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We discuss a quadratic criterion optimal control problem for stochastic linear system with
delay in both state and control variables. This problem will lead to a kind of generalized
forward-backward stochastic differential equations (FBSDEs)with Itô’s stochastic delay equations
as forward equations and anticipated backward stochastic differential equations as backward
equations. Especially, we present the optimal feedback regulator for the time delay system via
a new type of Riccati equations and also apply to a population optimal control problem.

1. Introduction

The problem of optimal control for delayed stochastic system has received a lot of attention
recently. One of the reasons is that there are many phenomena which have the nature of
pastdependence that is, their behavior at time t not only depends on the current situation,
but also on their past history. Such kinds of mathematical models described by stochastic
delay differential equations (SDDEs) are ubiquitous and have wide range of applications in
physics, biology, engineering, economics, and finance (see Arriojas et al. [1], Mohammed
[2, 3], and the references therein).

In control problem, a delay term may arise when there is a time lag between obser-
vation and regulation or the aftereffect of control; that is, there may be delay in state or
control variables. Although many papers came out to discuss the delayed control problem,
the analysis of systems with delay is fraught with many difficulties, not only for the infinite
dimensional problem, but also for the absence of Itô’s formula to deal with the delayed part
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of the trajectory. In order to surmount these difficulties, one can consider specific classes of
systems with aftereffect, such as Øksendal and Sulem [4].

This paper is concerned with optimal control of a linear system with delay under a
quadratic cost criteria, namely, the quadratic problem for stochastic linear control system
with delay. It is well known that linear-quadratic (LQ) control is one of the most important
classes of optimal control and the solution of this problem has many real-world applications.
Deterministic LQ control problem with delay has been discussed in Alekal et al. [5], Basin et
al. [6], and so forth. However, there is little results on stochastic LQ problem with delay since
the difficulties in exploring the optimal feedback regulator, such as the Riccati equation, are
very different from the case without delay.

In Peng and Yang [7], a new type of backward stochastic differential equations
(BSDEs)was introduced, which is named anticipated BSDEs. The anticipated BSDE provides
a new method to deal with optimal control problem with delay (see Chen and Wu [8]). In
our paper, we study the delayed stochastic LQ problem by virtue of the anticipated BSDEs
combined with the SDDEs.

In the next section, we introduce a kind of generalized FBSDE and give the existence
and uniqueness result for its solution.With the help of the FBSDE, we find the optimal control
of the stochastic LQ problem with delay in both state and control variables and the quadratic
cost also involves delay terms.

It is very important to design an optimal feedback regulator for LQ problem in
practice. Traditionally, a fundamental tool to obtain the state feedback is the Riccati equation.
In Section 3, we introduced a new type of generalized Riccati equations and give the feedback
regulator of delayed stochastic LQ problem. To the best of our knowledge, it is the first
result on the optimal feedback control for the delayed stochastic LQ problem, where the state
and control variables with delay are involved not only in the system, but also in the cost
functional. In the last section, we apply our theoretical result to a population optimal control
problem. Some technical proofs are put in Appendix.

2. Stochastic LQ Problem with Delay

We first introduce some notations. For any Euclidean space H, we denote by 〈·, ·〉 (resp. | · |)
the scalar product (resp. norm) of H. Let R

n×m be the Hilbert space consisting of all n × m
matrices with the inner product:

〈A,B〉 := tr
{
ABT
}
, ∀A,B ∈ R

n×m. (2.1)

Here, the superscript T denotes the transpose of vectors or matrices. Particularly, we denote
by Sn the set of all n × n symmetric matrices.

Let W(·) be a standard 1-dimensional Brownian motion on a complete probability
space (Ω,F, P). The information structure is given by a filtration F = {Ft}t≥0, which is
generated by W(·) and augmented by all the P -null sets. We assume the dimension of
Brownian motion d = 1 just for the simplicity of notations. In fact, all the conclusions in this
paper still hold true for the case that the dimension of Brownian motion d > 1. For any K,
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the Euclidean spaces or sets of matrices, the following notations will be used throughout the
paper:

L2(Ω,Ft, P ;K) :=
{
ξ is aK-valued Ft-measurable random variable s.t. E

[
ξ2
]
< +∞

}
;

L2
F
(t1, t2;K) :=

{
ϕ(t), 0t1 ≤ t ≤ t2, is aK-valued F-adapted stochastic process s.t.

E

∫ t2
t1

∣∣ϕ(t)∣∣2dt < +∞
}
;

L∞
F
(t1, t2;K) :=

{
ϕ(t), t1 ≤ t ≤ t2, is aK-valuedF-adapted boundedprocess

}
.

(2.2)

In this section, we consider the following linear controlled system involving delays in
both state variable and control variable:

x(t) = a +
∫ t
0
[A1(s)x(s) +A2(s)x(s − δ) + B1(s)v(s) + B2(s)v(s − δ)]ds

+
∫ t
0
[C1(s)x(s) + C2(s)x(s − δ) +D1(s)v(s) +D2(s)v(s − δ)]dW(s), t ∈ [0, T],

x(t) = x0(t), t ∈ [−δ, 0),
v(t) = v0(t), t ∈ [−δ, 0),

(2.3)

where δ > 0 is a constant time delay, x0(·) ∈ L2
F
(−δ, 0;Rn), v0(·) ∈ L2

F
(−δ, 0;Rk) are

deterministic functions, and a ∈ R
n. A1(·), A2(·), C1(·), C2(·) ∈ L∞

F
(0, T ;Rn×n), B1(·), B2(·),

D1(·), D2(·) ∈ L∞
F
(0, T ;Rn×k), {v(t), t ∈ [0, T]} is an F-adapted square-integrable process

taking values in R
k. Let Uad denote the set of stochastic processes v(·) of the form:

v(t) =

{
v0(t), −δ ≤ t < 0,
v(t) ∈ L2

F

(
0, T ;Rk

)
, 0 ≤ t ≤ T. (2.4)

An element of Uad is called an admissible control. By the classical results of SDDEs, we
know that the system (2.3) has a unique solution for any admissible control v(·). The solution
xv(·) of SDDE (2.3) is called the state trajectory corresponding to the control v(·) ∈ Uad and
(xv(·), v(·)) is called an admissible pair.

The cost functional is given by

J(v(·)) = 1
2

E

[∫T
0
(〈R1(t)x(t), x(t)〉 + 〈R2(t)x(t − δ), x(t − δ)〉

+〈N1(t)v(t), v(t)〉 + 〈N2(t)v(t − δ), v(t − δ)〉)dt + 〈Qx(T), x(T)〉
]
.

(2.5)
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Here, R1(·), R2(·) ∈ L∞
F
(0, T ;Sn), N1(·),N2(·) ∈ L∞

F
(0, T ;Sk), and Q is an FT -measurable

nonnegative symmetric bounded matrix. Moreover, we assume that, for any (ω, t) ∈ Ω ×
[0, T], R1(t) + R2(t + δ) and Q are nonnegative definite,N1(t) +N2(t + δ) is positive definite,
and the inverse (N1(t) + E

Ft[N2(t + δ)])
−1 is also bounded.

The controller hopes to minimize the above cost functional J by selecting an appropri-
ate admissible control v(·); that is, the problem is to find u(·) ∈ Uad such that

J(u(·)) = inf
v(·)∈Uad

J(v(·)). (2.6)

We call the problem above the linear-quadratic optimal control problem of delayed system,
and we denote it by Problem (LQD). An admissible pair (xu(·), u(·)) is called optimal for
Problem (LQD) if u(·) achieves the infimum of J .

The Problem (LQD)we introduced above is a general type of LQ problem for stochas-
tic system with delay. Not only the state variable and control variable are involved with
delays, but also the cost functional contains delay terms.

By introducing a new type of BSDEs-anticipated BSDEs, we desire to solve Problem
(LQD).

Theorem 2.1. The control

u(t) = −
(
N1(t) + E

Ft[N2(t + δ)]
)−1

×
(
BT
1 (t)y(t) +D

T
1 (t)z(t) + E

Ft

[
BT
2 (t + δ)y(t + δ) +D

T
2 (t + δ)z(t + δ)

])
, t ∈ [0, T]

(2.7)

is the unique optimal control of Problem (LQD). Here, (x(·), y(·), z(·)) is the solution of the following
generalized FBSDE:

x(t) = a +
∫ t
0
{A1(s)x(s) +A2(s)x(s − δ) + B1(s)u(s) + B2(s)u(s − δ)}ds

+
∫ t
0
{C1(s)x(s) + C2(s)x(s − δ) +D1(s)u(s) +D2(s)u(s − δ)}dW(s), t ∈ [0, T],

y(t) = Qx(T) +
∫T
t

{
AT

1 (s)y(s) + C
T
1 (s)z(s) + R1(s)x(s)

+E
Fs

[
AT

2 (s + δ)y(s + δ) + C
T
2 (s + δ)z(s + δ) + R2(s + δ)x(s)

]}
ds

−
∫T
t

z(s)dW(s), t ∈ [0, T],

x(t) = x0(t), t ∈ [−δ, 0),
u(t) = v0(t), t ∈ [−δ, 0),
y(t) = 0, z(t) = 0, t ∈ (T, T + δ].

(2.8)
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Remark 2.2. If we set

f
(
s, x(s), x(s − δ), y(s), z(s), y(s + δ), z(s + δ))

= AT
1 (s)y(s) + C

T
1 (s)z(s) + R1(s)x(s)

+ E
Fs

[
AT

2 (s + δ)y(s + δ) + C
T
2 (s + δ)z(s + δ) + R2(s + δ)x(s)

]
,

(2.9)

then the second equation in (2.8) can be rewritten as

y(t) = Qx(T) +
∫T
t

f
(
s, x(s), x(s − δ), y(s), z(s), y(s + δ), z(s + δ))ds

−
∫T
t

z(s)dW(s), t ∈ [0, T].

(2.10)

Proof. Suppose (xv(·), v(·)) is an arbitrary admissible pair of system (2.3), then

J(v(·)) − J(u(·))

=
1
2

E

∫T
0
[〈R1(t)xv(t), xv(t)〉 − 〈R1(t)x(t), x(t)〉

+ 〈R2(t)xv(t − δ), xv(t − δ)〉 − 〈R2(t)x(t − δ), x(t − δ)〉
+ 〈N1(t)v(t), v(t)〉 − 〈N1(t)u(t), u(t)〉
+〈N2(t)v(t − δ), v(t − δ)〉 − 〈N2(t)u(t − δ), u(t − δ)〉]dt

+
1
2

E[〈Qxv(T), xv(T)〉 − 〈Qx(T), x(T)〉]

=
1
2

E

∫T
0
[〈R1(t)(xv(t) − x(t)), xv(t) − x(t)〉

+ 〈R2(t)(xv(t − δ) − x(t − δ)), xv(t − δ) − x(t − δ)〉
+ 〈N1(t)(v(t) − u(t)), v(t) − u(t)〉
+ 〈N2(t)(v(t − δ) − u(t − δ)), v(t − δ) − u(t − δ)〉
+ 2〈R1(t)x(t), xv(t) − x(t)〉 + 2〈R2(t)x(t − δ), xv(t − δ) − x(t − δ)〉
+2〈N1(t)u(t), v(t) − u(t)〉 + 2〈N2(t)u(t − δ), v(t − δ) − u(t − δ)〉]dt

+
1
2

E[〈Q(xv(T) − x(T)), xv(T) − x(T)〉 + 2〈Qx(T), xv(T) − x(T)〉].

(2.11)



6 Journal of Applied Mathematics

Since R2(t) ≡ 0,N2(t) ≡ 0, t ∈ (T, T + δ], by the time-shifting transformation and the initial
conditions in (2.8), we derive that

J(v(·)) − J(u(·))

=
1
2

E

∫T
0

{〈(
R1(t) + E

Ft[R2(t + δ)]
)
(xv(t) − x(t)), xv(t) − x(t)

〉

+
〈(
N1(t) + E

Ft[N2(t + δ)]
)
(v(t) − u(t)), v(t) − u(t)

〉

+ 2
〈(
R1(t) + E

Ft[R2(t + δ)]
)
x(t), xv(t) − x(t)

〉

+2
〈(
N1(t) + E

Ft[N2(t + δ)]
)
u(t), v(t) − u(t)

〉}
dt

+
1
2

E[〈Q(xv(T) − x(T)), xv(T) − x(T)〉 + 2〈Qx(T), xv(T) − x(T)〉].

(2.12)

Applying Itô’s formula to 〈xv(t) − x(t), y(t)〉, we have

E
〈
xv(T) − x(T), y(T)〉

= E

∫T
0

[
− 〈R1(t)x(t), xv(t) − x(t)〉 −

〈
E
Ft[R2(t + δ)]x(t), xv(t) − x(t)

〉

+
〈
B1(t)(v(t) − u(t)), y(t)

〉
+ 〈D1(t)(v(t) − u(t)), z(t)〉

+
〈
B2(t)(v(t − δ) − u(t − δ)), y(t)

〉
+ 〈D2(t)(v(t − δ) − u(t − δ)), z(t)〉(R1)

]
dt.

(2.13)

Moreover, because v(t) = u(t), t ∈ [−δ, 0) and y(t) = z(t) = 0, t ∈ (T, T + δ], we can rewrite
(2.13) as follows:

E
〈
xv(T) − x(T), y(T)〉

= E

∫T
0

{
−
〈(
R1(t) + E

Ft[R2(t + δ)]
)
+ x(t), xv(t) − x(t)

〉

+
〈
B1(t)(v(t) − u(t)), y(t)

〉
+ 〈D1(t)(v(t) − u(t)), z(t)〉

+E
Ft
[〈
B2(t + δ)(v(t) − u(t)), y(t + δ)

〉
+ 〈D2(t + δ)(v(t) − u(t)), z(t + δ)〉

]}
dt.

(2.14)
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Consequently, by the fact that R1(·) +R2(·+ δ) andQ are nonnegative andN1(·) +N2(·+ δ) is
positive, we have

J(v(·)) − J(u(·))

≥ E

∫T
0

{〈(
N1(t) + E

Ft[N2(t + δ)]
)
u(t), v(t) − u(t)

〉

+
〈
BT
1 (t)y(t) +D

T
1 (t)z(t), v(t) − u(t)

〉

+
〈

E
Ft

[
BT
2 (t + δ)y(t + δ) +D

T
2 (t + δ)z(t + δ)

]
, v(t) − u(t)

〉}
dt.

(2.15)

So letting

u(t) = −
(
N1(t) + E

Ft[N2(t + δ)]
)−1

×
(
BT
1 (t)y(t) +D

T
1 (t)z(t) + E

Ft

(
BT
2 (t + δ)y(t + δ) +D

T
2 (t + δ)z(t + δ)

))
, t ∈ [0, T]

(2.16)

we have

J(v(·)) − J(u(·)) ≥ 0, ∀v(·) ∈ Uad, (2.17)

that is, u(·) defined in (2.7) is the optimal control of Problem (LQD).
We will use the parallelogram rule to prove the uniqueness of the optimal control,

and this method can also be seen in Wu [9]. We assume that u1(·) and u2(·) are both
optimal controls, and the corresponding trajectories are x1(·) and x2(·). It is easy to know
the trajectories corresponding to (u1(·) + u2(·))/2 are (x1(·) + x2(·))/2. SinceN1(·) +N2(· + δ)
is positive, R1(·) + R2(· + δ) and Q are nonnegative, we know that J(u1(·)) = J(u2(·)) = λ ≥ 0,
and

2λ = J
(
u1(·)
)
+ J
(
u2(·)
)

= 2J

(
u1(·) + u2(·)

2

)
+ E

∫T
0

{〈(
R1(t) + E

Ft[R2(t + δ)]
)x1(t) − x2(t)

2
,
x1(t) − x2(t)

2

〉

+

〈(
N1(t) + E

Ft[N2(t + δ)]
)u1(t) − u2(t)

2
,
u1(t) − u2(t)

2

〉}
dt

+ E

[〈
Q
x1(T) − x2(T)

2
,
x1(T) − x2(T)

2

〉]

≥ 2λ + E

∫T
0

〈(
N1(t) + E

Ft[N2(t + δ)]
)u1(t) − u2(t)

2
,
u1(t) − u2(t)

2

〉
dt.

(2.18)

Because ofN1(·) +N2(·+ δ) being positive, we have u1(·) = u2(·). We complete our proof.
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Remark 2.3. The existence of the optimal control is equivalent to the existence of solution
for (2.8), which is a kind of complex generalized FBSDEs. The proof of the existence and
uniqueness of the solution for this kind of FBSDE are put in Appendix.

3. Feedback Regulator of Delayed System

It is well known that the feedback representation of optimal control is very useful in appli-
cations. And in the classical case, the optimal feedback control can be represented via the
Riccati equation. But, for stochastic systems with delay, it is not easy to find the feedback
control because of the dependence of the history.What should then be an appropriate “Riccati
equation” corresponding to our LQ problem with delay?

In this section, we will pay attention to the feedback regulator of the general delayed
LQ problem discussed in Section 2 and try to get the appropriate Riccati equation associated
with Problem (LQD). We remark that all given coefficients of the problem are assumed to be
deterministic from now on.

Let us start with the following results about anticipated BSDE.
Assume that for all s ∈ [0, t], f(s,w, y, z, ξ, η) : [0, T]×Ω×R

n×R
n×d×L2(Ω,Fr , P ;Rn)×

L2(Ω,Fr , P ;Rn×d) → L2(Ω,Fr , P ;Rn), where r ∈ [s, T + δ]. And f satisfies the following
conditions.

(H3.1) There exists a constant C > 0, such that for all s ∈ [0, T], y, y′ ∈ R
n, z, z′ ∈ R

n×d,
ξ·, ξ′· ∈ L2

F
(s, T + δ;Rn), η·, η′· ∈ L2

F
(s, T + δ;Rn×d), we have

∣∣f(s, y, z, ξr , ηr
) − f(s, y′, z′, ξ′r , η

′
r

)∣∣

≤ C
(∣∣y − y′∣∣ + ∣∣z − z′∣∣ + E

Fs
[∣∣ξr − ξ′r

∣∣ + ∣∣ηr − η′r
∣∣]).

(3.1)

(H3.2) (E[
∫T
0 |f(s, 0, 0, 0, 0)|2ds] <∞).

Let (yi(·), zi(·)), i = 1, 2, be, respectively, solutions of the following two anticipated
BSDEs:

yi(t) = ξ(T) +
∫T
t

fi
(
s, yi(s), zi(s), yi(s + δ), zi(s + δ)

)
dt − zi(s)dW(s), t ∈ [0, T],

yi(t) = ξ(t), zi(t) = η(t), t ∈ (T, T + δ].

(3.2)

We have the following lemma, which is a direct corollary of Theorem 2.2 in Yu [10].

Lemma 3.1. Assume that f1, f2 satisfy (H3.1) and (H3.2), ξ(·) ∈ L2
F
(T, T +δ;Rn), η(·) ∈ L2

F
(T, T +

δ;Rn×k), and

E

∫T
0

∣∣f1
(
t, y2(t), z2(t), y2(t + δ), z2(t + δ)

) − f2
(
t, y2(t), z2(t), y2(t + δ), z2(t + δ)

)∣∣2dt = 0,

(3.3)

then

y1(t) = y2(t), z1(t) = z2(t), a.e., a.s. (3.4)
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In order to get the feedback regulator, we introduce the following generalized n × n
matrix-valued Riccati equation system:

−K̇1(t)=AT
1 (t)K1(t) +K1(t)A1(t)−K1(t)B1(t)[N1(t)+N2(t + δ)]

−1
[
BT
1 (t)K1(t) +DT

1 (t)H1(t)
]

−K1(t)B2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]

−K1(t + δ)B2(t + δ)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K1(t) +DT

1 (t)H1(t)
]

−K1(t − δ)B1(t − δ)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]

+AT
2 (t)K1(t) +K1(t + δ)A2(t + δ) − e−λδK2(t + δ)

+K2(t) +
[
CT

1 (t) + C
T
2 (t)
]
H1(t) + R1(t) + R2(t + δ), t ∈ [0, T],

(3.5)

−K̇2(t) = − λK2(t) −K1(t)B1(t)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]

−K1(t)B2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]

−K1(t − δ)B1(t − δ)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K2(t) +DT

2 (t)H2(t)
]

−K1(t + δ)B1(t + δ)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]

+
[
AT

1 (t) +A
T
2 (t)
]
K2(t) +

[
CT

1 (t) + C
T
2 (t)
]
H2(t), t ∈ [δ, T],

(3.6)

H1(t) = K1(t)C1(t) −K1(t)D1(t)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K1(t) +DT

1 (t)H1(t)
]

−K1(t)D2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]

−K1(t − δ)D1(t − δ)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]

−K1(t + δ)D2(t + δ)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K1(t) +DT

1 (t)H1(t)
]

+K1(t + δ)C2(t + δ), t ∈ [0, T],

(3.7)

H2(t) = −K1(t)D1(t)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]

−K1(t)D2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K2(t) +DT

2 (t)H2(t)
]

−K1(t − δ)D1(t − δ)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K2(t) +DT

2 (t)H2(t)
]

−K1(t + δ)D2(t + δ)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]
, t ∈ [0, T].

(3.8)
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With the boundary conditions

K1(T) = Q, K1(t) = 0, t ∈ (T, T + δ], K2(t) = 0, t ∈ [T, T + δ] ∪ (0, δ),

H1(t) = H2(t) = 0, t ∈ (T, T + δ].
(3.9)

Here, λ is some constant.
Then we have the following main result.

Theorem 3.2. Suppose that there exist matrix-valued deterministic processes (K1(·), K2(·),H1(·),
H2(·)) satisfying the generalized Riccati equation system (3.5)–(3.8) with corresponding boundary
conditions, and for system (2.3), A2(t) = B2(t) = C2(t) = D2(t) = 0, t ∈ [0, δ). Then the optimal
feedback regulator for the delayed linear quadratic optimal Problem (LQD) is

u(t) = − [N1(t) +N2(t + δ)]
−1
(
BT
1 (t)y(t) +D

T
1 (t)z(t)

+E
Ft

[
BT
2 (t + δ)y(t + δ) +D

T
2 (t + δ)z(t + δ)

])
, t ∈ [0, T],

(3.10)

with

y(t) = K1(t)x(t) +K2(t)
∫0
−δ
eλsx(t + s)ds, (3.11)

z(t) = H1(t)x(t) +H2(t)
∫0
−δ
eλsx(t + s)ds. (3.12)

And the optimal value function is

J(u(·)) = 1
2
〈K1(0)a, a〉. (3.13)

Proof. Let (K1(·), K2(·),H1(·),H2(·)) be the solution of Riccati equation system (3.5)–(3.8) and
we set

y1(t) = K1(t)x(t) +K2(t)
∫0
−δ
eλsx(t + s)ds,

z1(t) = H1(t)x(t) +H2(t)
∫0
−δ
eλsx(t + s)ds.

(3.14)
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Applying Itô’s formula to y1(·), we have

y1(t) = Qx(T) +
∫T
t

−
{
K̇1(s)x(s)

+K1(s)[A1(s)x(s) +A2(s)x(s − δ) + B1(s)u(s) + B2(s)u(s − δ)]

+ K̇2(s)
∫0
−δ
eλrx(t + r)dr +K2(s)

×
[
x(s) − e−λδx(s − δ) − λ

∫0
−δ
eλrx(t + r)dr

]}
ds

−
∫T
t

{K1(s)[C1(s)x(s) + C2(s)x(s − δ)

+D1(s)u(s) +D2(s)u(s − δ)]}dW(s), t ∈ [0, T],
(3.15)

with

u(t) = − [N1(t) +N2(t + δ)]
−1
(
BT
1 (t)y1(t) +D

T
1 (t)z1(t)

+E
Ft

[
BT
2 (t + δ)y1(t + δ) +D

T
2 (t + δ)z1(t + δ)

])
, t ∈ [0, T].

(3.16)

Substituting (3.16) into (3.15), we have

y1(t) = Qx(T) +
∫T
t

f1
(
s, x(s), x(s − δ), y1(s), z1(s), y1(s + δ), z1(s + δ)

)
ds

−
∫T
t

z2(s)dW(s), t ∈ [0, T],

(3.17)

where z2(s) = K1(s)[C1(s)x(s) + C2(s)x(s − δ) +D1(s)u(s) +D2(s)u(s − δ)] and

f1
(
s, x(s), x(s − δ), y1(s), z1(s), y1(s + δ), z1(s + δ)

)

= −
{
K̇1(s)x(s) +K1(s)[A1(s)x(s) +A2(s)x(s − δ) + B1(s)u(s) + B2(s)u(s − δ)]

+K̇2(s)
∫0
−δ
eλrx(t + r)dr +K2(s)

[
x(s) − e−λδx(s − δ) − λ

∫0
−δ
eλrx(t + r)dr

]}
.

(3.18)
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The following analysis shows that z1(·) = z2(·) a.e., a.s. with the help of (3.7) and (3.8). In
fact, taking (3.16) into the presentation of z2(t), we will have

z2(t) =
{
K1(t)C1(t) −K1(t)D1(t)[N1(t) +N2(t + δ)]

−1
[
BT
1 (t)K1(t) +DT

1 (t)H1(t)
]

−K1(t)D2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K1(t) +DT

2 (t)H1(t)
]}
x(t)

+
{
K1(t)C2(t) −K1(t)D2(t)[N1(t − δ) +N2(t)]

−1

×
[
BT
1 (t − δ)K1(t − δ) +DT

1 (t − δ)H1(t − δ)
]}
x(t − δ)

−
{
K1(t)D1(t)[N1(t) +N2(t + δ)]

−1
[
BT
2 (t + δ)K1(t + δ) +DT

2 (t + δ)H1(t + δ)
]}

× E
Ft[x(t + δ)]

−
{
K1(t)D1(t)[N1(t) +N2(t + δ)]

−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]

+K1(t)D2(t)[N1(t − δ) +N2(t)]
−1
[
BT
2 (t)K2(t) +DT

2 (t)H2(t)
]} ∫0

−δ
eλsx(t + s) ds

−
{
K1(t)D1(t)[N1(t) +N2(t + δ)]

−1
[
BT
2 (t + δ)K2(t + δ) +DT

2 (t + δ)H2(t + δ)
]}

×
∫0
−δ
eλsx(t + δ + s)ds

−
{
K1(t)D2(t)[N1(t − δ) +N2(t)]

−1
[
BT
1 (t − δ)K2(t − δ) +DT

1 (t − δ)H2(t − δ)
]}

×
∫0
−δ
eλsx(t − δ + s)ds.

(3.19)

By the conditions K1(t) = H1(t) = 0, t ∈ (T, T + δ], K2(t) = H2(t) = 0, t ∈ [T, T + δ] and
B2(t) = C2(t) = D2(t) = 0, t ∈ [0, δ), we derive

E

∫T
0
|z1(s) − z2(s)|2ds

= E

∫T
0

[{
H1(s) −K1(s)C1(s) +K1(s)D1(s)

× [N1(s) +N2(s + δ)]
−1
[
BT
1 (s)K1(s) +DT

1 (s)H1(s)
]

+K1(s)D2(s)[N1(s − δ) +N2(s)]
−1
[
BT
2 (s)K1(s) +DT

2 (s)H1(s)
]

−K1(s + δ)C2(s + δ) +K1(s + δ)D2(s + δ)

× [N1(s) +N2(s + δ)]
−1
[
BT
1 (s)K1(s) +DT

1 (s)H1(s)
]

+K1(s − δ)D1(s − δ)[N1(s − δ) +N2(s)]
−1
[
BT
2 (s)K1(s) +DT

2 (s)H1(s)
]}
x(t)
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+

{
H2(s) +K1(s)D1(s)[N1(s) +N2(s + δ)]

−1
[
BT
1 (s)K2(s) +DT

1 (s)H2(s)
]

+K1(s)D2(s)[N1(s − δ) +N2(s)]
−1
[
BT
2 (s)K2(s) +DT

2 (s)H2(s)
]

+K1(s − δ)D1(s − δ)[N1(s − δ) +N2(s)]
−1
[
BT
2 (s)K2(s) +DT

2 (s)H2(s)
]

+K1(t + δ)D2(t + δ)[N1(t) +N2(t + δ)]
−1
[
BT
1 (t)K2(t) +DT

1 (t)H2(t)
]}

×
∫0
−δ
eλrx(t + r)dr

]2
ds.

(3.20)

We can see that (3.7) and (3.8) ensure that

E

∫T
0
|z1(s) − z2(s)|2ds = 0. (3.21)

In other words, z1(·) = z2(·) a.e., a.s.
So we use the following equation instead of (3.17):

y1(t) = Qx(T) +
∫T
t

f1
(
s, x(s), x(s − δ), y1(s), z1(s), y1(s + δ), z1(s + δ)

)
ds

−
∫T
t

z1(s)dW(s), t ∈ [0, T],

y1(t) = z1(t) = 0, t ∈ (T, T + δ].

(3.22)

Namely, (y1(·), z1(·)) introduced in (3.14) satisfies the above anticipated BSDE. From now on,
we pay attention to the anticipated BSDEs (2.8) and (3.22).

Applying the similar method we used above, we derive that (3.5) and (3.6) will lead
to the following:

E

∫T
0

∣∣f(s, x(s), x(s − δ), y1(s), z1(s), y1(s + δ), z1(s + δ)
)

−f1
(
s, x(s), x(s − δ), y1(s), z1(s), y1(s + δ), z1(s + δ)

)∣∣2ds = 0.

(3.23)

Thus, we get y(t) = y1(t), z(t) = z1(t) by Lemma 3.1 immediately, and feedback representa-
tion of optimal control in Theorem 3.2 is proved.

Applying Itô’s formula to 〈x(T), y(T)〉 in J(u(·)), it is easy to get (3.13).
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Remark 3.3. (i) The condition A2(t) = B2(t) = C2(t) = D2(t) = 0, t ∈ [0, δ) is reasonable in
practice: the condition implies that there is no delay on the time interval [0, δ). That is to say
there is no history of the system on [−δ, 0), that is, x(t) = 0, t ∈ [−δ, 0).

(ii) The matrix-value differential equation (3.5)–(3.8) is a generalized type of Riccati
equations which is different from the classical one. When there are no delays in the system,
that is, A2(t) = B2(t) = C2(t) = D2(t) = N2(t) = R2(t) = 0, K2(t) = H2(t) = 0, our generalized
anticipated Riccati equation will degenerate to the Riccati equation in Wu [9].

4. Application

The solvability of Riccati equation (3.5)–(3.8) is not easy to obtain in general. In this section,
we derive the unique solvability of the problem for some special cases. As an application of
our above results, we will consider a kind of stochastic LQ problem with delay arising from
the population control model in this section. The optimal feedback control is given by the
new type of Riccati equation and we can obtain its existence and uniqueness.

The following population growth model comes from Mohammed [3]:

x(t) = a0 +
∫ t
0
[−a1x(s) + a2x(s − δ)]ds +

∫ t
0
σdW(s), t ∈ [0, T],

x(t) = x0(t), t ∈ [−δ, 0),
(4.1)

where x(t) is the population at time t, a1 and a2 > 0 are constant death rate and birth rate
per capita, respectively. δ > 0 denotes the development period of each individual, and the
diffusion part describes the migration of the population; that is, there is migration whose
overall rate is distributed like σẆ .

Based on the population growth model, we consider the following population control
problem:

x(t) = a0 +
∫ t
0
[−a1(s)x(s) + a2(s)x(s − δ) + b1(s)v(s − δ)]ds +

∫ t
0
σ(s)x(s)dW(s), t ∈ [0, T],

x(t) = x0(t), t ∈ [−δ, 0),
v(t) = v0(t), t ∈ [−δ, 0).

(4.2)

Here, we change the original constant death and birth rate to be time-varying a1(·), a2(·),
b1(·), σ(·) are deterministic bounded functions on [0, T] and a2(·) = b1(·) = 0 on [0, δ).
x0(·), v0(·) ∈ L2

F
(−δ, 0;R). And the control v(·) models the intensity of the spending on

controlling the population. We take into account that there will be a time lag between control
expenditure and the corresponding effect on the population level, so the system is involved
with control delay.W(·) is a 1-dimensional B.M.

The objection is to minimize the following cost functional:

J(v(·)) = 1
2

E

[∫T
0

(
r1(t)x2(t) + n1(t)v2(t)

)
dt + qx2(T)

]
, (4.3)
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over the admissible control set Uad = {v(t) | v(t) ∈ L2
F
(0, T ;R)}. r1(·) and n1(·) are

nonnegative- and positive-valued bounded functions on [0, T], respectively, and q ≥ 0 is a
given constant. And all the coefficients in our model are equal to zero outside of the interval
[0, T]. About the cost functional, one can consider that we are going to control some pests’
quantity. We want to pay less expenditure and make the quantity of pests on lower level.

The above population control problem is a special case of the Problem (LQD) we
discussed in Sections 2 and 3. From Theorems 2.1 and 3.2, we have the following results.

Proposition 4.1. The control

u(t) = −n−11 (t)
[
b1(t + δ)y(t + δ)

]
, t ∈ [0, T] (4.4)

is the unique optimal control. Here, (x(·), y(·), z(·)) is the solution of the following generalized
FBSDE:

x(t) = a +
∫ t
0
{a1(s)x(s) + a2(s)x(s − δ) + b1(s)u(s − δ)}ds

+
∫ t
0
σ(s)x(s)dW(s), t ∈ [0, T],

y(t) = qx(T) +
∫T
t

{
a1(s)y(s) + σ(s)z(s) + r1(s)x(s) + E

Fs
[
a2(s + δ)y(s + δ)

]}
ds

−
∫T
t

z(s)dW(s), t ∈ [0, T],

x(t) = 0, t ∈ [−δ, 0),
u(t) = 0, t ∈ [−δ, 0),
y(t) = 0, z(t) = 0, t ∈ (T, T + δ].

(4.5)

Proposition 4.2. The feedback control regulator of the population control problem is given by

u(t) = −n−11 (t)b1(t + δ)

[
k1(t + δ)x(t + δ) + k2(t + δ)

∫0
−δ
eλsx(t + s)ds

]
, t ∈ [0, T], (4.6)

where (k1(·), k2(·)) satisfies

−k̇1(t) = (2a1(t) + a2(t))k1(t) + a2(t + δ)k1(t + δ) − n−11 (t − δ)b22(t)k21(t)

+ σ2(t)k1(t) + r1(t) + k2(t) − e−λδk2(t + δ), t ∈ [0, T],

k̇2(t) = [λ − a1(t) − a2(t)]k2(t) + n−11 (t − δ)b22(t)k22(t), t ∈ [δ, T],

k1(T) = qx(T), k1(t) = 0, t ∈ (T, T + δ],

k2(t) = 0, t ∈ [0, δ) ∪ [T, T + δ].

(4.7)
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Moreover, the above Riccati (4.7) admits a unique solution, so the presentation form of (4.6) exists
and it is unique. Here, λ is a parameter satisfying λ > a1(t) + a2(t), for all t ∈ [0, T].

Proof. Obviously, the existence and uniqueness of presentation (4.6) are equivalent to Riccati
(4.7) which has a unique solution, so we pay attention to (4.7).

Let us start with the second equation in (4.7). It is a classical Riccati-type differential
equation with bounded coefficients, thence, by Theorem 7.7 of Chapter 6 in Yong and Zhou
[11], we get that it admits a unique solution k2(t) on [0, T] and also we have 0 ≤ k2(t) ≤ M
withM which is big enough positive constant.

Now, let us turn to the first equation in (4.7). It is anticipated. In order to derive its
solvability, we discuss the equation backward step by step on the time interval [T − δ, T),
[T − 2δ, T − δ), . . . .

For example, when t ∈ [T − δ, T), the equation is equivalent to the following:

−k̇1(t) = 2
[
a1(t) +

1
2
a2(t)
]
k1(t) + σ2(t)k1(t)

− n−11 (t)b22(t)k
2
1(t) + r1(t) + k2(t), t ∈ [T − δ, T),

k1(T) = qx(T), k1(t) = 0, t ∈ (T, T + δ].

(4.8)

Because k2(t) can be solved in advance, we get that there exists a unique solution of
(4.8) and k1(t) ≥ 0 over [T − δ, T) also by Theorem 7.7 of Chapter 6 in Yong and Zhou [11].

The discussions on the other time intervals are similar; we omit them. All in all, the
Riccati equation (4.7) is solved backward in time from [T, T + δ] as an initial value problem
and the solution is unique. This will lead to the existence and uniqueness of our feedback
control immediately. The proof is completed.

Appendix

Let us pay attention to the generalized FBSDE (2.8). For the classical FBSDE, Hu, and
Peng [12] and Peng, Wu [13] obtained the existence and uniqueness results under some
monotonicity conditions. Yong [14] let the method in [12, 13] be systematic and called it
the “continuation method.” Then Wu [9, 15] discussed the applications of FBSDEs in LQ
problem and maximum principle for optimal control problems of FBSDE systems. While if
we substitute the optimal control (2.7) into (2.8), we notice that our FBSDE (2.8) is different
from the classical one; it contains more delayed and anticipated part in the coefficients. Now,
we try to analyze this generalized kind of FBSDEs.

For more general case, we consider the following FBSDE. (Just for simplicity, in this
appendix we change the notations with writing the time variable t as a subscript).

Consider the following:

dxt= b
(
t, xt, xt−δ, Btyt,Dtzt, Bt−δyt−δ,Dt−δzt−δ, B1

t yt,D
1
t zt, B

1
t+δyt+δ,D

1
t+δzt+δ

)
dt

+σ
(
t, xt, xt−δ, Btyt,Dtzt, Bt−δyt−δ,Dt−δzt−δ, B1

t yt,D
1
t zt, B

1
t+δyt+δ,D

1
t+δzt+δ

)
dWt,

t ∈ (0, T],
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−dyt = f
(
t, xt, yt, zt, yt+δ, zt+δ

)
dt − ztdWt, t ∈ [0, T],

xt = ϕt, t ∈ [−δ, 0], yt = zt = 0, t ∈ [−δ, 0),
yT = Φ(xT ), yt = zt = 0, t ∈ (T, T + δ].

(A.1)

Here B, B1, D,D1 are k × n matrices, (x, y, z) ∈ R
n+n+n and b, f, σ are F-adapted with appro-

priate dimensions.
We will use the notations:

λ =

⎛
⎝
x
y
z

⎞
⎠, λδ :=

⎛
⎝
x·−δ
y·−δ
z·−δ

⎞
⎠,

(
y·+δ
z·+δ

)
=
(
β
γ

)
, (A.2)

A
(
t, λ, λδ, β, γ

)
=

⎛
⎝

−f(t, λ, β, γ)
b
(
t, λ, λδ, β, γ

)
σ
(
t, λ, λδ, β, γ

)

⎞
⎠, (A.3)

where σ = (σ1, . . . , σd). We also impose the following monotonicity conditions:

(i) there exists a constant C > 0, such that

∣∣A(t, λ, λδ, β, γ
) −A(t, λ′, λ′

δ
, β′, γ ′

)∣∣ ≤ C(|λ − λ′| + ∣∣λδ − λ′δ
∣∣ + E

Ft
[∣∣β − β′∣∣ + ∣∣γ − γ ′∣∣])

∀λ, λ′, λδ, λ′δ, β, β′, γ, γ ′;

(ii) for each λ, λδ ∈ R
3n, β, γ ∈ L2(Ω,F·+δ, P ;Rn), A

(·, λ, λδ, β, γ
)
is in L2

F
(0, T);

(iii) for anyx,Φ(x) is in L2(Ω,FT , P) and it is uniformly

Lipschitz continuouswith respect tox;

(iv) for anyxt,
∫T
0

∣∣l(t, xt, xt−δ, yt, zt, yt−δ, zt−δ, yt+δ, zt+δ
)

−l(t, xt, xt−δ, y′
t, z

′
t, y

′
t−δ, z

′
t−δ, y

′
t+δ, z

′
t+δ

)∣∣dt

≤ K
∫T
0

∣∣∣Bt
(
yt − y′

t

)
+Dt

(
zt − z′t

)
+ E

Ft

[
B1
t+δ

(
yt+δ − y′

t+δ

)
+D1

t+δ

(
zt+δ − z′t+δ

)]∣∣∣dt,

whereK > 0, l = b, σ,
(HA.1)

∫T
0

〈
A
(
t, λt, λt−δ, yt+δ, zt+δ

) −A
(
t, λt, λt−δ, yt+δ, zt+δ

)
, λt − λt

〉
dt

≤
∫T
0

{
−ν1|x̂t|2 − ν2

(∣∣∣Bŷt +Dẑt + E
Ft

[
B1
t+δŷt+δ +D

1
t+δẑt+δ

]∣∣∣
2
)}

dt,

〈Φ(x) −Φ(x), x − x〉 ≥ 0,

(HA.2)
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for all λ = (x, y, z), λ = (x, y, z), x̂ = x − x, ŷ = y − y, ẑ = z − z, where ν1 and ν2 are given
nonnegative constants with ν1 ≥ 0, ν2 > 0.

Then we have the following result.

Theorem A.1. Let (HA.1) and (HA.2) hold. Then there exists a unique solution λ = (x, y, z) ∈
L2

F
(0, T ;Rn) × L2

F
(0, T ;Rn) × L2

F
(0, T ;Rn) satisfying the generalized FBSDE (A.1).

Proof. Uniqueness
let λs = (xs, ys, zs) and λ′s = (x′

s, y
′
s, z

′
s) be two solutions of (A.1). We set λ̂ = (x − x′, y −

y′, z − z′) = (x̂, ŷ, ẑ). And we apply Itô’s formula to 〈x̂s, ŷs〉 on [0, T]:

d
〈
x̂s, ŷs

〉
=
〈
x̂s, dŷs

〉
+
〈
ŷs, dx̂s

〉
+
〈
dx̂s, dŷs

〉

=
〈
x̂s,−
[
f
(
s, λs, ys+δ, zs+δ

) − f(s, λ′s, y′
s+δ, z

′
s+δ

)]
ds
〉
+ 〈x̂s, ẑsdWs〉

+
〈
ŷs,
[
b
(
s, λs, λs−δ, ys+δ, zs+δ

) − b(s, λ′s, λ′s−δ, y′
s+δ, z

′
s+δ

)]
ds
〉

+
〈
ŷs,
[
σ
(
s, λs, λs−δ, ys+δ, zs+δ

) − σ(s, λ′s, λ′s−δ, y′
s+δ, z

′
s+δ

)]
dWs

〉

+
〈
σ
(
s, λs, λs−δ, ys+δ, zs+δ

) − σ(s, λ′s, λ′s−δ, y′
s+δ, z

′
s+δ

)
, ẑs
〉
ds.

(A.4)

Integrating and taking expectations on both sides of the above equation, we have

E
〈
Φ(xT ) −Φ

(
x′
T

)
, x̂T
〉

= E

∫T
0

〈
A
(
t, λs, λs−δ, ys+δ, zs+δ

) −A(s, λ′s, λ′s−δ, ys+δ, zs+δ
)
, λ̂s
〉
ds.

(A.5)

Combining (HA.2), we obtain

ν2E

∫T
0

∣∣∣Bsŷs +Dsẑs + E
Fs

[
B1
s+δŷs+δ +D

1
s+δẑs+δ

]∣∣∣
2
ds ≤ 0. (A.6)

This implies Bsŷs +Dsẑs +B1
s+δŷs+δ +D

1
s+δẑs+δ ≡ 0. Following (HA.1)-(iv) and the uniqueness

of solution for SDDE (see [2, 3]), we have xs ≡ x′
s. Consequently, Φ(xT ) = Φ(x′

T ). By the
uniqueness of solution for BSDE, we have ys ≡ y′

s, zs ≡ z′s.
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Existence. In order to prove the existence of the solution we first consider the following family
of equations parameterized by α ∈ [0, 1]:

dxαt =
{
(1 − α)

{
− BT

t

(
Bty

α
t +Dtz

α
t + E

Ft

[
B1
t+δy

α
t+δ +D

1
t+δz

α
t+δ

])

−
(
B1
t

)T(
Bt−δyαt−δ +Dt−δzαt−δ + B

1
t y

α
t +D

1
t z

α
t

)}

+αb
(
t, λαt , λ

α
t−δ, y

α
t+δ, z

α
t+δ

)
+ φt
}
dt

+
{
(1 − α)

{
−DT

t

(
Bty

α
t +Dtz

α
t + E

Ft

[
B1
t+δy

α
t+δ +D

1
t+δz

α
t+δ

])

−
(
D1
t

)T(
Bt−δyαt−δ +Dt−δzαt−δ + B

1
t y

α
t +D

1
t z

α
t

)}

+ασ
(
t, λαt , λ

α
t−δ, y

α
t+δ, z

α
t+δ

)
+ ψt
}
dWt, t ∈ [0, T],

−dyαt =
[
αf
(
t, λαt , y

α
t+δ, z

α
t+δ

)
+ ςt
]
dt − zαt dWt, t ∈ [0, T],

xαt = ϕt, t ∈ [−δ, 0], yαt = zαt = 0, t ∈ [−δ, 0),
yαT = αΦ(xT ) + ξ, yαt = zαt = 0, t ∈ (T, T + δ],

(A.7)

where φ, ψ and ς are given processes in L2
F
(0, T ;Rn), ξ ∈ L2(Ω,FT , P ;Rn). Obviously, the

existence of solutions for (A.7) with α = 1 implies our desired conclusion. When α = 0, we
notice that (A.7) is in a decupled form, and we obtain the existence and uniqueness result
from the classical SDE and BSDE theory. Detailedly, in this case, the second equation and the
terminal condition y0

T = ξ construct a standard BSDE which admits a unique solution (y0, z0).
Substituting (y0, z0) into the first equation, we get a standard SDE and it admits a unique
solution x0. Thence, we need to consider the following case:

dXt =
{
(1 − α0)

{
− BT

t

(
BtYt +DtZt + E

Ft

[
B1
t+δYt+δ +D

1
t+δZt+δ

])

−
(
B1
t

)T(
Bt−δYt−δ +Dt−δZt−δ + B1

t Yt +D
1
t Zt

)}

+α0b(t,Λt,Λt−δ, Yt+δ, Zt+δ)
}
dt

+
{
ρ

[
BT
t

(
Btyt +Dtzt + E

Ft

(
B1
t+δyt+δ +D

1
t+δzt+δ

))

+
(
B1
t

)T(
Bt−δyt−δ +Dt−δzt−δ + B1

t yt +D
1
t zt
)
+ b
(
t, λt, λt−δ, yt+δ, zt+δ

)]
+ φt
}
dt
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+
{
(1 − α0)

{
−DT

t

(
BtYt +DtZt + E

Ft

[
B1
t+δYt+δ +D

1
t+δZt+δ

])

−
(
D1
t

)T(
Bt−δYt−δ +Dt−δZt−δ + B1

t Yt +D
1
t Zt

)}

+α0σ(t,Λt,Λt−δ, Yt+δ, Zt+δ)
}
dWt

+
{
ρ

{
DT
t

(
Btyt +Dtzt + E

Ft

[
B1
t+δyt+δ +D

1
t+δzt+δ

])

+
(
D1
t

)T(
Bt−δyt−δ +Dt−δzt−δ + B1

t yt +D
1
t zt
)}

+σ
(
t, λt, λt−δ, yt+δ, zt+δ

)
+ ψt
}
dWt, t ∈ [0, T],

−dYt =
[
α0f(t,Λt, Yt+δ, Zt+δ) + ρf

(
t, λt, yt+δ, zt+δ

)
+ ςt
]
dt − ZtdWt, t ∈ [0, T],

Xt = ϕt, t ∈ [−δ, 0], Yt = Zt = 0, t ∈ [−δ, 0),
YT = α0Φ(XT ) + ρΦ(xT ) + ξ, Yt = Zt = 0, t ∈ (T, T + δ].

(A.8)

Here, Λs = (Xs, Ys, Zs). We want to prove that the mapping defined by

Iα0+ρ(λ) = Λ : L2
F
(−δ, T ;Rn) × L2

F
(−δ, T + δ;Rn) × L2

F
(−δ, T + δ;Rn)

−→ L2
F
(−δ, T ;Rn) × L2

F
(−δ, T + δ;Rn) × L2

F
(−δ, T + δ;Rn)

(A.9)

is a contraction.

For the difference (X̂, Ŷ ) = (X −X′, Y − Y ′), we have the following result:

[ν2α0 + (1 − α0)]E
∫T
0

∣∣∣BsŶs +DsẐs + E
Fs

[
B1
s+δŶs+δ +D

1
s+δẐs+δ

]∣∣∣
2
ds

≤ ρC1E

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + ρC1E|x̂T |2 + ρC1E

∫T
0

∣∣∣Λ̂s

∣∣∣
2
ds + ρC1E

∣∣∣X̂T

∣∣∣
2
.

(A.10)

Here C1 depends on the Lipschitz constants of b, σ, f,Φ and B, B1, D,D1. If we select ν2α0 +
(1 − α0) ≥ L1, where L1 = min(1, ν2) > 0, then

E

∫T
0

∣∣∣BsŶs +DsẐs + E
Fs

[
B1
s+δŶs+δ +D

1
s+δẐs+δ

]∣∣∣
2
ds

≤ ρC2E

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + ρC2E|x̂T |2 + ρC2E

∫T
0

∣∣∣Λ̂s

∣∣∣
2
ds + ρC2E

∣∣∣X̂T

∣∣∣
2

(A.11)
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with C2 = C1/L1. For X̂, using the estimate of SDDE, we derive

sup
0≤s≤T

E|x̂T |2 ≤ C3ρE

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + C3E

∫T
0

∣∣∣BsŶs +DsẐs + E
Fs

[
B1
s+δŶs+δ +D

1
s+δẐs+δ

]∣∣∣
2
ds,

E

∫T
0
|x̂T |2ds ≤ C3TρE

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + C3TE

∫T
0

∣∣∣BsŶs +DsẐs + E
Fs

[
B1
s+δŶs+δ +D

1
s+δẐs+δ

]∣∣∣
2
ds.

(A.12)

Similarly, for the difference of solutions (Ŷ , Ẑ), we have

E

∫T
0

(∣∣∣Ŷs
∣∣∣
2
+
∣∣∣Ẑs

∣∣∣
2
)
ds ≤ C3ρE

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + C3E

∫T
0
|x̂s|2ds + C3E|x̂T |2, (A.13)

by the anticipated BSDE estimates (see [7]). Here, the constant C3 depends on the Lipschitz
constants, K,B, B1, D,D1 and T . Combining the estimates (A.11)–(A.13), we have

E

∫T
0

∣∣∣Λ̂s

∣∣∣
2
ds + E|x̂T |2 ≤ Cρ

(
E

∫T
0

∣∣∣λ̂s
∣∣∣
2
ds + E|x̂T |2

)
, (A.14)

where the constant C depends on C1, C2, C3 and T . So we choose ρ0 = 1/2C, then for each
ρ ∈ [0, ρ0], the mapping Iα0+ρ is a contraction; that is, for all ρ ∈ [0, ρ0] the (A.7) for α = ρ has
a unique solution. We repeat this processN times with 1 ≤ Nρ0 ≤ 1 + ρ0. It then follows that
(A.7) for α = 1 has a unique solution.

Remark A.2. It is verified that the FBSDE (2.8) satisfies the assumptions (HA.1) and (HA.2);
therefore, there exists a unique solution (x, y, z) for FBSDE (2.8). Consequently, the optimal
control of our Problem (LQD) exists and is unique.
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