectations, into sample path bounds that hold with probability 1.
However, this translation is only justified in the special case when the processes are suitably
lower-bounded and have convergent time averages. Time average convergence can often be
shown when the system is defined on a Markov chain with suitable renewal properties [7, 8].
Further, queue stability is often defined in terms of positive Harris recurrence [9, 10] although
systems with positive Harris recurrence do not always have finite average queue size. For
example, consider a standard M/G/1 queue with service times that have finite means E[X]
but infinite second moments, and with arrival rate λ < 1/E[X]. The system spends a positive
fraction of time in the 0 state but has infinite time average queue size.

Networks with flow control often have a structure that yields deterministically bounded
queues [11, 12]. While this is perhaps the strongest form of stability, it requires special
structure. Primal-dual algorithms are considered for scheduling in wireless systems with
“infinite backlog” in [13, 14] and shown to converge to a utility-optimal operating point
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although this work does not consider queueing or time average constraints. Related primal-
dual algorithms are treated in [15, 16] for systems with queues, where [15] shows utility
optimality for a fluid version of the system, and [16] proves that the actual network exhibits
rate stability with near-optimal utility. Related analysis is considered in [17] for systems with
countably infinite-state ergodic Markov chains, and utility-optimal scheduling is treated for
deterministic systems in [18]. The approaches in [13–18] do not obtain the desired tradeoffs
between network utility and queue size.

1.2. Prior Work on Quadratics and Other Lyapunov Functions

Much prior work on queue stability uses quadratic Lyapunov functions, including [1, 2, 19–
21] for ergodic systems defined on countably infinite Markov chains, and [22] for more
general systems but where stability is defined in terms of a time average expectation. Stability
with exponential Lyapunov functions is treated in [23, 24], and stability with more general
Lyapunov functions is in [25]. The works [26–29] develop algorithms based on subquadratic
Lyapunov functions and suggest that these often have better delay in comparison to
algorithms derived from quadratic Lyapunov functions. This motivates recent work in
[30] that has combined subquadratic Lyapunov functions with joint stability and penalty
minimization, using time average expectations similar to [4].

2. Lyapunov Functions and Drift

Let Q(t) = (Q1(t), . . . , QK(t)) be a real-valued random vector that evolves over time slots
t ∈ {0, 1, 2, . . .}. The distribution of Q(0) is given, and the values of Q(t) for t ∈ {1, 2, 3, . . .}
are determined by events on a probability space. Specifically, assume that outcomes on the
probability space have the structure {η(−1), η(0), η(1), η(2), . . .}, where η(−1) = Q(0) is the
initial vector state, and η(t) for t ∈ {0, 1, 2, . . .} represents an event that occurs on slot t.
For each slot t ∈ {0, 1, 2, . . .}, the value of Q(t) is assumed to be determined by the history
{Q(0), η(0), η(1), . . . , η(t − 1)}. Let H(t) represent this history up to (but not including) slot
t. Formally, H(t) is a filtration of the infinite horizon probability space onto the finite set of
slots {−1, 0, 1, . . . , t − 1}. For any slot t ∈ {0, 1, 2, . . .}, a given H(t) includes information that
specifies the value of Q(t).

An example of such a processQ(t) is the queue backlog process in a network ofK queues
that evolve according to some control law via the queueing equation

Qk(t + 1) = max[Qk(t) + ak(t) − bk(t), 0], (2.1)

where ak(t) and bk(t) are arrival and service processes for queue k, which take values
determined by η(t). For this reason, throughout we call Q(t) the queue vector. However, our
results are not restricted to processes of the type (2.1) and hold for more general processes,
including processes Q(t) that can have negative components.

2.1. Lyapunov Functions

Let L(Q(t)) be a nonnegative function of the current queue vector Q(t). We call this a
Lyapunov function. DefineΔ(t) = L(Q(t+1))−L(Q(t)). Algorithms for queue stability are often
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developed by defining a convenient Lyapunov function, greedily minimizing a bound on
Δ(t) every slot, and showing that the resulting expectation E[Δ(t)] has desirable properties
[1, 2, 19–24]. An example Lyapunov function that is often used is

L(Q) =
1
β

K∑

k=1

wk|Qk|β, (2.2)

where β, wk are given positive constants, with β > 1. This type of function represents a scalar
measure of the vector queue size. Algorithms that greedily minimize a bound on Δ(t) every
slot often satisfy a drift condition of the form E[Δ(t)] ≤ B for all t, for some finite constant B.
Such drift conditions are examined in Section 3 in the context of queue stability.

Now let p(t) be an additional penalty process for the system, representing some penalty
(such as power expenditure) incurred on slot t. In many cases we desire to jointly stabilize
all queues while minimizing the time average of p(t). The drift-plus-penalty theory in [4]
approaches this by taking control actions that greedily minimize a bound on Δ(t) + Vp(t),
where V is a nonnegative weight that affects a performance tradeoff. Such policies often
ensure a drift-plus-penalty condition of the following form:

E
[
Δ(t) + Vp(t) | H(t)

]
≤ B + Vp∗ − εf(Q(t)) (2.3)

for some constants p∗, ε ≥ 0, and some nonnegative function f(Q(t)). The value p∗ represents
a target value for the time average of p(t). The function f(Q(t)) represents a measure of the
total queue size. Expressions of the type (2.3) are examined in Sections 4, 5, and 6, and a broad
class of networks that lead to expressions of this type are considered in Section 7.

2.2. Performance for Time Average Expectations

Results for time average expected queue size and time average expected penalty can be
immediately derived from the drift-plus-penalty condition (2.3) together with minimal
assumptions. Specifically, assume that (2.3) holds for all t and all H(t), with V ≥ 0, ε ≥ 0,
f(Q) ≥ 0. Assume that E[L(Q(0))] < ∞, and that there is a (possibly negative) constant pmin

such that E[p(t)] ≥ pmin for all t. Taking expectations of (2.3) for a given slot τ gives the
following:

E[Δ(τ)] + VE
[
p(τ)

]
≤ B + Vp∗ − εE

[
f(Q(τ))

]
. (2.4)

Now fix any integer t > 0. UsingΔ(τ) = L(Q(τ+1))−L(Q(τ)), summing over τ ∈ {0, . . . , t−1},
and dividing by t yields

E[L(Q(t))] − E[L(Q(0))]
t

+ V
1
t

t−1∑

τ=0

E
[
p(τ)

]
≤ B + Vp∗ − ε

1
t

t−1∑

τ=0

E
[
f(Q(τ))

]
. (2.5)
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Rearranging the above and using E[L(Q(t))] ≥ 0 leads to the following two inequalities for
all t > 0

1
t

t−1∑

τ=0

E
[
p(τ)

]
≤ p∗ +

B

V
+

E[L(Q(0))]
V t

,

1
t

t−1∑

τ=0

E
[
f(Q(τ))

]
≤

B + V
(
p∗ − pmin

)

ε
+

E[L(Q(0))]
εt

,

(2.6)

where the first inequality holds whenever V > 0, and the second holds whenever ε > 0.
Taking a lim sup of the above gives

lim sup
t→∞

1
t

t−1∑

τ=0

E
[
p(τ)

]
≤ p∗ +

B

V
, (2.7)

lim sup
t→∞

1
t

t−1∑

τ=0

E
[
f(Q(τ))

]
≤

B + V
(
p∗ − pmin

)

ε
. (2.8)

this shows that performance can be parameterized by the constant V , giving time average
expected penalty within O(1/V ) of the target p∗, with an O(V ) tradeoff in the time average
expectation of f(Q(t)) (representing a time average queue size metric). This method is used
in [3, 4] for analysis and design of stochastic network optimization algorithms. Related
manipulations of drift expressions in [31–34] lead to statements concerning time average
expectations in other contexts.

The above arithmetic did not require Markov chain assumptions, renewal assump-
tions, or assumptions on the higher-order moments of the processes. We desire to obtain
performance bounds similar to (2.7) and (2.8), but with the above limiting time average
expectations replaced, with probability 1, by limiting time averages over a sample path.
This cannot be done without imposing more structural assumptions on the problem (see
Appendix A for simple counterexamples). The goal is to find simple and easily verifiable
additional assumptions that preserve the elegance of the method while strengthening the
results.

3. Rate Stability and Mean Rate Stability

This section considers drift conditions of the type E[Δ(t)] ≤ B. Let Q(t) � (Q1(t), . . . , QK(t))
be a stochastic vector defined over slots t ∈ {0, 1, 2, . . .}. Assume that there are constants
D > 0, θ > 0 such that

E

[
|Qk(t + 1) −Qk(t)|1+θ

]
≤ D ∀t ∈ {0, 1, 2, . . .}, ∀k ∈ {1, . . . , K}. (3.1)

For example, if θ = 1, then the condition (3.1) states that the secondmoment of queue changes
is bounded for all time. This holds, for example, whenever the queue evolves according to
(2.1) with arrival and service processes ak(t), bk(t) that have bounded second moments for
all slots. The use of the variable θ > 0 allows more general situations when arrivals and/or
service variables can have infinite second moments.
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Let L(Q) be a nonnegative function that has the following structural property. There
exist constants bk > 0, ck > 0, dk ≥ 0 such that for all vectors Q = (Q1, . . . , QK).

L(Q) ≥ ck|Qk|1+bk − dk ∀k ∈ {1, . . . , K}. (3.2)

Condition (3.2) implies that L(Q) grows superlinearly in |Qk|, at least as fast as Ω(|Qk|1+bk)
for some bk > 0. This is satisfied for a large class of functions used in practice, such as the
example functions in (2.2)with β > 1. Define Δ(t) = L(Q(t + 1)) − L(Q(t)).

Proposition 3.1. Suppose that L(Q) is nonnegative and satisfies (3.2), and that there is a constant
B ≥ 0 such that E[Δ(t)] ≤ B for all t ∈ {0, 1, 2, . . .}. Suppose that E[L(Q(0))] < ∞. Then we have
the following.

(a) For all queues k ∈ {1, . . . , K}, we have

lim
t→∞

E[|Qk(t)|]
t

= 0. (3.3)

(b) If additionally assumption (3.1) holds for some constants D > 0, θ > 0, then for all queues
k ∈ {1, . . . , K} we have

lim
t→∞

Qk(t)
t

= 0 (w.p.1), (3.4)

where “w.p.1” stands for “with probability 1.”

The condition (3.3) is called mean rate stability, and the condition (3.4) is called rate
stability. Both are weak forms of stability. Parts (a) and (b) of the proposition are proven
separately.

Proof (Proposition 3.1 Part (a)). By definition of Δ(τ), the statement E[Δ(τ)] ≤ B is equivalent
to

E[L(Q(τ + 1))] − E[L(Q(τ))] ≤ B. (3.5)

The above holds for all slots τ . Summing over τ ∈ {0, 1, . . . , t − 1} for some integer t > 0 gives

E[L(Q(t))] − E[L(Q(0))] ≤ Bt. (3.6)

Now select any k ∈ {1, . . . , K}. From (3.2), we have

ck|Qk(t)|1+bk − dk ≤ L(Q(t)). (3.7)
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Taking expectations of the above and using (3.6) gives:

ckE
[
|Qk(t)|1+bk

]
− dk ≤ E[L(Q(0))] + Bt. (3.8)

Rearranging the above gives

E

[
|Qk(t)|1+bk

]
≤ 1

ck
[dk + E[L(Q(0))] + Bt]. (3.9)

The above holds for all t ∈ {1, 2, 3, . . .}. Thus, there is a constant C > 0 such that

E

[
|Qk(t)|1+bk

]
≤ Ct ∀t ∈ {1, 2, 3, . . .}. (3.10)

By Jensen’s inequality we have E[|Qk(t)|]1+bk ≤ E[|Qk(t)|1+bk]. Using this in (3.10) gives

E[|Qk(t)|]1+bk ≤ Ct. (3.11)

Therefore,

E[|Qk(t)|]
t

≤ (Ct)1/(1+bk)

t
. (3.12)

Taking a limit as t → ∞ proves part (a).

The proof of part (b) follows by noting that the condition (3.10), together with
condition (3.1), satisfies the requirements of the following lemma concerning queues with
higher-order moments that grow at most linearly.

Lemma 3.2. Let Q(t) be a real-valued stochastic process that evolves over slots t ∈ {0, 1, 2, . . .}, and
suppose there are constants b > 0, θ > 0, C > 0, D > 0 such that

E

[
|Q(t)|1+b

]
≤ Ct ∀t ∈ {1, 2, . . .},

E

[
|Q(t + 1) −Q(t)|1+θ

]
≤ D ∀t ∈ {1, 2, . . .}.

(3.13)

Then

lim
t→∞

Q(t)
t

= 0
(
w.p.1

)
. (3.14)

Proof. See Appendix B.
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4. Convergence of Time Averages

This section considers drift conditions of the type (2.3).

4.1. The Law of Large Numbers for Martingale Differences

Let X(t) be a real-valued stochastic process defined over slots t ∈ {0, 1, 2, . . .}. For integers
t > 0, letH(t) be a filtration that includes the information {X(0), . . . , X(t − 1)}. The following
theorem is from [35] and concerns processes that satisfy E[X(t) | H(t)] = 0. Such processes
are called martingale differences.

Theorem 4.1 (from [35]). Suppose that X(t) is a real-valued random process over t ∈ {0, 1, 2, . . .}
such that E[X(t) | H(t)] = 0 for all t ∈ {1, 2, . . .} and all H(t). Further suppose that the second
moments E[X(t)2] are finite for all t and satisfy

∞∑

t=1

E

[
X(t)2

]

t2
< ∞. (4.1)

Then

lim
t→∞

1
t

t−1∑

τ=0

X(τ) = 0 (w.p.1). (4.2)

Corollary 4.2. LetX(t) be a real-valued random process over slots t ∈ {0, 1, 2, . . .}, and suppose there
is a finite constant B such that E[X(t) | H(t)] ≤ B for all t ∈ {1, 2, . . .} and allH(t). Further suppose
the second moments E[X(t)2] are finite for all t and satisfy

∞∑

t=1

E

[
X(t)2

]

t2
< ∞. (4.3)

Then

lim sup
t→∞

1
t

t−1∑

τ=0

X(τ) ≤ B (w.p.1). (4.4)

Proof. Define X̃(t) � X(t) − E[X(t) | H(t)]. Then E[X̃(t) | H(t)] = 0. Further, using (4.3),
it is not difficult to verify that

∑∞
t=1 E[X̃(t)2]/t2 is finite (note that E[X̃(t)2] ≤ 2E[X(t)2] +

2E[E[X(t) | H(t)]2], and the latter term can be bounded by 2E[X(t)2] via Jensen’s inequality).
Thus, the conditions required for Theorem 4.1 hold, so we conclude that

lim
t→∞

1
t

t−1∑

τ=0

X̃(τ) = 0
(
w.p.1

)
. (4.5)
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However, because X(t) = X̃(t) + E[X(t) | H(t)] and E[X(t) | H(t)] ≤ B, we know that X(t) ≤
X̃(t) + B for all t. Thus, for all t > 0, we have

1
t

t−1∑

τ=0

X(τ) ≤ 1
t

t−1∑

τ=0

X̃(t) + B. (4.6)

Taking a lim sup of the above and using (4.5) proves the result.

4.2. A Drift-Plus-Penalty Result for General Lyapunov Functions

Now consider the stochastic system with queue vector Q(t) = (Q1(t), . . . , QK(t)) and pen-
alty process p(t), as described in Section 2.1. The historyH(t) includes information {Q(0), . . . ,
Q(t), p(0), . . . , p(t − 1)}. Assume that there is a finite (possibly negative) constant pmin such
that for all t and allH(t)

E
[
p(t) | H(t)

]
≥ pmin. (4.7)

Further assume that E[p(t)2] is finite for all t, and

∞∑

t=1

E

[
p(t)2

]

t2
< ∞. (4.8)

Let L(Q(t)) be any nonnegative function ofQ(t), and define Δ(t) = L(Q(t+ 1))−L(Q(t)). Let
f(Q(t)) be another nonnegative function of Q(t).

Proposition 4.3. Suppose L(Q(0)) is finite with probability 1, that E[Δ(t)2], E[f(Q(t))2],
E[p(t)2] are finite for all t, that (4.7) and (4.8) hold, and that

∞∑

t=1

E

[
Δ(t)2

]
+ E

[
f(Q(t))2

]

t2
< ∞. (4.9)

Further suppose there are constants p∗, V ≥ 0, ε ≥ 0, B ≥ 0 such that the following drift-plus-penalty
condition holds for all t ∈ {0, 1, 2, . . .} and all possible H(t)

E
[
Δ(t) + Vp(t) | H(t)

]
≤ B + Vp∗ − εf(Q(t)). (4.10)

Then

lim sup
t→∞

1
t

t−1∑

τ=0

p(τ) ≤ p∗ +
B

V
(w.p.1), (4.11)

lim sup
t→∞

1
t

t−1∑

τ=0

f(Q(τ)) ≤
B + V

(
p∗ − pmin

)

ε
(w.p.1), (4.12)

where (4.11) holds when V > 0, and (4.12) holds when ε > 0.
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Proof. Define X(t) = Δ(t) + Vp(t) + εf(Q(t)), and note by algebra that

X(t)2 ≤ 4Δ(t)2 + 4V 2p(t)2 + 4ε2f(Q(t))2 (4.13)

It follows that

∞∑

t=1

E

[
X(t)2

]

t2
< ∞. (4.14)

Further, by (4.10), we have

E[X(t) | H(t)] ≤ B + Vp∗. (4.15)

Thus, by Corollary 4.2:

lim sup
t→∞

1
t

t−1∑

τ=0

X(τ) ≤ B + Vp∗. (4.16)

Because X(t) ≥ Δ(t) + Vp(t), we have

1
t

t−1∑

τ=0

X(τ) ≥ 1
t

t−1∑

τ=0

[
Δ(τ) + Vp(τ)

]

=
L(Q(t)) − L(Q(0))

t
+
V

t

t−1∑

τ=0

p(τ)

≥ −L(Q(0))
t

+
V

t

t−1∑

τ=0

p(τ),

(4.17)

where the final inequality is because L(Q(t)) ≥ 0. Taking a lim sup of the above and using
(4.16) gives

lim sup
t→∞

V

t

t−1∑

τ=0

p(τ) ≤ B + Vp∗ (4.18)

which implies (4.11).
The condition (4.10) together with E[p(t) | H(t)] ≥ pmin also implies that

E
[
Δ(t) + εf(Q(t)) | H(t)

]
≤ B + V

(
p∗ − pmin

)
(4.19)
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Defining X(t) = Δ(t) + εf(Q(t)) and again applying Corollary 4.2 similarly shows that

lim sup
t→∞

1
t

t−1∑

τ=0

εf(Q(t)) ≤ B + V
(
p∗ − pmin

)
(4.20)

which implies (4.12).

The result of Proposition 4.3 is almost the result we desire, with the exception that the
condition (4.9) may be difficult to verify. Note that (4.9) often trivially holds in special cases
when all queues are deterministically bounded. Hence, in the flow control algorithms [11, 12]
designed from drift-plus-penalty theory, Proposition 4.3 proves that time average penalties
satisfy (4.11) with probability 1. The next section shows that this condition follows from the
drift assumption when L(Q) is a subquadratic Lyapunov function. Section 6 treats quadratic
Lyapunov functions.

5. Subquadratic Lyapunov Functions

Suppose that the queue processes Qk(t) are nonnegative for all k ∈ {1, . . . , K} and all t, and
consider a Lyapunov function L(Q) of the following form:

L(Q) =
1
β

K∑

k=1

wkQ
β

k
, (5.1)

where wk and β are positive constants, with 1 < β < 2. The scaling by 1/β is only for
convenience later.

5.1. The Drift Structure

For each k ∈ {1, . . . , K}, define δk(t) = Qk(t + 1) − Qk(t). Assume throughout that there is a
finite constant D > 0 such that for all t ∈ {0, 1, 2, . . .}, all H(t), and all k ∈ {1, . . . , K}:

E

[
δk(t)2 | H(t)

]
≤ D,

∞∑

t=1

E

[
|δk(t)|2β

]

t2
< ∞. (5.2)

Because 1 < β < 2, the above conditions, hold, for example, whenever E[|δk(t)|2β | H(t)] ≤ C
for some finite constant C. In particular, this holds if queues have the structure (2.1) and
arrival and service processes ak(t), bk(t) have bounded (2β)th moments, regardless of the
history H(t).

Appendix D shows that (5.2) implies there is a real number C > 0 such that

E

[
Δ(t)2

]
≤ C + C

K∑

k=1

E

[
|δk(t)|2β +Qk(t)2β−2

]
. (5.3)
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Further, Appendix D shows that there is a real number B > 0 such that

E[Δ(t) | H(t)] ≤ B +
K∑

k=1

wkQk(t)β−1E[δk(t) | H(t)]. (5.4)

Again let p(t) be a penalty process. Algorithms that seek to minimize a bound onΔ(t)+Vp(t)
every slot t often lead to drift conditions of the following form (see Section 7):

E
[
Δ(t) + Vp(t) | H(t)

]
≤ B + Vp∗ − ε

K∑

k=1

wkQk(t)β−1 (5.5)

for some ε ≥ 0. This has the general form (4.10) with f(Q(t)) =
∑K

k=1 wkQk(t)
β−1.

5.2. Drift-Plus-Penalty for Subquadratics

Proposition 5.1. Let L(Q) be a subquadratic Lyapunov function of the form (5.1), with 1 < β < 2.
Assume that E[L(Q(0))] < ∞, (5.2) holds for the queue difference process δk(t), and (4.7)-(4.8)
hold for the penalty process p(t). Suppose that the drift-plus-penalty condition (5.5) holds for some
constants p∗, V ≥ 0, B ≥ 0, ε ≥ 0. Then for all k ∈ {1, . . . , K}

lim
t→∞

Qk(t)
t

= 0 (w.p.1). (5.6)

Further, we have

lim sup
t→∞

1
t

t−1∑

τ=0

p(τ) ≤ p∗ +
B

V
(w.p.1), (5.7)

lim sup
t→∞

1
t

t−1∑

τ=0

K∑

k=1

wkQk(τ)β−1 ≤
B + V

(
p∗ − pmin

)

ε
(w.p.1), (5.8)

where (5.7) holds when V > 0 and (5.8) holds when ε > 0.

Proof. The drift-plus-penalty expression (5.5) implies that

E[Δ(t) | H(t)] ≤ F, (5.9)

wherewe define F � B+V (p∗−pmin). Taking expectations of the above yieldsE[Δ(t)] ≤ F. The
conditions of the theorem ensure that all conditions hold that are required for Proposition 3.1,
and so Proposition 3.1 implies that all queues are rate stable, so that (5.6) holds.

Define f(Q(t)) =
∑K

k=1 wkQk(t)
β−1. If we can show that

∞∑

t=1

E

[
Δ(t)2 + f(Q(t))2

]

t2
< ∞, (5.10)



Journal of Applied Mathematics 13

then our system satisfies all the requirements for Proposition 4.3, and so (5.7)-(5.8) hold.
Thus, it suffices to prove (5.10). To this end, we have

E

[
f(Q(t))2

]
= E

⎡

⎣
(

K∑

k=1

wkQk(t)β−1
)2

⎤

⎦

≤ G
W∑

k=1

E

[
Qk(t)2β−2

]
(5.11)

for some real numberG > 0 (where we have used the fact (B.6) in Appendix B). This together
with (5.3) gives

∞∑

t=1

E

[
Δ(t)2

]
+ E

[
f(Q(t))2

]

t2
≤

∞∑

t=1

C + (C +G)
∑K

k=1 E

[
|δk(t)|2β +Qk(t)2β−2

]

t2
. (5.12)

By (5.2), to prove that the above is finite, it suffices to prove that for each k ∈ {1, . . . , K} we
have:

∞∑

t=1

E

[
Qk(t)2β−2

]

t2
< ∞. (5.13)

Recall from (5.9) that E[Δ(τ)] ≤ F for all τ , and so

E[L(Q(τ + 1))] − E[L(Q(τ))] ≤ F. (5.14)

Summing the above over τ ∈ {0, 1, . . . , t − 1} for some integer t > 0 gives the following:

E[L(Q(t))] − E[L(Q(0))] ≤ Ft. (5.15)

Thus, we have

K∑

k=1

wk

β
E

[
Qk(t)β

]
≤ E[L(Q(0))] + Ft. (5.16)

Thus, there is a real number b > 0 such that for each k ∈ {1, . . . , K} and all t ∈ {1, 2, 3, . . .}

E

[
Qk(t)β

]
≤ bt. (5.17)

Because 1 < β < 2, we have 0 < (2β − 2)/β < 1. Thus, by Jensen’s inequality for the concave
function x(2β−2)/β over x ≥ 0, we have

E

[
Qk(t)2β−2

]
≤ E

[
Qk(t)β

](2β−2)/β
≤ (bt)2−2/β (5.18)



14 Journal of Applied Mathematics

Thus, we have

∞∑

t=1

E

[
Qk(t)2β−2

]

t2
≤

∞∑

t=1

(bt)2−2/β

t2
< ∞, (5.19)

where the final inequality holds because the summation terms are O(1/t2/β), and 2/β > 1.
This proves (5.13), completing the proof.

Note that the final line of the proof requires O(1/t2/β) to be summable, which is true
for 1 < β < 2 but not true for β = 2. This is one reason why quadratic Lyapunov functions
must be considered separately. Another distinction is that the above proposition holds even
for ε = 0, whereas we require ε > 0 for the quadratic analysis in the next section.

6. Quadratic Lyapunov Functions

Here, we allow Qk(t) to possibly take negative values. Consider quadratic Lyapunov func-
tions:

L(Q) =
1
2

K∑

k=1

wkQ
2
k, (6.1)

wherewk are any positive weights. This is the same form as in the previous section, assuming
that β = 2. For β = 2, the assumptions (5.2) become

E

[
δk(t)2 | H(t)

]
≤ D,

∞∑

t=1

E

[
δk(t)4

]

t2
< ∞. (6.2)

DefineΔ(t) = L(Q(t+1))−L(Q(t)). These quadratic Lyapunov functions typically lead
to drift-plus-penalty expressions of the following form (see [36]):

E
[
Δ(t) + Vp(t) | H(t)

]
≤ B + Vp∗ − ε

K∑

k=1

wk|Qk(t)| (6.3)

which is the same as (4.10)with f(Q) =
∑K

k=1 wk|Qk|. Again define δk(t) � Qk(t + 1) −Qk(t).

Proposition 6.1. Suppose that L(Q) has the quadratic form (6.1), and E[|Qk(0)|3] < ∞ for all
k ∈ {1, . . . , K}. Assume that the bounded moment conditions (6.2), (4.7), and (4.8) hold. If the
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drift-plus-penalty expression (6.3) holds for some constants p∗, B ≥ 0, V ≥ 0, ε > 0, wk > 0 for
k ∈ {1, . . . , K}, then

lim sup
t→∞

1
t

t−1∑

τ=0

p(τ) ≤ p∗ +
B

V
(w.p.1), (6.4)

lim sup
t→∞

1
t

t−1∑

τ=0

K∑

k=1

wk|Qk(τ)| ≤
B + V

(
p∗ − pmin

)

ε
(w.p.1), (6.5)

where (6.4) holds when V > 0.

The proposition is proven with the assistance of the following lemma.

Lemma 6.2. Suppose that the same assumptions of Proposition 6.1 hold, and that the following
additional assumption holds. For all k ∈ {1, . . . , K}, we have

∞∑

t=1

E

[
Qk(t)2

]

t2
< ∞. (6.6)

Then (6.4) and (6.5) hold.

Proof (see Lemma 6.2). Using f(Q) =
∑K

k=1 |Qk|, by Proposition 4.3, it suffices to show that

∞∑

t=1

E

[
Δ(t)2

]

t2
< ∞. (6.7)

To this end, we have

Δ(t) =
1
2

K∑

k=1

wk

[
(Qk(t) + δk(t))

2 −Qk(t)2
]

=
1
2

K∑

k=1

wk

[
2δk(t)Qk(t) + δk(t)2

]
.

(6.8)

Therefore, by (B.6) in Appendix B, there is a real number C > 0 such that

E

[
Δ(t)2

]
≤ C

K∑

k=1

E

[
δk(t)2Qk(t)2 + δk(t)4

]
. (6.9)
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However, because E[δk(t)
2 | H(t)] ≤ D, we have

E

[
δk(t)2Qk(t)2

]
= E

[
Qk(t)2E

[
δk(t)2 | H(t)

]]

≤ DE

[
Qk(t)2

] (6.10)

Thus, we have

E

[
Δ(t)2

]
≤ CD

K∑

k=1

E

[
Qk(t)2

]
+ C

K∑

k=1

E

[
δk(t)4

]
. (6.11)

Because
∑∞

t=1 E[Qk(t)
2]/t2 < ∞ and

∑∞
t=1 E[δk(t)

4]/t2 < ∞, we also have
∑∞

t=1 E[Δ(t)2]/t2 <
∞.

To prove Proposition 6.1, it remains only to show that the requirement
∑∞

t=1 E[Qk(t)
2]/

t2 < ∞ used in Lemma 6.2 follows from the other assumptions in the lemma and hence can be
removed. Note that the drift-plus-penalty expression (6.3) together with E[p(t) | H(t)] ≥ pmin

implies that for all t and all H(t)

E[Δ(t) | H(t)] ≤ B − V
(
p∗ − pmin

)
− ε

K∑

k=1

wk|Qk(t)|. (6.12)

Then the requirement
∑∞

t=1 E[Qk(t)
2]/t2 < ∞ follows by the next proposition.

Proposition 6.3. Suppose that L(Q) has the quadratic form (6.1), and that E[|Qk(0)|3] < ∞ for all
k ∈ {1, . . . , K}. Suppose that (6.2) holds, and that there are constants F ≥ 0, ε > 0, and wk > 0 for
k ∈ {1, . . . , K} such that for all t and all H(t)

E[Δ(t) | H(t)] ≤ F − ε
K∑

k=1

wk|Qk(t)|. (6.13)

Then:
(a) For all k ∈ {1, . . . , K} we have

∞∑

t=1

E

[
Qk(t)2

]

t2
< ∞. (6.14)
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(b) For all k ∈ {1, . . . , K} we have

lim
t→∞

E[|Qk(t)|]
t

= 0, (6.15)

lim
t→∞

Qk(t)
t

= 0 (w.p.1), (6.16)

lim sup
t→∞

1
t

t−1∑

τ=0

K∑

k=1

wkE[|Qk(τ)|] ≤
F

ε
, (6.17)

lim sup
t→∞

1
t

t−1∑

τ=0

K∑

k=1

wk|Qk(τ)| ≤
F

ε
(w.p.1), (6.18)

lim
M→∞

[
lim sup

t→∞

1
t

t−1∑

τ=0

Pr[|Qk(τ)| > M]

]
= 0, (6.19)

lim
M→∞

[
lim sup

t→∞

1
t

t−1∑

τ=0

1{|Qk(τ)| > M}
]
= 0 (w.p.1), (6.20)

where 1{|Qk(τ)| > M} is an indicator function that is 1 if |Qk(τ)| > M, and 0 else.

Inequalities (6.15)–(6.20) represent six major forms of queue stability. Thus, all of these
forms of stability are satisfied whenever the bounded second and fourth moment conditions
(6.2) hold, and when the drift condition (6.13) holds for a quadratic Lyapunov function.

Proof. Part (a) is proven in Appendix C. To prove part (b), note that second moments are
bounded because (6.2) holds. Further, the quadratic Lyapunov function (6.1) satisfies the
condition (3.2), and the expression (6.13) implies that

E[Δ(t)] ≤ F. (6.21)

Thus, the rate stability and mean rate stability results (6.15)-(6.16) follow by Proposition 3.1.
The result (6.17) follows by (2.8) (with V = 0). The result (6.18) follows by part (a) together
with Lemma 6.2 (for V = 0). The results (6.19) and (6.20) follow immediately from (6.17) and
(6.18), respectively, by noting that for all M > 0 we have |Qk(τ)| ≥ M1{|Qk(τ)| > M}.

7. Stochastic Network Optimization

Here we use Propositions 5.1 and 6.1 to analyze an important class of stochastic queueing
networks. This is the same scenario treated in [4, 36]. However, while the work in [4]
obtains bounds on the time average expectations, here we obtain bounds on the pure time
averages. Further, the works [4, 36] treat only quadratic Lyapunov functions. Here we treat
both quadratics and subquadratics.

Consider a network of K queues. The queue vector Q(t) = (Q1(t), . . . , QK(t)) evolves
in slotted time t ∈ {0, 1, 2, . . .} with update equation as follows:

Qk(t + 1) = max[Qk(t) − bk(t) + ak(t), 0] ∀k ∈ {1, . . . , K}, (7.1)
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where ak(t) and bk(t) are arrival and service variables, respectively, for queue k. These are
determined on slot t by general functions âk(α(t), ω(t)), b̂k(α(t), ω(t)) of a network state ω(t)
and a control action α(t) as follows:

ak(t) = âk(α(t), ω(t)), bk(t) = b̂k(α(t), ω(t)), (7.2)

where the control action α(t) is made every slot t with knowledge of the current ω(t) and
is chosen within some abstract set Aω(t). The ω(t) value can represent random arrival and
channel state information on slot t, and α(t) can represent a resource allocation decision. For
simplicity, assume that the ω(t) process is independent and identically distributed (i.i.d.)
over slots.

The control action additionally incurs a vector of penalties y(t) = (y0(t), y1(t), . . . ,
yM(t)), again given by general functions of α(t) and ω(t) as follows:

ym(t) = ŷm(α(t), ω(t)). (7.3)

For t > 0, define ak(t), bk(t), ym(t), Qk(t) as time averages over the first t slots:

ak(t) � 1
t

t−1∑

τ=0

ak(τ), bk(t) � 1
t

t−1∑

τ=0

bk(τ), (7.4)

ym(t) � 1
t

t−1∑

τ=0

ym(τ), Qk(t) � 1
t

t−1∑

τ=0

Qk(τ). (7.5)

Thus, every slot t, the controller observes ω(t) and chooses α(t) ∈ Aω(t), with the goal
of solving the following stochastic network optimization problem:

Minimize: lim sup
t→∞

y0(t) (7.6)

Subject to: (1) lim sup
t→∞

ym(t) ≤ 0 ∀m ∈ {1, . . . ,M} (7.7)

(2) Qk(t) is rate stable ∀k ∈ {1, . . . , K} (7.8)

(3) α(t) ∈ Aω(t) ∀t ∈ {0, 1, 2, . . .}. (7.9)

Assume that the problem is feasible (so that the constraints can be met), and define y
opt
0 as

the infimum value of (7.6) over all feasible algorithms.
Typical penalties can represent power expenditures [11]. For example, suppose that

ym(t) � pm(t)−pavm , where pm(t) is the power incurred in componentm of the network on slot
t, and pavm is a required time average power expenditure. Then ensuring lim supt→∞ ym(t) ≤ 0
ensures that lim supt→∞ pm(t) ≤ pavm , so that the desired time average power constraint is met.

To ensure that the time average penalty constraints are met, for each m ∈ {1, . . . ,M},
we define a virtual queue Zm(t) as follows:

Zm(t + 1) = max
[
Zm(t) + ym(t), 0

]
. (7.10)
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ClearlyZm(τ +1) ≥ Zm(τ)+ym(τ) for any integer τ ≥ 0. Summing this over τ ∈ {0, 1, . . . , t−1}
yields the following (for any integer t > 0):

Zm(t) − Zm(0) ≥
t−1∑

τ=0

ym(τ). (7.11)

Dividing by t and rearranging terms yields

1
t

t−1∑

τ=0

ym(τ) ≤
Zm(t)

t
− Zm(0)

t
. (7.12)

It follows that if Zm(t) is rate stable for all m, so that Zm(t)/t → 0 with probability 1, then
the constraint (7.7) is satisfied with probability 1.

For simplicity, assume that all queues are initially empty. Now define Θ(t) � [Q(t),
Z(t)] as the combined queue vector, and define the Lyapunov function as follows:

L(Θ(t)) � 1
β

[
K∑

k=1

Qk(t)β +
M∑

m=1

Zm(t)β
]
, (7.13)

where 1 < β ≤ 2. The case β = 2 is a quadratic Lyapunov function, and the case 1 < β < 2 is a
subquadratic. The drift-plus-penalty algorithm thus seeks to minimize a bound on

E
[
Δ(t) + V ŷ0(α(t), ω(t)) | H(t)

]
. (7.14)

7.1. Computing the Drift-Plus-Penalty Inequality

Assume that the functions âk(·), b̂k(·), and ŷ0(·) satisfy the following for all possible ω(t) and
all possible α(t) ∈ Aω(t):

0 ≤ âk(α(t), ω(t)), 0 ≤ b̂k(α(t), ω(t)), ymin
0 ≤ ŷ0(α(t), ω(t)) ≤ ymax

0 , (7.15)

where ymin
0 , and ymax

0 are deterministic bounds on y0(t) for all t. Also assume that there is a
finite constant D > 0 such that for all (possibly randomized) choices of α(t) in reaction to the
i.i.d. ω(t), we have

E

[
âk(α(t), ω(t))4

]
≤ D ∀k ∈ {1, . . . , K}

E

[
b̂k(α(t), ω(t))4

]
≤ D ∀k ∈ {1, . . . , K}

E

[
ŷm(α(t), ω(t))4

]
≤ D ∀m ∈ {1, . . . ,M},

(7.16)

where the expectations are taken with respect to the distribution of the i.i.d.ω(t) process, and
the possibly randomized decisions α(t) ∈ Aω(t).
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Using the results of (5.4) for subquadratics and results in [4] for quadratics, it can be
shown that the drift-plus-penalty expression satisfies the following bound:

E
[
Δ(t) + V ŷ0(α(t), ω(t)) | H(t)

]
≤ B + VE

[
ŷ0(α(t), ω(t)) | H(t)

]

+
K∑

k=1

Qk(t)β−1E
[
âk(α(t), ω(t)) − b̂k(α(t), ω(t)) | H(t)

]

+
M∑

m=1

Zm(t)β−1E
[
ŷm(α(t), ω(t)) | H(t)

]

(7.17)

for some finite constant B > 0.

7.2. The Dynamic Algorithm

It is easy to show that, given H(t), the right-hand-side of (7.17) is minimized on slot t by
the policy that observes the current queue valuesQ(t), Z(t) and the current ω(t) and chooses
α(t) ∈ Aω(t) to minimize the following expression:

V ŷ0(α(t), ω(t)) +
K∑

k=1

Qk(t)β−1
[
âk(α(t), ω(t)) − b̂k(α(t), ω(t))

]
+

M∑

m=1

Zm(t)β−1ŷm(α(t), ω(t)).

(7.18)

This is done at the beginning of each slot t, and at the end of the slot the actual and virtual
queues Qk(t), Zm(t) are updated according to (7.1) and (7.10). This policy does not require
knowledge of the probability distribution forω(t). One difficulty is that it may not be possible
to achieve the infimum of the above expression over the set Aω(t) because we are using
general (possibly noncontinuous) functions âk(α(t), ω(t)), b̂k(α(t), ω(t)), ŷm(α(t), ω(t)), and
a general (possibly noncompact) set Aω(t). Thus, we simply assume that there is a finite
constant C ≥ 0 such that our algorithm chooses α(t) ∈ Aω(t) to come within an additive
constant C of the infimum on every slot t, so that

V ŷ0(α(t), ω(t))

+
K∑

k=1

Qk(t)β−1
[
âk(α(t), ω(t)) − b̂k(α(t), ω(t))

]
+

M∑

m=1

Zm(t)β−1ŷm(α(t), ω(t))

≤ C + inf
α∈Aω(t)

[
V ŷ0(α,ω(t))+

K∑

k=1

Qk(t)β−1
[
âk(α,ω(t))−b̂k(α,ω(t))

]
+

M∑

m=1

Zm(t)β−1ŷm(α,ω(t))

]
.

(7.19)

Such a choice of α(t) is called aC-additive approximation. The caseC = 0 corresponds to achiev-
ing the exact infimum every slot.
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7.3. ω-Only Policies and the Slackness Condition

Define an ω-only policy to be one that chooses α(t) ∈ Aω(t) every slot t according to a
stationary and randomized decision based only on the observed ω(t) (in particular, being
independent of H(t)). In [36] it is shown that if the problem (7.6)–(7.9) is feasible, then for
all δ > 0 there must be an ω-only algorithm α∗(t) that satisfies the following:

E
[
ŷ0(α∗(t), ω(t))

]
≤ y

opt
0 + δ,

E

[
âk(α∗(t), ω(t)) − b̂k(α∗(t), ω(t))

]
≤ δ ∀k ∈ {1, . . . , K},

E
[
ŷm(α∗(t), ω(t))

]
≤ δ ∀m ∈ {1, . . . ,M}.

(7.20)

We assume that the problem is feasible. It is often useful to assume that the following
stronger slackness assumption is satisfied. There exists an ε > 0 and a particular ω-only policy
α∗(t) (typically different than the policy that yields (7.20)) that yields the following:

E

[
âk(α∗(t), ω(t)) − b̂k(α∗(t), ω(t))

]
≤ −ε ∀k ∈ {1, . . . , K}

E
[
ŷm(α∗(t), ω(t))

]
≤ −ε ∀m ∈ {1, . . . ,M}.

(7.21)

This assumption is similar to a Slater-type assumption used in convex optimization theory
[5].

7.4. Performance Bounds for Subquadratics

Assume 1 < β < 2. Because our policy α(t) comes within C ≥ 0 of minimizing the right-
hand-side of (7.17) every slot t (given the observed H(t)), we have for all t and all possible
H(t)

E
[
Δ(t) + V ŷ0(α(t), ω(t)) | H(t)

]
≤ B + C + VE

[
ŷ0(α∗(t), ω(t)) | H(t)

]

+
K∑

k=1

Qk(t)β−1E
[
âk(α∗(t), ω(t)) − b̂k(α∗(t), ω(t)) | H(t)

]

+
M∑

m=1

Zm(t)β−1E
[
ŷm(α∗(t), ω(t)) | H(t)

]
,

(7.22)

where α∗(t) is any other decision that can be implemented on slot t. Fix any δ > 0. Using
the policy α∗(t) designed to achieve (7.20) and noting that this policy makes decisions
independent of H(t) yields

E
[
Δ(t) + V ŷ0(α(t), ω(t)) | H(t)

]
≤ B + C + V

(
y
opt
0 + δ

)
+ δ

K∑

k=1

Qk(t)β−1 + δ
M∑

m=1

Zm(t)β−1.

(7.23)



22 Journal of Applied Mathematics

The above holds for all δ > 0. Taking a limit as δ → 0 yields

E
[
Δ(t) + Vy0(t) | H(t)

]
≤ B + C + Vy

opt
0 , (7.24)

where for simplicity we have substituted y0(t) = ŷ0(α(t), ω(t)) on the left-hand side.
Inequality (7.24) is in the exact form of the drift-plus-penalty condition (5.5) (with ε = 0).
Recall that the penalty y0(t) is deterministically lower bounded by some finite (possibly
negative) value ymin

0 . Further, the moment bounds (7.16) can easily be shown to imply that
the boundedness assumptions (5.2), (4.7), and (4.8) hold. Thus, we can apply Proposition 5.1
to conclude that all queues are rate stable. In particular Zm(t)/t → 0 with probability 1 for
all k, so that the constraints (7.7) are satisfied as follows:

lim sup
t→∞

ym(t) ≤ 0 ∀m ∈ {1, . . . ,M}
(
w.p.1

)
. (7.25)

Further, again by Proposition 5.1, we have

lim sup
t→∞

1
t

t−1∑

τ=0

y0(τ) ≤ y
opt
0 +

B + C

V

(
w.p.1

)
. (7.26)

Thus, all constraints of the problem are met, and the time average of penalty y0(t) is within
O(1/V ) of optimality.

The above did not require the slackness assumption. However, we can understand the
tradeoffwith V by assuming that the slackness assumption holds, so that a policy α∗(t) exists
that satisfies (7.21) for some ε > 0. Using (7.21) in the right-hand-side of (7.22) gives

E[Δ(t) | H(t)] ≤ B + C + V
(
ymax
0 − ymin

0

)
− ε

K∑

k=1

Qk(t)β−1 − ε
M∑

m=1

Zm(t)β−1 (7.27)

From which we obtain by Proposition 5.1 that

lim sup
t→∞

1
t

t−1∑

τ=0

[
K∑

k=1

Qk(τ)β−1 +
M∑

m=1

Zm(τ)β−1
]
≤

B + C + V
(
ymax
0 − ymin

0

)

ε

(
w.p.1

)
. (7.28)

7.5. Performance Bounds for Quadratics

Similarly, we can obtain performance bounds for the quadratic case β = 2. Without the
slackness condition, we can obtain an expression identical to (7.24). This ensures that all
queues are rate stable (by Proposition 3.1), so that all desired constraints are satisfied.
However, we cannot use Proposition 6.1 because the drift expression has ε = 0. Thus, we
require the slackness assumption to proceed further. Under this assumption, we derive
(similar to (7.27)):

E[Δ(t) | H(t)] ≤ B + C + V
(
ymax
0 − ymin

0

)
− ε

K∑

k=1

Qk(t) − ε
M∑

m=1

Zm(t) (7.29)
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from which we obtain by Proposition 6.1

lim sup
t→∞

1
t

t−1∑

τ=0

[
K∑

k=1

Qk(τ) +
M∑

m=1

Zm(τ)

]
≤

B + C + V
(
ymax
0 − ymin

0

)

ε

(
w.p.1

)
. (7.30)

We also know from (7.29) and Proposition 6.3 that
∑∞

t=1(E[Qk(t)
2]/t2) < ∞, so that we

conclude from (7.24) that

lim sup
t→∞

1
t

t−1∑

τ=0

y0(τ) ≤ y
opt
0 +

B + C

V

(
w.p.1

)
. (7.31)

8. Conclusions

This work derives sample path stability and time average penalty results for stochastic
networks. It uses the law of large numbers for martingale differences to strengthen
existing performance guarantees from time average expectations to pure time averages, with
probability 1. This requires only mild-bounded second and fourth moment assumptions,
and these assumptions were shown to be necessary via two simple counterexamples in
Appendix A. The analysis considers both quadratic and subquadratic Lyapunov functions
and uses both types of functions to develop and analyze algorithms for minimizing a
time average penalty subject to network stability constraints and additional time average
constraints. These results are useful for control of queueing networks, and for other stochastic
problems of optimizing time averages subject to time average constraints.

Appendices

A. Counterexamples

This appendix provides two examples of systems that satisfy the drift-plus-penalty condition
(2.3), so that the desired time average expectations (2.7)-(2.8) are satisfied. However, the
corresponding sample path time averages do not hold because one of the bounded moment
assumptions (6.2), (4.7), and (4.8) is violated.

A.1. The Penalty Process p(t)

Define a process p(t) that is independent over slots t ∈ {0, 1, 2, . . .} and satisfies the following:

p(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 with probability 1 − 1
2(t + 1)

t + 1 with probability
1

2(t + 1)
.

(A.1)

Formally defineQ(t) = 0 for all t, and use L(Q) = (1/2)
∑K

k=1 Q
2
k, V = 1, so thatE[Δ(t)+Vp(t) |

H(t)] = E[p(t) | H(t)] = 1/2 for all t and all H(t). It is clear that limt→∞(1/t)
∑t−1

τ=0 E[p(τ)] =
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1/2. However, because the probability 1/(2(t + 1)) decays slowly, p(t) is equal to t + 1 for
infinitely many slots t ∈ {0, 1, 2, . . .} (with probability 1), and for any such time t∗ we have

1
t∗ + 1

t∗∑

τ=0

p(τ) ≥
p(t∗)
t∗ + 1

=
t∗ + 1
t∗ + 1

= 1. (A.2)

Thus, with probability 1 we have

lim sup
t→∞

1
t

t−1∑

τ=0

p(τ) ≥ 1. (A.3)

This differs from the time average expectation because the second moment condition (4.8) is
violated.

A.2. The Queue Process Q(t)

Let K = 1, V = 0, p(t) = 0 for all t. Define a queue process Q(t) with Q(0) = 0 and with
dynamics as follows:

Q(t + 1) = max[Q(t) + a(t) − 1, 0], (A.4)

where a(t) is independent over slots t ∈ {0, 1, 2, . . .} and satisfies

a(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 with probability 1 − 1
100(t + 1)

10
√
t + 1 with probability

1
100(t + 1)

.

(A.5)

Define L(Q(t)) = (1/2)Q(t)2 and define Δ(t) = L(Q(t + 1)) − L(Q(t)). Clearly Q(t + 1)2 ≤
(Q(t) + a(t) − 1)2, and so a basic calculation shows that for all t ∈ {0, 1, 2, . . .} and allH(t)we
have

E[Δ(t) | H(t)] ≤ 1
2

E

[
1 + a(t)2 | H(t)

]
−Q(t)E[1 − a(t) | H(t)]

= 1 −Q(t)
[
1 − 1

10
√
t + 1

]

≤ 1 −
(

9
10

)
Q(t).

(A.6)

Using ε = 9/10, it follows by (2.8) that

lim sup
t→∞

1
t

t−1∑

τ=0

E[Q(τ)] ≤ 10
9
. (A.7)
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However, with probability 1, we have that a(t) = 10
√
t + 1 for an infinite number of slots

t ∈ {0, 1, 2, . . .}. Let t∗ be such a slot, and assume that t∗ ≥ 1. Because Q(t) can decrease by at
most 1 every slot, it follows that for all τ ∈ {t∗ + 1, . . . , t∗ + 


√
t∗ + 1�}we have

Q(τ) ≥ 10
√
t∗ + 1 −

⌈√
t∗ + 1

⌉
≥ 8

√
t∗ + 1, (A.8)

where we have used the fact that 

√
t∗ + 1� ≤ 2

√
t∗ + 1. Then we have

t∗+

√
t∗+1�∑

τ=0

Q(τ) ≥
t∗+


√
t∗+1�∑

τ=t∗+1

8
√
t∗ + 1

≥ 8(t∗ + 1).

(A.9)

Thus

1

t∗ +
⌈√

t∗ + 1
⌉
+ 1

t∗+

√
t∗+1�∑

τ=0

Q(τ) ≥ 8(t∗ + 1)

t∗ +
⌈√

t∗ + 1
⌉
+ 1

(A.10)

Since (with probability 1) this holds for infinitely many t∗ ∈ {1, 2, 3, . . .}, we have with
probability 1

lim sup
t→∞

1
t

t−1∑

τ=0

Q(τ) ≥ 8. (A.11)

This differs from the time average expectation because the fourth moment condition (6.2) is
violated.

B. Proof of Lemma 3.2

Here, we prove Lemma 3.2. Let Q(t) be a real-valued random process over slots t ∈
{0, 1, 2, . . .}. Let {tk}∞k=1 be a subsequence of positive integers that increase to infinity. By the
Borel-Cantelli lemma, to show that limk→∞ Q(tk)/tk = 0 with probability 1, it suffices to show
that for any ε > 0 we have

∞∑

k=1

Pr
[ |Q(tk)|

tk
> ε

]
< ∞. (B.1)

Suppose there are constants C > 0, b > 0 such that

E

[
|Q(t)|1+b

]
≤ Ct ∀t ∈ {1, 2, 3, . . .}. (B.2)

We first treat the case b > 1.
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Lemma B.1. If (B.2) holds for b > 1, then limt→∞ Q(t)/t = 0 with probability 1.

Proof (Fix ε > 0). From the Markov inequality, we have for all t ∈ {1, 2, 3, . . .}

Pr
[ |Q(t)|

t
> ε

]
= Pr

[
|Q(t)|1+b > (εt)1+b

]

≤
E

[
|Q(t)|1+b

]

(εt)1+b

≤ Ct

(εt)1+b

=
C

ε1+btb
.

(B.3)

Since b > 1, the sum of the above terms over t ∈ {1, 2, 3, . . .} is finite, proving the result.

Now suppose that 0 < b ≤ 1, and define α = 2/b (so that α ≥ 2). For k ∈ {1, 2, 3, . . .},
define the increasing subsequence of times tk = 
kα�.

Lemma B.2. If (B.2) holds for 0 < b ≤ 1, then limk→∞ Q(tk)/tk = 0 with probability 1.

Proof (Lemma B.2, Fix ε > 0). From (B.3), we have for t = tk

Pr
[ |Q(tk)|

tk
> ε

]
≤ C

ε1+btb
k

. (B.4)

Using the definition of tk gives tbk ≥ kbα = k2 and so

Pr
[∣∣∣∣

Q(tk)
tk

∣∣∣∣ > ε

]
≤ C

ε1+bk2
. (B.5)

Thus, the sum of the above terms over k ∈ {1, 2, 3, . . .} is finite, proving the result.

To complete the proof that Q(t)/t → 0 with probability 1 for the case 0 < b ≤ 1, we
require the following simple lemma, which is also useful in other parts of this paper.

Lemma B.3. Let {X1, . . . , XM} be a collection of random variables, let γ, a0, a1, . . . , aM be real
numbers, and assume that γ ≥ 1. Then we have

E

[∣∣∣∣∣

M∑

i=1

aiXi

∣∣∣∣∣

γ]
≤ Mγ−1

M∑

i=1

E
[
|aiXi|γ

]
. (B.6)
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Proof. We have

∣∣∣∣∣

M∑

i=1

aiXi

∣∣∣∣∣

γ

≤
(

M∑

i=1

|aiXi|
)γ

= Mγ

(
1
M

M∑

i=1

|aiXi|
)γ

≤ Mγ 1
M

M∑

i=1

|aiXi|γ ,

(B.7)

where the final inequality holds by Jensen’s inequality for the convex function g(x) = xγ .
Taking expectations of both sides proves the lemma.

Now define δ(t) = Q(t + 1) − Q(t). Recall that tk = 
kα� for α ≥ 2. Define Tk as the
set of slots τ ∈ {tk, tk + 1, . . . , tk+1 − 1}, and define |Tk| as the number of slots in this set. For
t ∈ {1, 2, 3, . . .}, define k(t) as the integer k ∈ {1, 2, 3, . . .} such that tk(t) ≤ t < tk(t)+1. Thus, for
any t ∈ {1, 2, 3, . . .}we have

0 ≤ |Q(t)| ≤
∣∣Q

(
tk(t)

)∣∣ +
∑

τ∈Tk(t)

|δ(τ)|. (B.8)

Dividing by t and using the fact that tk(t) ≤ t gives

0 ≤ |Q(t)|
t

≤
∣∣Q

(
tk(t)

)∣∣ +
∑

τ∈Tk
|δ(τ)|

tk(t)
(B.9)

By Lemma B.2 we know that limk→∞ Q(tk)/tk = 0 with probability 1. Thus, taking a lim sup
of the above as t → ∞ gives (with probability 1)

0 ≤ lim sup
t→∞

|Q(t)|
t

≤ lim sup
k→∞

∑
τ∈Tk

|δ(τ)|
tk

. (B.10)

It suffices to show that the right-hand side above is equal to 0 with probability 1. For this, it
suffices to prove that for any ε > 0

∞∑

k=1

Pr

[
1
tk

∑

τ∈Tk

|δ(τ)| > ε

]
< ∞. (B.11)
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For each k ∈ {1, 2, 3, . . .}, we have by the Markov inequality

Pr

[
1
tk

∑

τ∈Tk

|δ(τ)| > ε

]
≤

E

[(∑
τ∈ Tk

|δ(τ)|
)1+θ]

(εtk)1+θ

≤
E

[(∑
τ∈Tk

|δ(τ)|
)1+θ]

ε1+θkα(1+θ)

≤
|Tk|θ

∑
τ∈Tk

E

[
|δ(τ)|1+θ

]

ε1+θkα(1+θ)
,

(B.12)

where the final inequality uses (B.6). We now use the assumption that there are constants
D > 0, θ > 0 such that E[|δ(τ)|1+θ] ≤ D for all τ ∈ {1, 2, 3, . . .}. Using this in (B.12) gives:

Pr

[
1
tk

∑

τ∈Tk

|δ(τ)| > ε

]
≤ |Tk|1+θD

ε1+θkα(1+θ)
. (B.13)

Furthermore, it can be shown that there is a finite constant F > 0 such that |Tk| ≤ Fkα−1 for all
k ∈ {1, 2, 3, . . .}. Thus:

Pr

[
1
tk

∑

τ∈Tk

|δ(τ)| > ε

]
≤ DF1+θk(α−1)(1+θ)

ε1+θkα(1+θ)
=

DF1+θ

ε1+θk1+θ (B.14)

Since θ > 0, the right-hand side of the above inequality sums to a finite value, proving the
result.

C. Proof of Proposition 6.3 Part (a)

Here, we prove part (a) of Proposition 6.3. Consider the quadratic Lyapunov function as
follows:

L(Q(t)) =
1
2

K∑

k=1

wkQk(t)2. (C.1)

Define ||Q(t)|| �
√
L(Q(t)), so thatΔ(t) = ‖Q(t + 1)‖2 −‖Q(t)‖2. It is not difficult to show that

K∑

k=1

√
wk√
2

|Qk(t)| ≥ ‖Q(t)‖. (C.2)

Further, for any vectors a,b we have the triangle inequality ‖a + b‖ ≤ ‖a‖ + ‖b‖.
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Lemma C.1. For the quadratic Lyapunov function (C.1), suppose that there are constants F > 0,
ε > 0, wk > 0 for k ∈ {1, . . . , K} such that

E[Δ(t) | H(t)] ≤ F − ε
K∑

k=1

wk|Qk(t)|. (C.3)

Then there are constants c > 0, a > 0 such that whenever ||Q(t)|| ≥ a, we have

E[‖Q(t + 1)‖ | H(t)] ≤ ‖Q(t)‖ − c. (C.4)

Proof. From (C.3), we have

E

[
‖Q(t + 1)‖2 | H(t)

]
≤ ‖Q(t)‖2 + F − ε

K∑

k=1

wk|Qk(t)|, (C.5)

where we recall that Q(t) is completely determined from H(t). Therefore:

E

[
‖Q(t + 1)‖2 | H(t)

]
≤ ‖Q(t)‖2 + F − ε

√
2wmin

K∑

k=1

√
wk√
2

|Qk(t)|

≤ ‖Q(t)‖2 + F − ε
√
2wmin‖Q(t)‖

= ‖Q(t)‖2 + F − 4c‖Q(t)‖,

(C.6)

where wmin � mink∈{1,...,K}wk and c � (1/4)ε
√
2wmin. The second inequality above follows

by (C.2). Now suppose that ‖Q(t)‖ ≥ F/(2c). It follows that

E

[
‖Q(t + 1)‖2 | H(t)

]
≤ ‖Q(t)‖2 − 2c‖Q(t)‖

≤ ‖Q(t)‖2 − 2c‖Q(t)‖ + c2

= (‖Q(t)‖ − c)2.

(C.7)

However, we have by Jensen’s inequality

E[‖Q(t + 1)‖ | H(t)]2 ≤ E

[
‖Q(t + 1)‖2 | H(t)

]
. (C.8)

Therefore, we have

E[‖Q(t + 1)‖ | H(t)]2 ≤ (‖Q(t)‖ − c)2. (C.9)
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Assume now that ‖Q(t)‖ ≥ max[F/(2c), c], so that we have both that ‖Q(t)‖ − c ≥ 0 and
‖Q(t)‖ ≥ F/(2c). Taking square roots of the above inequality then proves that whenever
‖Q(t)‖ ≥ max[F/(2c), c]we have

E[‖Q(t + 1)‖ | H(t)] ≤ ‖Q(t)‖ − c. (C.10)

Defining a � max[F/(2c), c] proves the lemma.

The above lemma is related to Proposition 2.5 in [25] and to results in [37]. The
results in [25, 37] show that if queue differences δk(t) have bounded exponential moments
(such being deterministically bounded), and if some additional assumptions hold, then drift
statements of the type (C.3) imply that queue processes have bounded exponential moments.
The next result uses only the bounded second and fourth moment conditions (6.2) for δk(t),
and so does not require bounded exponential moments.

Lemma C.2. Suppose that (C.3) holds for the quadratic Lyapunov function (C.1) and for some
constants ε > 0, F > 0. Assume that for all k ∈ {1, . . . , K} we have E[|Qk(0)|3] < ∞ and that
the queue difference processes δk(t) satisfy (6.2). Then for all k ∈ {1, . . . , K} we have

∞∑

t=1

E

[
Qk(t)2

]

t2
< ∞. (C.11)

Proof. We have Q(τ + 1) = Q(τ) + δ(τ), where δ(τ) � (δ1(τ), . . . , δK(τ)). Define γ(τ) �
‖Q(τ + 1)‖ − ‖Q(τ)‖. Then |γ(τ)| ≤ ‖δ(τ)‖ (by the triangle inequality), and we have

‖Q(τ + 1)‖3 =
(
‖Q(τ)‖ + γ(τ)

)3

= ‖Q(τ)‖3 + 3‖Q(τ)‖2γ(τ) + 3‖Q(τ)‖γ(τ)2 + γ(τ)3.
(C.12)

However, note by the previous lemma that E[γ(τ) | H(τ)] ≤ −c whenever ‖Q(τ)‖ ≥ a (for
some constants c > 0, a > 0). Thus, we have

3‖Q(τ)‖2E
[
γ(τ) | H(τ)

]
≤

{
−3c‖Q(τ)‖2 if ‖Q(τ)‖ ≥ a

3a2
E[‖δ(τ)‖ | H(τ)] otherwise.

(C.13)

Hence,

3‖Q(τ)‖2E
[
γ(τ) | H(τ)

]
≤ −3c‖Q(τ)‖2 + 3a2

E[‖δ(τ)‖ | H(τ)] + 3ca2. (C.14)

Taking conditional expectations of (C.12) and substituting the above yields

E

[
‖Q(τ + 1)‖3 | H(τ)

]
≤ ‖Q(τ)‖3 − 3c‖Q(τ)‖2 + 3a2

E[‖δ(τ)‖ | H(τ)] + 3ca2

+ 3‖Q(τ)‖E
[
‖δ(τ)‖2 | H(τ)

]
+ E

[
‖δ(τ)‖3 | H(τ)

]
.

(C.15)
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Using the fact that E[δk(t)
2 | H(t)] ≤ D, and E[‖δ‖ | H(t)] ≤

√
E[‖δ(t)‖2 | H(t)],

there exists a real number G > 0 for which the above inequality simplifies to

E

[
‖Q(τ + 1)‖3 | H(τ)

]
≤ ‖Q(τ)‖3 − 3c‖Q(τ)‖2 +G +G‖Q(τ)‖ + E

[
‖δ(τ)‖3 | H(τ)

]
.

(C.16)

Because the term −3c‖Q(τ)‖2 is the dominant term on the right-hand side above (for ‖Q(τ)‖
large), there must be constants c1 > 0, c2 > 0 such that

E

[
‖Q(τ + 1)‖3 | H(τ)

]
− ‖Q(τ)‖3 ≤ c1 − c2‖Q(τ)‖2 + E

[
‖δ(τ)‖3 | H(τ)

]
. (C.17)

Taking expectations of the above yields

E

[
‖Q(τ + 1)‖3

]
− E

[
‖Q(τ)‖3

]
≤ c1 − c2E

[
‖Q(τ)‖2

]
+ E

[
‖δ(τ)‖3

]
. (C.18)

The above holds for all τ ∈ {0, 1, 2, . . .}. Dividing by (τ+1)2 and summing over τ ∈ {0, 1, . . . , t−
1} for some t > 0 yields

t−1∑

τ=0

E

[
‖Q(τ + 1)‖3 − ‖Q(τ)‖3

]

(τ + 1)2
≤ c0 − c2

t−1∑

τ=0

E

[
‖Q(τ)‖2

]

(τ + 1)2
, (C.19)

where c0 is a finite positive constant that satisfies the following:

∞∑

τ=0

c1 + E

[
‖δ(τ)‖3

]

(τ + 1)2
≤ c0, (C.20)

such a finite constant exists because δk(t) satisfies (6.2). However, we have

t−1∑

τ=0

E

[
‖Q(τ + 1)‖3 − ‖Q(τ)‖3

]

(τ + 1)2
=

E

[
‖Q(t)‖3

]

t2
− E‖Q(0)‖3 +

t−1∑

τ=1

E

[
‖Q(τ)‖3

][ 1
τ
− 1
τ + 1

]

≥ − E

[
‖Q(0)‖3

]
.

(C.21)

Substituting this inequality into (C.19) gives

c2
t−1∑

τ=0

E

[
‖Q(τ)‖2

]

(τ + 1)2
≤ c0 + E

[
‖Q(0)‖3

]
. (C.22)
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Taking a limit as t → ∞ proves that

∞∑

τ=0

E

[
‖Q(τ)‖2

]

(τ + 1)2
< ∞ (C.23)

from which the desired result is easily obtained.

D. Drift Structure for Subquadratics

Suppose that L(Q) =
∑K

k=1(wk/β)Q
β

k for a constant 1 < β < 2, and that Q(t) is a nonnegative
process. Consider the function g(x) = xβ for x ≥ 0. By the Taylor formula, we have for any
values x ≥ 0, a ≥ 0

g(x) = g(a) + (x − a)g ′(a) +
∫x

a

(x − t)g ′′(t)dt, (D.1)

where g ′(t) = βtβ−1 and g ′′(t) = β(β−1)tβ−2. Define δ = x−a. Then the final integral is bounded
by

∫x

a

(x − t)g ′′(t)dt ≤ |δ|
∣∣∣∣

∫x

a

g ′′(t)dt
∣∣∣∣

= |δ|
∣∣g ′(x) − g ′(a)

∣∣

= β|δ|
∣∣∣xβ−1 − aβ−1

∣∣∣

≤ β|δ||x − a|β−1 = β|δ|β,

(D.2)

where the second inequality above holds because g ′(t) = βtβ−1 satisfies g ′(0) = 0 and is
concave (recall that 1 < β < 2). Therefore, for any a ≥ 0 and any δ such that a + δ ≥ 0:

g(a + δ) ≤ g(a) + δg ′(a) + β|δ|β (D.3)

Now recall thatQk(t+1) = Qk(t)+δk(t). Using this with g(x) = xβ in the above formula gives

Qk(t + 1)β ≤ Qk(t)β + δk(t)βQk(t)β−1 + β|δk(t)|β. (D.4)

Multiplying the above by wk/β and summing over all k yield

Δ(t) ≤
K∑

k=1

wk|δk(t)|β +
K∑

k=1

wkδk(t)Qk(t)β−1. (D.5)
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Recall that E[δk(t)
2 | H(t)] ≤ D. Further, since 1 < β < 2, we have E[|δk(t)|β | H(t)] ≤ Dβ/2. It

follows that there is a finite constant B > 0 such that for all t and all H(t):

E[Δ(t) | H(t)] ≤ B +
K∑

k=1

wkQk(t)β−1E[δk(t) | H(t)] (D.6)

which proves (5.4).
To prove (5.3), note that because xβ is convex over x ≥ 0, it holds that

Qk(t + 1)β ≥ Qk(t)β + βδk(t)Qk(t)β−1, (D.7)

and so it can be shown that

Δ(t) ≥
K∑

k=1

wkδk(t)Qk(t)β−1. (D.8)

This together with (D.5) implies that

Δ(t)2 ≤
(

K∑

k=1

wk|δk(t)|β +
K∑

k=1

wk|δk(t)|Qk(t)β−1
)2

. (D.9)

This, together with (B.6) and (6.10), can be used to show that there is a real number C > 0
such that

E

[
Δ(t)2

]
≤ C + C

K∑

k=1

E

[
|δk(t)|2β +Qk(t)2β−2

]
. (D.10)
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