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This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and only if
there is a complete edge or a complete arc lying on a quadrant. This algorithm is nonconservative
in the sense that if the value-set boundary of an interval plant is exactly known, and particularly
its vertices, then the Kharitonov rectangles are exactly those used to obtain these value sets.

1. Introduction

In reference to the identification problem, these have been widely motivated and analysed
over recent years [1]. Van Overschee and De Moor in [2] explains a subspace identification
algorithm. In [3] the authors present a robust identification procedure for a priori classes of
models in H,; the authors consider casual, linear time invariant, stable, both continuous or
discrete time models, and only SISO systems.

Interval plants have been widely motivated and analysed over recent years. For
further engineering motivation, among the numerous papers and books, [4-9] must be
pointed out and the references thereof.

The identification problem using the interval plant framework, that is, to compute
an interval plant from the frequency response, has not been completely solved. Interval plant
identification was investigated by Bhattacharyya et al. [5], who developed a method in which
identification is carried out for interval plants so that the numerator and denominator have
the same degree, starting from the variation of the coefficient values of a nominal transfer
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function at certain intervals. So, the identification of a nominal transfer function is carried
out first, and then the intervals of variation of the coefficients are determined.

A different approach was developed by Herndndez et al. [10] studying the problem
from the extreme point results point of view. This was a first step for the identification of
an interval plant, showing three main properties to characterize the value set lying on a
quadrant. Then an algorithm for the identification of interval plants from the vertices of the
value sets is obtained. However, this algorithm solves the identification problem when the
value set contains at least five vertices in a quadrant.

This paper improves the results obtained in [10] and shows how to obtain the values
of the numerator and denominator Kharitonov polynomials when the value sets have less
than five vertices in the same quadrant. Identification with such an interval plant allows
engineers predict the worst case performance and stability margins using the results on
interval systems, particularly extreme point results.

2. Problem Statement

Let us consider a linear interval plant of real coefficients, of the form

N, s
P(s,a,b) = %, 2.1)

where N, (s, a) and Dp(s, b) are interval polynomials given as

N,(s,a) = ams™ + amas™ ' +---+ay, a€A={a:a;<a;<al,i=0,...,m}, 02
Dp(s,b) = bys" +by1s" ' +---+by, beB={b:b; <b;<b!,i=0,...,n},

withm > 1,n > 1,0 € D,(s,b), and where vectors a = [ao,a1,...,am], an#0,and b =
[bo, by, ...,by], b, #0 are the uncertainty parameters that lie in the hyperrectangles A and B,
respectively.

Numerator and denominator polynomial families are characterized by their respective
Kharitonov polynomials, and they can be expressed in terms of their even and odd parts, at
s = jw, as follows:

Family N, (s):

knl = Pemin (](U) + jpo min (]UJ), an = Pemax (](U) + jpo min (]w)/

(2.3)
kn3 = Pe max (](U) + jpo max (](/J), kn4 = Pemin (](U) + jpomax (]w)/
where
Pemin(jw) =a;—ajw*+a;w*—aiw®+-- -, Pemax (jw) =ai - ayw* +ajw* —agw®+- -+,
Pomin(jw) =a;w—-alw’ +azw’ —ajw’ + -, Pomax (jw) =ajw—-a;w’ +atw’ —azw’ + - .

(2.4)
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Family Dy (s):
Kt = Gemin(je0) + jomin (), ka2 = Gemax (je0) + jomin (je0), (25)
ka3 = Gemax (jw) + jGomax (jw), Kas = Gemin (&) + jomax (jw),
where
Gemin (jw) =by —b3w? +bjw* ~biw®+ -, Gemax(jw) =b-byw? +bjw* —bywb+ -,
omin (jw) =bjw-bjw’ +b;w’~bijw +--,  Gomax(jw) =bjw-biw’ +biw’ —byw +--- .
(2.6)

As is well known, the values G(jw) of the complex plane obtained for the transfer
function G(s) at a given frequency are denominated as a value set. The identification of the
system consists in determining the transfer function coefficients from the value set.

As can be observed in [10], when the values {kn (jw), kn2(jw), knz(jw), kna(jw) } and
(ka1 (jw), kaz (jw), kaz(jw), kas(jw)} are known, then the system of equations given in [10,
equation 14] can be solved and therefore the interval plant is identified (see [10] for details).

As is shown [10] the vertices of the value-set boundary of an interval plant can be
assigned as

Ui = — (27)

where nj, j = 1,2,3,4 and di, k = 1,2,3,4 are the assigned polynomials numerator and
denominator, respectively. When they are in the same quadrant they are a Sorted Set of Vertices
(SSV).
As is well known, the Kharitonov polynomials values can be obtained from
kn1 (jw) = min[Re(n1,n3)] +j min[Im(ny, n3)],
kn (jw) = max[Re(ny,n3)] + jmin[Im(ny, n3)],
kn3(jw) = max[Re(ny,n3)] + j max[Im(ny, n3)],

kns(jw) = min[Re(ny,n3)] + j max[Im(ny, n3)], 08
2.8
ka1 (jw) = min[Re(dq, ds)] + jmin[Im(dy, d3)],

ki (jw) = max[Re(dy, ds)] + j min[Im(d;, d3)],

ka3(jw) = max[Re(ds, d3)] + jmax[Im(ds, ds)],

kas(jw) = min[Re(ds, ds)] + j max[Im(ds, d3)].
It must be pointed out that the results presented in [10] must be considered as the background
necessary for this work. Thus, the geometry of the value set is described in [10] and

the concepts necessary for its description are defined, (such as the successor, predecessor
element, etc.) and the fundamental properties on which this work is based are proven.
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This paper is organized as follows. Section 3 shows how to determine the assigned
polynomial with the only condition that there is a complete segment in a quadrant. Similarly
Section 4 shows it when there is an arc in a quadrant. Section 5 illustrates the algorithm and
examples. Finally, the conclusions are shown in Section 6.

3. Assigned Polynomial Determination When There Is a Complete
Segment in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of a segment in
a quadrant will be considered. So, let S; be a segment of the value-set boundary with vertices
v1 = m/di and v, = ny/d;. Continuity segment-arc in a quadrant (see [10, Theorem 2])
implies that there will be a successor arc with vertices v, = n2/d1, Vpguec = 12/ds) counter-
clockwise and a predecessor arc with vertices v1 prea = 111/ d4) counter-clockwise. When these
arcs are completed the denominators are vertices of the Kharitonov rectangle. Figures 1 and
2 show this situation.
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Figure 3: v, vertex of two elements, arc-segment.

As was shown, the values of nj, ny, and d; can be calculated from the complete
segment based on a normalization (see [10, Theorem 4]). The following normalization
simplifies the nomenclature.

Lemma 3.1 (segment normalization). Let Sy be a complete segment of the value-set boundary with
vertices v1 = n1/dy and vy = ny/dy and the normalization dy = cos(¢p(d1)) + jsin(¢(d1)), where
@p(d1) = 360° — arg(vy — v1) arg(v, — v1) being the argument of the segment v, — v1. Then ny =
vidy, 1y = vady, doy = N2/ Vo suce , and day = 11/ V1 pred , Where Vy suce (V1 pred ) 15 any point of the
next (previous) arc of the segment Sy.

Proof. 1t is trivial. This normalization is one of the infinite possible solutions [10] for a value
set. This normalization implies fitting d; with modulus |d;| = 1 and angle so that the segment
of the Kharitonov polynomial numerator with vertices n; and n, will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete segment in a quadrant
the values of di, n1, no, dyy, and dy4), can be calculated. ]

This paper deals with the general case where nyr #0, 121 #0, n1r #0, and ny; #0.

Given a vertex vy = ny/d, in a quadrant, the target is to determine the polynomials 7,
and d,. The vertex v, belongs to a part of a segment and a part of an arc, due to the continuity
segment-arc in a quadrant. So, v, will be the vertex of two elements, arc-segment (Figure 3)
or segment-arc (Figure 4).

The following Lemma shows the necessary conditions on the denominator d, to be a
solution of v, = n,/d,.

Lemma 3.2 (denominator condition). Let Sy be a complete segment in a quadrant and let d,. be the
denominator of a vertex vy = ny/dy in a quadrant. Then it is a necessary condition that d, satisfies
one of the following conditions:

(1) (dir < dor and dyy < dyyg) and {(dxgr = dig and dy; = diy) [dy = di] or (dyr =
dig and dyr > dir) [dx = da] or (dxr = dip and dyr 2 dig) [dx = do] or (dxr >
dig and dyr > dip) [dy =ds]},
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Figure 4: v, vertex of two elements, segment-arc.

(2) (le > d4)LR and dl[ < dzu) and {(de = le and dx[ = dH) [dx = dl] or (de =

dig and dyr > dip) [dx = da] or (dyr = dip and dyg < dir) [dx = da] or (dyr <
dig and dyp > dip) [dy =ds]},

() (dir > dyr and dip > dyyg) and {(dxg = digr and dyp = dip) [dy = di] or (dxr =
dig and dyr < dip) [dx = da] or (dyr = dir and dyg < dir) [dx = da] or (dxr <

dig and dy <dip) [dy =ds]},

(4) (dir < dunr and dip > doyg) and {(dxr = dig and dyp = diy) [dy = di] or (dxr =
le and dx[ < dH) [dx = dz] or (de = d1[ and de > le) [dx = d4] or (de >
dir and dy <dir) [dy =d5]},

where dig is the real part of d; and d; is the imaginary part of d;, and the corresponding assigned
denominator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete segment in a
quadrant and the properties of the Kharitonov rectangle. So, from the complete segment and
the normalization (Lemma 3.1), the values of d, dy), and dy, are known. Then, d; can be
established as kg1, ka», kas, or kga.

(1) If (dig < doyr and di < dyyg) then d; is k41. Given a value d,, it will be a vertex
of the Kharitonov rectangle denominator only if dyg = dig and dyr = di (dy is
dl = kd1) or de = le and dx[ > du (dx is d4 = kd4) or de = dU and de > le
(dy is dp = kap) or dyg > dig and dyr > dir (dy is ds = ka3). (Figures 5(a), 5(b),
5(c), and 5(d)).
Note that if any of these conditions is not satisfied, then d, cannot be a solution.
For example, if dyg = dir and dyr < dij, dyx does not belong to the rectangle with
vertex dy, dy), and dy, are elements of the successor and predecessor edges. Figure 6
shows these considerations.

(2) Similarly, if (digr > dar and di; < dpyg) then dj is kgp. Given a value dy, it will be
a vertex of the Kharitonov rectangle denominator only if dyg = dig and dy; = di;
(dx is dl = de) or de = le and de > dlI (dx is dz = kdg,) or de = dl[ and de <
le (dx is d4 = kdl) or de < le and dx[ > du (dx is d3 = kd4).

(3) If dig > doyg and dy; > dyyg then d; is ky3. Given a value d,, it will be a vertex
of the Kharitonov rectangle denominator only if dyg = dig and dyr = di (dy is
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Figure 5: Cases where d, is a vertex of the kharitonov rectangle denominator.

d1 = kd3) or de = le and dx[ < dl[ (dx is d4 = kd2) or de = dU and de < le
(dx is d2 = kd4) or de < le and dx[ < du (dx is d3 = kdl)-

(4) Finally, if dig < dyr and dij > dpyg then d; is kg. Given a value dy, it will be a
vertex of the Kharitonov rectangle denominator only if dyg = dig and dyr = dir
(dx is d1 = kd4) or de = le and de < d11 (dx is dz = kdl) or de = du and de >
d1R (dx is d4 = kdg) or de > d1R and dx[ < d1[ (dx is d3 = kd2)~ |

On the other hand, the behaviour of a segment on the complex plane when divided by a
complex number is well known. The following property shows this behaviour.

Property 1. Let Sy = S/d, be a segment on the complex plane with vertices vy and vy
counter-clockwise where S is a segment with vertices n, and n, counter-clockwise. Let d.
be a complex number with argument arg(dy). Let ¢(Sx) be ¢(Sx) = arg(vxo — vx1). Then the
relation between the argument of d, and ¢(Sy), is given by

(1) arg(dy) = —¢(Sy) if and only if arg(n, — n,) = 0°,

(2) arg(dy) = 90° — ¢(Sy) if and only if arg(ny, — n,) = 90°,
(3) arg(dy) = 180° — ¢(Sy) if and only if arg(n, — n,) = 180°,
(4) arg(dy) = 270° — (Sy) if and only if arg(ny, — n,) = 270°.

The following Theorem shows how to characterize and calculate the polynomials 7, and d,
associated with a vertex v, = n,/d, from the information of the boundary with a segment S,
in a quadrant, v, = n,/d, belonging to a segment-arc.
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Figure 7: Vertices for the conditions of the Theorem 3.3.

Theorem 3.3 (predecessor). Let Si be a complete segment of the value-set boundary with vertices
v1 = n1/dy and vy = ny/dy, the successor arc with vertices vy = Ny /dy, Vs suce = N2/ dpy counter-
clockwise, and the predecessor arc with vertices U1 prea = 11/dayr, v1 = n1/dy counter-clockwise. Let
Sy be a segment with vertices Uy pred = N pred /dx and vy = ny/d, counter-clockwise, where vy
belongs to the intersection of Sy and an arc of the boundary (Figure 7). Then

(1) arg(vx/v2) = arg(di) + ¢(Sx) (condition C1) and the denominator d, of vy defined by
Ny /vy satisfies the denominator condition (Lemma 3.2), if and only if ny = ny and cannot
be any other assigned polynomial,

(2) when ny #ny, arg(vy/v1) = arg(di) + ¢(Sx) + 90° (condition C2) and the denominator
dy of vy defined by ni /v, satisfies the denominator condition (Lemma 3.2) if and only if
ny = ny and cannot be any other assigned polynomial,

(3) when ny #ny and ny # ny, tan(arg(vy) — (Sx) + 90°)nyr > nyy (condition C3), and the
denominator dy of vy defined by nyr[1 + j tan(arg(vy) — ¢(Sx) + 90°)] /vy satisfies the
denominator condition (Lemma 3.2) if and only if n, = ns = nyr[1l + jtan(arg(vy) —
(Sx) +90°)] and cannot be any other assigned polynomial,

(4) when ny #ny, ny # 1y, and ny, # nz, tan(arg(vy) — (Sy) +180°)n1r > nyy (condition C4),
and the denominator dy of vy defined by nir[1+j tan(arg(vy) —(Sx)+180°)] /vy satisfies
the denominator condition (Lemma 3.2) if and only if n, = ny = mg[1 + j tan(arg(vy) —
9(Sx) +180°)].
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Proof. From the complete segment S; using the normalization (Lemma 3.1) the values of
dy, my = vidy, ny = vady, doy = N2/ Vosuee, and dyy = M1/Vipreq are known. Obviously the
value v, is known.

(1) < If n, = ny the value of d, = ny/v, can be calculated and the denominator
condition (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices v, = n,/d,
and v, = np/d; is vx /vy = di/dy, and arg(vy/vy) = arg(d;) — arg(dy). Sx = S2/dyx, where
Sy is part of the segment with vertices n; and nj, then arg(n, — n1) = 0° (normalization).
Thus arg(dy) = —¢(Sx) (Property 1) and arg(vy/v2) = arg(di) + ¢(Sx); Theorem 3.3(C1) is
satisfied.

= In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C1)
and the denominator condition are satisfied then the solution d, = n,/vy, n, = n is unique.
It must be noted that Theorem 3.3(C1) can be satisfied when (a) n, = ns, (b) n, = ny or (c)
n, = ny and in all the cases, the value of d, determined, verify the denominator condition.

Let d, be the denominator of v, determined by n, /vy, verifying Theorem 3.3(C1), and
denominator condition, and let S, = S,/d, where S, is part of the segment with vertices 1y
and ny, arg(ny —ny) = 0°.

(a) Let d;, be the denominator of v, determined by n3/v,. Then Sy = S3/d; where S;
is part of the segment with vertices n, and n3, arg(ns — ny) = 90° (normalization) and using
Property 1 arg(d;) = 90° — ¢(Sx). As vy is the same vertex, then arg(ns/d}) = arg(n,/dy),
and arg(nz) = arg(ny) + 90°. n, = n3 verify Theorem 3.3(C1), because

arg(Z—E) = arg(ny) +90° — arg(na) + arg(dy) — 90° + (Sy) = arg(dr) + ¢(Sy). 3.1)

Let a = arg(n,) with tan(a) = nyr/n2r. Then arg(nz) = a + 90° and tan(a + 90°) = na;/n3g =
nsr/nyr (by normalization nzg = mag). Thus n3 = mog + jnsr = nog + jtan(a + 90°)nog
nar—j(n3x/M21). Moreover arg(d;) = 90°+arg(d,), and if dy = dxg+jdys then d} = pel™/2d, =
—pdy1 + jpdxr. As vy = np/dy and vy = n3/dy, then nod;, = nzd, and they have equal real and
imaginary parts.

Re[nyd%] = Re[n3d,] then

d At = o + 2R
—pPAaxiNaR — PAxRN2] = N2RAxR + or xIs
21

3.2
—pdyrmornor — pdyria; = NorMardyr + Mapdy, (3.2)
—(pnay + nor)dxriar = (Mog + phior) dxrog.
Thus dy;/dxr = —n21/ 128
Im[nyd%] = Im[n3d,] then
2
pAyxrNoR — pdyitiar = dyrtior — dyxr %,
o (3.3)

2 2
pAxrMoRrN — Pty = dxiMarNor — dxrM5R,

(na1p + nar) Mardxr = dxrnior (Mag + phiag ).

Thus dy;/dxr = nor/ 11
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Taking into account both conditions, nyr/ny; = —ny1/nor & n%R < 0. This relation is
impossible. Therefore, if d, is a solution then 4, is not, and n, = n3 is not a solution.

(b) Let d be the denominator of v, determined by n4/vy. Then S, = S4/dy where S,
is part of the segment with vertices n3 and ny, arg(ns — n3) = 180° (normalization) and using
Property 1 arg(dy) = 180° — ¢(Sx). As vy is the same vertex, then arg(ns/d}) = arg(ny/dx)
and arg(ny) = arg(ny) + 180°. ny = ny verify Theorem 3.3(C1), because

arg(%) = arg(ny) + 180° — arg(ny) + arg(di) — 180° + ¢(Sx) =arg(di) + ¢(Sx). (3.4)
2

In this case the demonstration is trivial noting that arg(d%) = 180° + arg(dy). This is not
possible because the Kharitonov polynomial denominator cannot contain the zero.

(c) Let d be the denominator of v, determined by n;/v,. Then S, = S1/d} where S;
is part of the segment with vertices ny and ny, arg(n; — ns) = 270° (normalization) and using
Property 1 arg(dy) = 270° — ¢(Sy). As vy is the same vertex, then arg(n;/d}) = arg(n,/dy),
and arg(n;) = arg(ny) + 270°. n, = ny verify Theorem 3.3(C1), because

arg(%) = arg(ny) +270° — arg(ny) + arg(di) — 270° + (Sx) = arg(di) + ¢(Sx). (3.5)
2

Let a = arg(n,) with tan(a) = ny;/nar. Then arg(ng) = a + 270° and tan(a + 270°) = ny/nig =
nyr/nig (by normalization nzg = nog). Thus ny = nig + jnor = (nor/ tan(a + 270°)) + jnyr =
—(n%l/an) + jnor. Moreover arg(dy) = 270° + arg(dy), and if dy = dyr + jdys then di
pelP T4, = pd, — jpdyr. As vy = ny/d, and vy = ny/d%, then nod: = n1d, and they have
equals real and imaginary parts.

Re[n,d}] = Re[md,] then

2
n
21
+pdyinor + pdyrnpr = —n—de — Nprdyi,
2R

(3.6)
(n21 + narp) dxinor = —(Norp + Nop) dxrMor.
Thus dy1/dxr = =121/ n2rR.
Im[nydi] = Im[n1d,] then
2
—pd riaR + pdernor = —dy —2- + dygnag,

MnaR

(3.7)

_ 2
—pdyRrNRNOR + pdxiNarNor = —dxM5; + dxrN2IM2R,

(nar + prar)darnor = dyriar (pHag + 1op ).

Thus dy;/dxr = nor/no;.

Taking into account both conditions, nyr/ny; = —nar/nor. This relation is impossible.
Therefore, if d, is a solution, d% is not and n, = n; cannot be a solution.

(2) & If n, = ny the value of d, = n; /v, can be calculated and the denominator condi-
tion (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices v, = n;/dy and
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vy = my/dy is vy /vy = di/dy, and arg(vy/v1) = arg(di) — arg(dy). Sy = S1/dx where S is
part of the segment with vertices ny and n;, then arg(n; — ny) = 270° (normalization). Thus
arg(dy) = 270° — ¢(Sy) (Property 1) and arg(v,/v1) = arg(di) + ¢(Sx) +90°; Theorem 3.3(C2)
is satisfied.

= In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C2)
and the denominator condition are satisfied then the solution d, = ny /vy, n, = ny is unique.
It must be noted that Theorem 3.3(C2) can be satisfied when (a) n, = n3 or (b) n, = ny and in
all the cases, the value of d, determined, verify the denominator condition.

Let d, be the denominator of v, determined by n; /v,, verifying Theorem 3.3(C2), and
denominator condition, and let Sy = S;/d, where S; is part of the segment with vertices 74
and ny, arg(n, — n1) = 270°.

(a) Let d;, be the denominator of v, determined by n3/v,. Then Sy = S3/d; where S3
is part of the segment with vertices n, and n3, arg(ns — n,) = 90° (normalization) and using
Property 1 arg(dy) = 90° — ¢(Sy). As vy is the same vertex, then arg(ns/dy) = arg(ni/dx)
and arg(nz) = arg(ny) + 180°. n, = n3 verify Theorem 3.3(C2), because

arg(Z—j) = arg(ny) + 180° — arg(ny) + arg(d1) — 90° + ¢(Sy) = arg(di) + ¢(Sx) +90°. (3.8)

In this case the demonstration is trivial noting that arg(d}) = —180° + arg(d,). This is
not possible because the Kharitonov polynomial denominator cannot contain the zero.

(b) Let d be the denominator determined by ny/vy. Then S, = S4/d} where Sy is
part of the segment with vertices n3 and ny, arg(ns — n3) = 180° (normalization) and using
Property 1 arg(dy) = 180° — ¢(Sy). As vy is the same verteX, then arg(ny/d}) = arg(ni/dy),
and arg(ny) = arg(n) +270°. n, = ny verify Theorem 3.3(C2), because

arg<Z—’1() = arg(ny) +270° — arg(ny) + arg(di) — 180° + (Sx) = arg(d1) + ¢(Sy) +90°. (3.9)

Let a = arg(n;) with tan(a) = ny7/nig. Then arg(n;) = a + 270° and tan(a + 270°) =
nyr/nar = —mir/nyr (by normalization n1g = nyg). Thus ng = myg + jra = nig + jnog tan(a +
270°) = mg — j(n%R/nH). Moreover arg(dy) = -90° + arg(dy), and if d, = dyg + jdir then
d: = pel®*/Dd, = pdyr — jpdyr. How vy = n1/dy and vy = ny/d%, then nid = nyd, and they
have equals real and imaginary parts.

Re[md%] = Re[nad,]

2
n
1R
pdxrmig + pdxrniy = +n_dx1 + nirdxr,
1

, (3.10)
pdxinirmr + pdxriiiig = +1ygdxr + MrdxrMiL,

(pmip — mig)dxmig = (n1g — prar) dxriar.

Thus dy;/dyg = —n11/n1R.
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Im[nidy] = Im[nad,]

d = —do R 4 g
—pPAxRNIR + PAxN1] = — an— + dxIMR,
11

, (3.11)
—pdyrmirtir + pdxrtirng = —dxrnig + dxrmirMr,

(—pnir + mg)dsrmig = (n1g — prar) darmay.

and fmally dx]/de = TllR/TlH.

Taking into account both conditions, —n1;/n1r = n1r/n1z. This relation is impossible.
Therefore, if d, is a solution, d; is not and 7, = n4 is not a solution.

(3) < If ny = n3 then dy = n3/v, cannot be directly calculated because n3 is not
known. First, Theorem 3.3(C3) is developed. If n, = n3 then S, = S3/d, where S3 is part
of the segment with vertices n, and n3 and arg(nsz — ny) = 90°. Thus arg(dy) = 90° — ¢(5x)
(Property 1) and arg(n3) = arg(vy) + arg(dy) = arg(vy) + 90° — ¢(Sx).

As myr = n3g, then n3 = ngg + jns; = nmyr + juog tan(arg(vy) + 90° — ¢(Sy)). On the
other hand, nz; is greater than n,; because it is counter-clockwise. Therefore tan(arg(vy) —
(Sx)+90°)nor > nyr (Theorem 3.3(C3)) is satisfied and d, can be calculated by the expression
dy = n3/vy = mpr[1 + jtan(arg(vy) — @(Sx) +90°)] /0.

= In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C3)
and the denominator condition are satisfied then the solution d, = n3/vy, n, = n3 is unique.
If ny # ny and n, # ny, it must be noted that Theorem 3.3(C3) can be satisfied when n, = ng.

Let d, be the denominator of v, determined by n3/v, verifying Theorem 3.3(C3) and
denominator condition. S, = S3/d; where S; is part of the segment with vertices n, and n3,
arg(nz — np) = 90°.

Let d; be the denominator of v, determined by n4/v,. Then S, = S4/d} where S, is
part of the segment with vertices n3 and ny, arg(nsy — n3) = 180° (normalization) and using
Property 1 arg(d:) = 180° — ¢(S,) = arg(d,) +90°. Thus d* = pe!"/Pd, = —pd.1 + jpdyr.

As vy is the same vertex, arg(ny/d}) = arg(nz/dy), and then arg(ny) = arg(nz) + 90°.
Let a = arg(nz), then a + 90° = arg(ns) = arg(vy) + arg(dy) = arg(v, =) + 180° — ¢(Sy),
and because arg(n3) verifies n3 = nygtan(a) > ny; (by normalization), Theorem 3.3(C3) is
satisfied.

N3 = Mor+j tan(a)nor = nor+jnor(nsr/nar). If ny = ny then ny = nig+j tan(a+90°)nig =
nig — jnir(n3r/n3r). As vy = n3/dy and vy = ny/dy, then nod; = nzd, and they have equal
real and imaginary parts.

Re[nsdy] = Re[nad,]

NoR
—Morpdyr — N31pdyr = NiRAxR + dxrfiR .
31
d dxr = mgnsrdsg +d (3.12)
—HNaRN3[PAx] — N3[N3[PAxR = N1RN3[AxR t+ Ax]N1RN3R,

_(nSIP + an)nZRde = (TllR + 7131P)n31de,

and finally d.;/dxr = —n31/nag.
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Im[nsd;] = Im[nad,]

MR
—n31pdx + Morpdyr = dyxinig — dxrMR P
31
d deg = d d (3.13)
—N3rn3rpdxr + N3iMarpdyr = dxMirN31 — dxRMIRNDR,

—(n31p + mir)dyxina; = —(n31p + nig) dxrMa2r

and fmally dx]/de = Tl3R/1’l3[.

Taking into account both conditions, —ns;/n3r = nsr/nsr. This relation is impossible.
Therefore, if d, is a solution, d% is not, and n, = n3 is not a solution.

(4) 1f ny, = ny then d, = n4/v, cannot be directly calculated because 14 is not known.
First, Theorem 3.3(C4) is developed.

If ny = ny then S, = S4/d, where S is part of the segment with vertices n3 and ny4
verifying that arg(ns — n3) = 180°. Thus arg(d,) = 180° — ¢(S,) (Property 1) and arg(ny) =
arg(vy) + arg(dy) = arg(vy) + 180° — ¢(Sy). Moreover, nig = nyr. Then ny = nyg + jnu =
mig + jmg tan(arg(vy) + 180° — ¢(Sy)). On the other hand, ny; is greater than n;; because it is
counter-clockwise.

Therefore the condition tan(arg(vy) — ¢(Sx) + 180°)nmg > ny; Theorem 3.3(C4) is
satisfied and d, can be calculated using the expression d, = ny/v, = nig[1 + j tan(arg(vy) —
@(Sy) +180°)] /vy

= If ny #ny, 1y # 11 and n, # ns it is ny, = ny. O

Remark 3.4. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the second and fifth vertices.

The following Theorem is analogous to Theorem 3.3 when S, is a segment with
vertices vy = 7y/dy and Uxsuee = Mxsucc/dx counter-clockwise, and belonging to an arc-
segment.

Theorem 3.5 (successor). Let S1 be a complete segment of the value-set boundary with vertices
v1 = m/dy and v, = ny/dy, the successor arc to S, with vertices vy = Ny /d1, Vrsuce = N2/ day
counter-clockwise, and the predecessor arc to Sy with vertices v1 prea = 11/day, v1 = n1/dy counter-
clockwise. Let Sy be a boundary segment with vertices Uy = Ny /dy and Uy syec = Ny suce / dx cOUNter-
clockwise, where v, belongs to the intersection of an arc of the boundary and Sy. Then

(1) arg(vx/v2) = arg(di)+p(Sx)—90° (condition C1) and the denominator d, of vy defined by
ny /vy satisfies the denominator condition (Lemma 3.2), if and only if n, = ny and cannot
be any other assigned polynomial,

(2) when ny #ny, arg(vy/v1) = arg(di) +@(Sx) (condition C2) and the denominator d of vy
of defined by ny /vy satisfies the denominator condition (Lemma 3.2) if and only if n, = my
and cannot be any other assigned polynomial,

(3) when ny#ny and ny # ny, tan(arg(vy) — @(Sx) + 180°)mag > nyy (condition C3), and
the denominator dy of vy defined by nyg[1 + j tan(arg(vy) — ¢(Sx) + 180°)] /vy satisfies
the denominator condition (Lemma 3.2) if and only if n, = n3 = nor[1 + j tan(arg(vy) —
¢(Sx) +180°)] and cannot be any other assigned polynomial,
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Figure 8: Arc and two complete segments.

(4) when ny #ny, ny # 1y, and ny # nz, tan(arg(vy) —(Sy) +270°)n1g > nyy (condition C4),
and the denominator d. of v, defined by nir[1+j tan(arg(vy) —(Sx) +270°] /v, satisfies
the denominator condition (Lemma 3.2) if and only if n, = ng = mg[l + j tan(arg(vy) —
9(S2) +270°)].

Proof. Analogous to Theorem 3.3. O

Remark 3.6. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the third, fifth, and sixth vertices.

4. Assigned Polynomial Determination When There Is a Complete
Arc in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of an arc in a
quadrant will be considered. So, let A; be an arc of the value-set boundary with vertices v; =
n1/dy and v, = ny/d,. A continuity arc-segment in a quadrant (see [10, Theorem 2]) implies
that there will be a successor segment with vertices v, = n1/ds, Vasuee = 121/dz counter-
clockwise and a predecessor segment with vertices v; = n1/dy and vipreq = n41/d1 counter-
clockwise.

When these segments are completed the denominators are vertices of the Kharitonov
rectangle. Figure 8 shows this situation.

As was shown, the values of dj, d», and n; can be calculated from the complete arc
based on a normalization (see [10, Theorem 5]). The following normalization simplifies the
nomenclature.

Lemma 4.1 (arc normalization). Let Ay be a complete arc of the value-set boundary with vertices
v1 = ni/dy and vy = ny/dy, the normalization ny = cos(p(n1)) + jsin(p(ny)), where p(n;) =
360° —arg(1l/vy — 1/vy), arg(1l/v, — 1/v1) being the arqument of the segment 1/v, — 1/vq. Then
dy = ni/v1, dy = n1/v2, gy = d101 pred, and noy = da02 suce, Where vy suce (V1 pred ) is any point of
the next (previous) segment of the arc Ay.
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Figure 9: (a) v, vertex of two elements, segment-arc. (b) v, vertex of two elements, arc-segment.

Proof. 1t is trivial. This normalization is one of the infinite possible solutions for a value set.
This normalization implies fitting 7; with modulus |n1| = 1 and angle so that the segment of
the Kharitonov polynomial denominator with vertices d; and d, will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete arc in a quadrant the
values of di, d», n1, ny), and ny, can be calculated. ]

This paper deals with the general case where dyr #0, dp; 20, dir 20, and dy; #0.

Given a vertex vy = ny/d, in a quadrant, the target is to determine the polynomials
n, and d.. The vertex v, belongs to a part of an arc and a part of a segment, due to the
continuity arc-segment in a quadrant. So, v, will be the vertex of two elements, segment-arc
(Figure 9(a)) or arc-segment (Figure 9(b)).

The following Lemma shows the necessary conditions on the denominator d, to be a
solution of v, = n,/d,.
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Lemma 4.2 (numerator condition). Let Ay be a complete arc in a quadrant and let n, be the
numerator of a vertex vy = ny/dy in a quadrant. Then it is a necessary condition that n, satisfies
one of the following conditions:

(1) (an < M2\R and n < I‘l4~1) and {(TlxR = MN1R and Ny = 1’111) [1’1X = 1’11] or (TlxR =
mpr and ny > nyp) [Ny = ng] or (n,y = nyy and ng > niR) [N = na] or (nxg >

nmg and ny > ny) [N = n3]},

(2) (mg > nyr and ny < npp) and {(neg = mr and nyg = ny) [ne = nq] or (nxr =
mr and nyg > ng) [N = np] or (nyy = ny; and ng < niR) [N = ng] or (nyr <
NniR and Nyg > 1’111) [nx = 1’13] },

(3) (nigr > nyr and ny > ngq) and {(nygr = mr and ng = ny) [0 = nq] or (nyr
mpgr and ng < nqp) [ = n4] or (e = my; and nk < iR) [Ny = np] or (nkr <
mr and nyg <ng) [ng =nz]},

(4) (nig < nyr and ny > ngq) and {(nygr = mr and nyg = ny) [0 = nq] or (nyr
mr and ny < ngg) [Ny = np] or (nyy = ny; and nyr > niR) [N = ng] or (nxr >
mr and ng <ngy) [ng =nz]},

where n;g is the real part of n; and nr is the imaginary part of n;, and the corresponding assigned
numerator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete arc in a quadrant and
the properties of the Kharitonov rectangle. So, from the complete arc and the normalization
(Lemma 3.2), the values of ny, ny), and ng4, are known. Then, n; can be established as k1, k2,
ku3, or kaa.

(1) If (mg < noyr and ny; < ngq) then ny is k1. Given a value n,, it will be a vertex
of the Kharitonov rectangle numerator only if nyg = mig and nyg = nyy (ne is my =
kn1) or nyg = mg and ny > nyp (ny is ny = kyg) or nyy = nyy and ng > niR
(ny is np = kyp) or nyg > mg and nyg > nyy (1 is n3 = kyg). Note that if any
of these conditions is not satisfied, then n, cannot be a solution. For example, if
nyr = mr and ny < nyp, 1, does not belong to the rectangle with vertex ny, nyy,
and ny, are elements of the successor and predecessor edge.

(2) Similarly, if (nig > ngygr and nj; < npq) then ny is kyp. Given a value ny, it will be a
vertex of the Kharitonov rectangle numerator only if nyg = nig and ny = nyp (1
isny = kyp) or nyg = mig and nyg > nyp (ny 1S 1o = ky3) or 1y = nyp and nyR < iR
(nyisng = k1) or ngg < mpr and ny > gy (1, is n3 = k).

(3) If nig > nyyr and njr > ngq then ny is k,3. Given a value n,, it will be a vertex of the
Kharitonov rectangle numerator only if nyg = nig and ny = ni (1 is 11 = ky3)
or nyg = mpg and ny < nyp (N, is ng = k) or nyy = ny;p and ng < niRr (1, is
Ny = kpg) or nyg <mig and ny < nyp (ny is 1z = kyp).

(4) Finally, if n1g < nygr and ny; > npq then ny is kps. Given a value ny, it will be a
vertex of the Kharitonov rectangle numerator only if nyg = nig and ny = niy (1,
isny = k) or nyg = mig and ny < nyp (ny iS 1y = kyp) or nyp = nyp and nug > nig
(ny is ng = ky3) or nyg > mg and nyg < nyp (ny is n3 = k). ]

On the other hand, the behaviour of an arc on the complex plane when it is divided by
a complex number is well known. The following property shows this behaviour.
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Property 2. Let Ay = n,/S be an arc on the complex plane with vertices vy and vy, counter-
clockwise where S is a segment with vertices d, and d, counter-clockwise. Let 7, be a
complex number with argument arg(ny). Let ¢(Ax) be p(Ay) = arg(1l/vx — 1/vy1). Then
the relation between the argument of n, and ¢(A.), is given by

(1) arg(ny) = —¢(Ay) if and only if arg(d, — d,) = 0°,

(2) arg(ny) =90° — ¢(Ay) if and only if arg(dp — d,) = 90°,
(3) arg(ny) = 180° — ¢(A,) if and only if arg(d, — d,) = 180°,
(4) arg(ny) =270° — p(Ay) if and only if arg(dp — d,) = 270°.

The following Theorem shows how to characterize and calculate the polynomials 7,
and d, associated with a vertex v, = n,/d, from the information of the boundary with an arc
Ay in a quadrant, belonging to an arc-segment.

Theorem 4.3 (predecessor). Let A; be an arc of the value-set boundary with vertices v1 = ni/dx
and vy = 11/ dy, the successor segment with vertices vy = 11/ ds, V2 suce = N1/ da counter-clockwise,
and the predecessor segment with vertices U1 preq = M4y /d1, v1 = n1/dy counter-clockwise Let A, be
an arc with vertices Uy pred = Nx/dx pred and vy = ny/dy counter-clockwise. Then

(1) arg(va/vy) = arg(ni) + @(Ax) (condition C1) and n, satisfies the numerator condition,
where ny = dyvy, if and only if dy = dy and cannot be any other assigned polynomial,

(2) when dy #dy, arg(v1/vy) = arg(ni) +¢(Ax) +90° (condition C2) and n, = dyv, satisfies
the numerator condition if and only if d, = di and cannot be any other assigned polynomial,

(3) when dy #dy and d, # dy, tan(arg(1/vy) — p(Ax) +90°)dar > dor (condition C3), and
n, = dor[1 + j tan(arg(1/vy) — p(Ax) + 90°)] vy satisfies the numerator condition if and
only if dy = d3 = dor(1 + jtan(arg(1/vy) — ¢(Ax) + 90°)) and cannot be any other
assigned polynomial,

(4) when dy# dy, dx #da, and d, # ds, tan(arg(1/vy) — p(Ax) + 180°)dir > di1 (condition
C4), and ny = dir[1+] tan(arg(1/v.)—¢(Ax)+180°)]v, satisfies the numerator condition
ifand only if dy = dy = dir(1 + j tan(arg(1/vy) — p(Ax) +180°)).

Proof. Analogous to Theorem 3.3. O

Remark 4.4. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the fifth and seventh vertices, and for the value set II (frequency
w = 1.1) to assign the third, fifth, and seventh vertices.

The following theorem is analogous to Theorem 4.3 when A, is an arc with vertices
Uy = Ny /dy and Uxsuce = Ny / dxsuce counter-clockwise, and belonging to a segment-arc.

Theorem 4.5 (successor). Let Ay be a complete arc of the value-set boundary with vertices v =
ny/dy and vy = ny1/d,, the successor segment with vertices vy = n1/dy, Vasuce = M2/ dy counter-
clockwise and the predecessor segment with vertices U1 pred = 141/ d1, v1 = n1/dy counter-clockwise.
Let A, be an arc with vertices Uy gyee = Nx/ Ay suce ANd Uy = n,/d, counter-clockwise

Then

(1) arg(v2/vy) = @p(Ay) + arg(ni) — 90° (condition C1) and ny satisfies the numerator
condition, where ny, = dyvy, if and only if d, = dy and cannot be any other assigned
polynomial,
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(2) when dy #dy, arg(v1/vx) = p(Ay) + arg(ny) (condition C2) and n, = dyvy satisfies the
numerator condition if and only if d. = di and cannot be any other assigned polynomial,

(3) when dy # dy and d, # dy, tan(arg(1/vx) — p(Ax) + 180°)dor > dor (condition C3), and
ny = dog[1+ jtan(arg(l/vy) — p(Ay) + 180°) vy satisfies the numerator condition if and
only if dy = ds = dor(1 + jtan(arg(1/vx) — p(Ax) + 180°)) and cannot be any other
assigned polynomial,

(4) when dy # dy, dx # dp, and dy # ds, tan(arg(1/vy) — 9(Ay) +270°)dig > dig (condition
C4), and ny = dir[1+] tan(arg(1/v.)—(Ax)+270°)]v, satisfies the numerator condition
ifand only if dy = dy = dir(1 + j tan(arg(l/vy) — p(Ax) +270°)).

Proof. Analogous to Theorem 3.3. O

Remark 4.6. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the third, fourth, and sixth vertices, and for the value set II
(frequency w = 1.1) to assign the fourth and sixth vertices.

Finally, the following theorem points out the necessary and sufficient condition.

Theorem 4.7. Given a value set, all the assigned polynomials of the vertices can be determined if
and only if there is a complete edge or a complete arc lying on a quadrant when the normalized edge
satisfies npr #0, 1oy #0, mig #0, and nyy # 0 or the normalized arc satisfies dyr #0, da; #0, dir #0,
and du 76 0.

Proof. It is obvious from Theorems 3.3—4.5. O

5. Algorithm and Examples

Algorithm 5.1. Given a value set with a complete segment or a complete arc in a quadrant, to
obtain the Kharitonov polynomials the following.

(1) If there is a complete segment in a quadrant, S;, with vertices v; = n;/d; and v, =
1,/ dy, the successor arc with vertices v, = 1y /d1, Uasuce = 12/ dz), counter-clockwise
and the predecessor arc with vertices v1preq = 111/day, v1 = n1/dy counter-clockwise
then for all vertex v, = n,/dy:

(a) if vy = ny/dy is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, n, and
dy, determine applying Theorem 3.3,

(b) if vy = mny./dy is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, n, and
dy, determine applying Theorem 3.5.

(2) If there is a complete arc in a quadrant, A, with vertices v1 = n1/dy and v, = n1/ds,
the successor segment with vertices vy = 11/ds, Vssuce = 121/ d> counter-clockwise
and the predecessor segment with vertices vipreq = n41/d1, v1 = n1/d; counter-
clockwise, then given a vertex vy = n,/dy:

(a) if vy = ny/d, is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, n, and
d., determine applying Theorem 4.3,
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Table 1: Value set boundary information.

w=1.0 w=1.1 w=12

(a) (b) (0 (@ (b) (© (a (b) (c)
U1 1.5676 + 2.5946j 0 421 —-2.8422 +2.9830j 0 2] 6.1015 + 5.2779j 1
) 2.0000 + 8.0000j 1 (%) -0.9808 +2.4599j 1 () 6.5135 + 6.8573j 0
U3 0.8000 + 10.40005 0 0+ 3.04205 0 0+ 8.5560j 0

0+ 10.0000; 1 3 0.4996 + 3.0386j 1 U3 -3.0339 + 6.1294j 1
o —4.8000 + 7.6000; 0 Uy 2.3317 + 3.0261j 0 o -2.2110 + 5.1007j 0
Vs —-3.5862 + 1.0345j 1 Us 5.1859 + 6.6181j 1 Us -0.4710 + 3.4462j 1
Vg 2.5517 + 0.6207] 0 Vg 5.2164 + 8.6623] 0 0 +3.6463j 0
vy —-1.3443 + 1.2131j 1 0+ 8.7404j 0 Vg 1.4690 + 3.4428j 1

0+ 2.3336j 1 vy -3.8291 + 3.7385j 1 vy 2.9559 + 3.2369j 0

(a): Vertex (v;) or cut point (blank) with an axis. (b): Value of the vertex or cut point.
(c): Edge (2.1) or arc (0) between this element and the next element. If the element is the last, the next element is the first.

(b) if vy = mny./dy is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, n, and
dy, determine applying Theorem 4.5.

(3) Calculate the values of the assigned polynomials n;, d, solving the equation system
(2.7):
_ M

0 = dk. (51)

(4) Calculate the numerator and denominator rectangles with Kharitonov
polynomial values N = (ku(jw), kn(jw), kia(jw), ku(jw)), D =
(ka1 (jw), kax(jw), kas(jw), kas(jw)) applying (2.8).

Example 5.2. Figure 10 shows three value sets of an interval plant. The necessary information
(Table 1) is

(i) the vertices,
(ii) the intersections with the axis,

(iii) the shape of the boundary’s elements: arc or segment.

This example illustrates how to obtain the assigned polynomials and the numerator and
denominator rectangles for each value set, and remarks the theorem used in each step.

5.1. Value Set at Frequency w = 1.0

The complete arc with vertices v1 = n1/d; = 1.5676+2.5946j and v, = n1/d> = 2.0000+8.0000;
is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

Dsuce = ’% = 0.8000 + 10.4000j,  Dipred = ’;—41* = 2.3336]. (5.2)
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Figure 10: Three value sets of an interval plant.

Applying the arc normalization (Lemma 4.1) the following data are obtained

p(n1) =229.40, n; =-0.6508-0.75925, di =-0.3254+0.0542j, d, =-0.1085+ 0.0542j,

ngy = -0.1266 — 0.7594j,  myy = —0.6508 — 1.0846.
(5.3)

Then, all the other vertices are assigned as follows.

(1) Vertex v3 = vy = ny/d, = 0.8000 + 10.4000;. Then vypred = Mx/dxpred = 2.0000 +
8.0000j. These are the vertices of an edge, and Theorem 4.5 is applied, Uxsuce = 10.00007,
p(Ay) =210.97.

Case 1. Theorem 4.5(C1) is satisfied: arg(v,/vyx) = ¢(Ay) + arg(n1) — 90 = 350.36 and n, =
drv, = —0.6508 — 1.0846] satisfies the Numerator Condition (Lemma 4.2(4), n, = ny):

(an =—-0.6508 < N4\R = —0.1266, niy = -0.7592 > N1 = —1.0846),
(5.4)
(nyr = nig = —0.6508, n,; = —1.0846 < ny; = —0.7592).

Then d, = d, = -0.1085 + 0.0542j. Therefore v3 = v, = ny/d5.
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(2) Vertex vy = vy = ny/dy, = —4.8000+7.6000j. Then vypreq = 105. These are the vertices
of an edge, and Theorem 4.5 is applied: vysucc = —3.5862 + 1.03457, p(Ay) = 174.29.

Case 1. Theorem 4.5(C1) is satisfied: arg(v,/vx) = ¢(Ax) + arg(ni) — 90 = 313.69 and n, =
dyv, = 0.1084 — 1.0847] satisfies the Numerator Condition (Lemma 4.2(4), n, = ns3). Then
dy = dp = —0.1085 + 0.0542j. Therefore vy = v, = n3/d,.

(3) Vertex vs = vy = ny/dy = =3.5862 + 1.0345j. Then vypred = 1/ dxprea = —4.8000 +
7.60005. These are the vertices of an arc, and Theorem 4.3 is applied: ¢(Ay) = 174.29.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v,/vy) = 272.06 # arg(n1) + p(Ax) = 43.69.
Case 2. Theorem 4.3(C2) is not satisfied:arg(v1/vx) = 254.95# arg(ni) + ¢(Ax) + 90 = 133.69.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1l/vy) — ¢(Ax) +90)dor = 0.2712 > dy; = 0.0542
and n, = 0.1085 — 1.0846j satisfies the Numerator Condition (Lemma 4.2(4)) n, = n3. Then
dy = d3 =-0.1085 + 0.2712] v5 = vy = n3/ds.

(4) Vertex vg = vy = ny/dy = =2.5517 + 0.6207j. Then vypred = 1/ dxpred = —3.5862 +
1.0345j. These are the vertices of an edge, and Theorem 4.5 is applied: Uysucc —1.3443 +1.2131j,
@(Ay) = 261.87.

Case 1. Theorem 4.5(C1) is not satisfied: arg(v,/vy) = 269.64 # p(Ax) + arg(ni) — 90 = 41.27.
Case 2. Theorem 4.5(C2) is not satisfied: arg(v; /vy) = 252.53 # p(Ax) + arg(n;) = 131.27.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vx) — p(Ax) + 180)drr = 0.2712 > dy; = 0.0542
and n, = 0.1085 — 0.7592j satisfies the Numerator Condition (Lemma 4.2(3)) n, = ny: then
dy =d3 =-0.1085 + 0.2712j and v = vy = n4/ds.

(5) Vertex v7 = vy = ny/dy = =1.3443 + 1.2131j. Then vypred = My /dxpred = —2.5517 +
0.6207]. These are the vertices of an arc, and Theorem 4.3 is applied: ¢(A,) = 261.87.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v,/vy) = 298.03 # arg(n1) + p(Ax) = 131.27.
Case 2. Theorem 4.3(C2) is not satisfied: arg(vi/vy) = 280.93 # arg(mi) + p(Ay) +90 = 221.27.

Case 3. Theorem 4.3(C3) is not satisfied: tan(arg(1/vx) — p(Ax) + 90)dog = —0.1302 < dy; =
0.0542.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vx) — p(Ax) + 180)dir = 0.2712 > dy; = 0.0542
and n, = 0.1085 — 0.7592] satisfies the Numerator Condition (Lemma 4.2(4)) n, = ng. Then
dx = d4 =-0.3254 + 02712], V7 = Uy = n4/d4.

In summary, the assigned polynomials are

n n My ns ns Ny Ny

U1 =5 U2 = —, U3 = —, U4 = —, U5 = —, Vg = —, U7 = —,

d1 dz dz dz d3 d3 d4
(5.5)

and the values can be calculated: from normalization,

ny; = —0.6508 — 0.7592j, di = -0.3254 + 0.0542j, dy = —0.1085 + 0.0542j, (5.6)
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and from the vertices,

3 : 1y = —0.6508 — 1.0846/,
vy : 3 = 0.1084 — 1.0847],
vs : n3 = 0.1085 — 1.0846/,
g : ny = 0.1085 — 0.7592j,
vy : ny = 0.1085 — 0.7593],

Then

kn1 (jw) = —0.6508 — 1.0847j,
kn3 (jew) = 0.1085 - 0.7592j,

ka1 (jw) = -0.3254 + 0.0542j,
kas(jw) = -0.1085 + 0.2712],

Journal of Applied Mathematics

dp = —0.1085 + 0.0542j,
dy = —0.1085 + 0.0542j,

ds = -0.8464 + 2.0152j, (5.7)
ds = -0.1085 + 0.2712j,
dy = -0.3254 + 0.2712j.
kn2 (jew) = 0.1085 — 1.0847j,
kna (jw) = =0.6508 - 0.7592j,
(5.8)

ka2 (jw) = -0.1085 + 0.0542j,
kas(jw) = -0.3254 +0.2712].

Table 2 shows the results of the algorithm for the value set at frequency w = 1.0.
From these Kharitonov rectangles the value set given in Figure 11(a) is directly

obtained.

5.2. Value Set at Frequency w = 1.1

The complete arc with vertices v1 = n1/d; = —2.8422 + 2.9830j and v, = n;/d, = —0.9808 +
2.4599j is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

Vrouce = 2 =3.0420j,  Dipred = 2 = —3.8291 + 3.7385). (5.9)
dz dl
Applying the arc normalization (Lemma 4.1) the following data are obtained:
1 1 .
¢p(n1) =360 - arg(— - —> = 81.05, ny = 0.1556 + 0.9878j,
(%) (%]
di = % = 0.1475 - 0.1927j; (5.10)
1
dy = % =0.3247 - 0.1927], 14y = d1U1preq = 0.1556 + 1.2895j,
2
12y = daV2succ = 0.5862 + 0.9878j. (5.11)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vy = 1,/ dy = 04996 +3.0386]. Then vypred = 7/ Axpred = 3.0420j. These
are the vertices of an arc, and Theorem 4.3 is applied: ¢(A,) = 8.95.
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Vertices, arcs, and edges using the original
Kharitonov polynomials at w =1
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Figure 11

Cases 1 and 2. Theorem 4.3(C1) and (C2) are not satisfied.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1/vy) — ¢p(Ax) + 90)dor = 0.0022 > dy; = -0.1927
and n, = 0.1555 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) n, = n1. Then
dy = d3 =0.3247 + 0.0022] v3 = vy = n1/ds.

(2) Vertex vy = vy = n,/dy = 2.3317 + 3.0261j. Then vypred = Mx/dxprea = 0.4996 +
3.0386). These are the vertices of an edge, and Theorem 4.5 is applied: Uxsycc = 5.1859+6.6181j
and ¢(Ay) = 127.23.

Cases 1 and 2. Theorem 4.5(C1) and (C2) are not satisfied.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vy) — p(Ax) +180)dar = 0.0022 > dp; = -0.1927
and n, = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) n, = n,. Then
dy = ds = 0.3247 + 0.0022]. v4 = vy = 12/ ds.
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(3) Vertex vs = vy = n,/dy = 5.1859 + 6.6181j. Then vypred = Mx/dxpred = 2.3317 +
3.0261j. These are the vertices of an arc, and Theorem 4.3 is applied: ¢(A,) = 127.23.

Cases 1, 2, and 3. Theorem 4.3(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vy) — p(Ax) +180)dir = 0.0022 > dy; = -0.1927
and n, = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) n, = n,. Then
dx = d4 =0.1475 + 0.0022j U5 = Uy = le/d4.

(4) Vertex v = vy = ny/dyx = 5.2164 + 8.6623j. Then Uxpred = nx/dxpred = 5.1859 +
6.6181j. These are the vertices of an edge, and Theorem 4.5 is applied: vysuee = 8.7404j,
p(Ax) = 210.20.

Cases 1, 2, and 3. Theorem 4.5(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.5(C4) is satisfied: tan(arg(1/vx) — @(Ax) + 270)dig = 0.0022 > dyi; =
-0.1927 and n, = 0.7505 + 1.2895] satisfies the Numerator Condition (Lemma 4.2(1)) n, = ns:
then d, = dy = 0.1475 + 0.0022j, vg = vy = n3/da.

(5) Vertex v; = vy = ny/dy, = =3.8291 + 3.7385j. Then vypred = Mx/dxpred = 8.7404;j.
These are the vertices of an arc, and Theorem 4.3 is applied: ¢(A,) = 186.88.

Case 1. Theorem 4.3(C1) is not satisfied.

Case 2. Theorem 4.3(C2) is satisfied: arg(v:/vx) = arg(ni) + ¢(Ax) + 90 = 357.93 and n, =
divy = 0.1556 + 1.2895] satisfies the Numerator Condition (Lemma 4.2(1)) n, = ny. Then
dy =dy =0.1475 - 0.1927], v; = v, = ny/ds.

In summary, the assigned polynomials are

np ny ny np np ns Ny

01 = —, U = —, U3 = —, Uy = —, U5 = —, Ve = —, U7 = —

dq dy ds ds dy dy dq
(5.12)

and the values can be calculated: from normalization,

ny = 0.1556 + 0.9878;, di = 0.1475 - 0.1927j, dy = 0.3247 - 0.1927j, (5.13)

and from the vertices,

vz : 1 = 0.1555 + 0.9878j, ds = 0.3247 + 0.0022j,
vy : mp = 0.7505 + 0.98787, ds = 0.3247 + 0.0022j,
vs : np = 0.7505 + 0.98787, dy = 0.1475 + 0.0022j, (5.14)
ve : n3 = 0.7505 + 1.2895j, dy = 0.1475 + 0.0022j,
vy 1 ng = 0.1556 + 1.2895j, di = 0.1475 - 0.1927].
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Then

k1 (jw) = 0.1555 + 0.9878j, Kz (jw) = 0.7505 + 0.9878j,

kns (jw) = 0.7505 +1.2895j,  kua(jw) = 0.1556 + 1.2895j,
(5.15)
ki (jw) = 0.1475 - 0.1927j,  kap(jw) = 0.3247 - 0.1927],

kaz(jw) = 0.3247 +0.0022j,  kas(jw) = 0.1475 +0.0022].

Table 3 shows the results of the algorithm for the value set at frequency w = 1.1.
From these Kharitonov rectangles the value set given in Figure 11(b) is directly
obtained.

5.3. Value Set at Frequency w = 1.2

The complete edge with vertices v; = n1/d; = 6.1015 + 5.2779j and v, = ny/d; = 6.5135 +
6.8573] is taken as initial element. Then Theorems 3.3 and 3.5 will be applied. So

nz_

np
V2succ = 5 =
dn

8.5560j,  Diprea = - = 2.9559 + 3.2369]. (5.16)

41
Applying the edge normalization (Lemma 3.1) the following data are obtained:

¢(dr) =360 — arg(v, — v1) = 284.62, di = cos(¢p(ds)) + jsin(¢p(dy)) = 0.2524 — 0.96767,
n; = vidy = 6.6471 - 4.5717j, ny = vpdy = 8.2793 — 4.5717j,

doy = —2— = —05343-0.9677j,  day =
V2suce Ulpred

ny

= 0.2524 — 1.8230;.
(5.17)

Then, all the other vertices are assigned as follows.

(1) Vertex v3 = vy = ny/dy = —=3.0339 + 6.1294]. Then Vypred = Nx/dxpred = 8.5560;.
These are the vertices of an arc, and Theorem 3.5 is applied: Uysucc = —2.2110 + 5.1007j and
@(Sx) = arg(vVxsuce — vx) = 308.66.

Cases 1 and 2. Theorem 3.5(C1) and (C2) are not satisfied.

Case 3. Theorem 3.5(C3) is satisfied: tan(arg(vy)—(Sx)+180)ng = —1.8087 > np; = —4.571 and
dy = myr[1 + jtan(arg(vy) — ¢(Sx) + 180)] /v, = —0.7740 — 0.9676] satisfies the Denominator
Condition (Lemma 3.2(3)) d, = dy: then n, = n3 = mor[1l + jtan(arg(vy) — ¢(Sx) + 180)] =
8.2793 — 18087], U3 =0y = 1’l3/d2.

(2) Vertex vy = vy = ny/dy = —2.211 + 5.1007j. Then vypred = My /Axpred = —3.0339 +
6.1294j. These are the vertices of an edge, and Theorem 3.3 is applied: ¢(S.) = arg(vy —
Vxpred) = 308.66.

Cases 1 and 2. Theorem 3.3(C1) and (C2) are not satisfied.

Case 3. Theorem 3.3(C3) is satisfied: tan(arg(vy) —¢(Sx)+90)nar = 30.4258 > ny; = —4.5717 but
dy = mygr[1+j tan(arg(vy) —(Sx)+90)] /vy = 4.4292-3.5431j does not satisfy the Denominator
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Condition: (dig = 0.2524 > dpyg = —0.5343 and dq; = —0.9676 > dyy; = —1.8230) (Case 3) but
(dxr = 44292 +#d1g = 0.2524) then d,#d; and dy #ds (dy; = —3.5431 #dy1 — 0.9676) then
dy#do(dyr =4.4292 > dig = 0.2524 and d,; = —3.5431 < dy; = —0.9676) then d, # ds.

Case 4. Theorem 3.3(C4) is satisfied: tan(arg(vy) — ¢(Sx) + 180)n1gr = —1.8088 > ny; = —4.5717
and d, = nig[1+] tan(arg(vx) —¢(Sy) +180)] /v, = —0.7741-0.9676] satisfies the Denominator
Condition (Lemma 3.2(3)) d, = d5:

(dir = 0.2524 > dyyg = —0.5343, di; = —-0.9676 > d4y; = —1.8230),
(5.18)
(dxj =dq; = -0.9676, dyg = -0.7740 < dig = 0.2524).

Then n, = ny = mig[1 + j tan(arg(vy) — ¢(Sx) +180)] = 6.6471 — 1.8088j, v4 = vy = n4/ds.

(3) Vertex vs5 = vy = ny/dyx = —0.47099 + 3.4462j. Then Vxpred = Mx/dxprea = —2.2110 +
5.1007j. These are the vertices of an arc, and Theorem 3.5 is applied: Vysucc = 3.6463j and
(P(Sx) = arg(vxsucc - Ux) =23.01.

Cases 1,2, and 3. Theorems 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
d, = 8.3397 — 3.5422j does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vx) — ¢(Sx) +270)n1g = —1.8098 > ny; = —4.5717
and d, = nig[1+j tan(arg(vy) —(Sx) +270)] /v, = —0.7743-1.8230j satisfies the Denominator
Condition (Lemma 3.2(3)).
Then n, = ny = nig[1+j tan(arg(vy) —(Sy) +270)] = 6.6471-1.8098], v5 = vy = n4/ds.
(4) Vertex vg = vy = ny/dy = 1.469 + 3.4428]. Then vypred = Nx/dxpred = 3.6463].
These are the vertices of an arc, and Theorem 3.5 is applied: Uysuce = 2.9559 + 3.2369j and
p(Sx) = arg(vVxsuce — Ux) = 352.12.

Cases 1, 2, and 3. Theorem 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
d, = 8.3440 + 1.1554] does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vy) — ¢(Sx) +270)n1gr = —1.8089 > ny; = —-4.5717
and d, = 0.2524 — 1.8230; satisfies the Denominator Condition (Lemma 3.2(3)) d. = dj.
Then ny = ny = nir[1+j tan(arg(vx) —(Sx) +270)] = 6.6471-1.8089], v = vy = n4/ds.

(5) Vertex v7 = vy = ny/dyx = 2.9559 + 3.2369j. Then vypred = M/ dxpred = 1.4690 +
3.4428j. These are the vertices of an edge, and Theorem 3.3 is applied: ¢(Syx) = arg(vy —
Uxpred) = 352.12.

Case 1. Theorem 3.3(C1) is not satisfied.

Case 2. Theorem 3.3(C2) is satisfied: arg(v,/v1) = arg(di) +¢(Sx)+90 = 6.74and dy = n1 /vy =
0.2524 — 1.8230j satisfies the Denominator Condition (Lemma 3.2(3)) dy = dy. Thenn, = n; =
6.6471 — 4.5717j, v7 = vy = n1/ds.

In summary, the assigned polynomials are

ny ny Mns3 Ny Ny Ny ny
U1 =5 U2 = —, U3 = —, U4 = —, U5 = —, Vg = —, U7 = —,
d d dy dy ds ds ds
(5.19)
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and the values can be calculated: from normalization,

d; = 0.2524 - 0.9676, ny = 6.6471 - 4.5717j, ny = 8.2793 - 4.5717j, (5.20)

and from the vertices,

vz : nz = 8.2793 - 1.8087j, d, = -0.7741 - 0.9676j,

vy 1 1y = 6.6471 - 1.80877, d, = -0.7741 - 0.9676j,

U5 1 1y = 6.6471 - 1.80877, ds = -0.7743 — 1.8230j, (5.21)
vg 1 ny = 6.6471 - 1.8087], dy = 0.2524 - 1.82307,

vy :ny = 6.6471 - 4.5717], dy = 0.2524 - 1.8230j.

Then

kn (jw) = 6.6471 45717, ko (jw) = 8.2793 — 4.5717j,

kp3(jw) = 8.2793 - 1.8087j,  ku(jw) = 6.6471 — 1.8087],
(5.22)
ki (jw) = -0.7743 - 1.8230j, ka2 (jw) = 0.2524 - 1.8230j,

kas(jw) = 0.2524 - 0.9676j,  kas(jw) = -0.7743 - 0.9676.

Table 4 shows the results of the algorithm for the value set at frequeny w = 1.2.

From these kharitonov rectangles the value set given in Figure 11(c) is directly
obtained.

Finally, solving the equation system [10, equation (16)], the interval plant is obtained:

[10 11]s® +[7 8]s*+[6 65]s+[5 7.5]

[0.75 1.25] + [2 2.5]s2+[1.5 2]s + [1 1.5] (5.23)

Gp(s) =

Applying G,(s = jw) at w = 1.0, w = 1.1 and w = 1.2 the value sets given in Figure 12 are
obtained.

6. Conclusions

This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and
only if there is a complete edge or a complete arc lying on a quadrant, that is, if there are two
vertices in a quadrant. This necessary and sufficient condition is not restrictive and practically
all the value sets satisfy it. Finally, the interval plant can be identified solving the equation
system between the Kharitonov rectangles and the parameters of the plant.

The algorithm has been formulated using the frequency domain properties of linear
interval systems. The identification procedure of multilinear (affine, polynomial) systems
will be studied using the results in [11].
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Figure 12: Value sets obtained atw = 1.0, w = 1.1, and w = 1.2.
Acknowledgments

The authors would like to express their gratitude to Dr. José Mira and to Dr. Ana Delgado
for their example of ethics and professionalism, without which this work would not have
been possible. Also, the authors are very grateful to the Editor-in-Chief, Zhiwei Gao, and the
referees, for their suggestions and comments that very much enhanced the presentation of
this paper.

References

[1] Z.Gao, X. Dai, T. Breikin, and H. Wang, “Novel parameter identification by using a high-gain observer
with application to a gas turbine engine,” IEEE Transactions on Industrial Informatics, vol. 4, no. 4, pp.
271-279, 2008.

[2] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems, Kluwer Academic, Boston,
Mass, USA, 1996.

[3] R.S. Sénchez-Pefia and M. Sznaier, Robust Systems Theory and Applications, John Wiley & Sons, 1998.

[4] B.R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, NY, USA, 1993.

[5] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control: The Parametric Approach, Prentice-
Hall, 1995.

[6] A.C.Bartlett, C. V. Hollot, and H. Lin, “Root locations of an entire polytope of polynomials: it suffices
to check the edges,” Mathematics of Control, Signals, and Systems, vol. 1, no. 1, pp. 61-71, 1988.

[7] M. Fuand B. R. Barmish, “Polytopes of polynomials with zeros in a prescribed set,” IEEE Transactions
on Automatic Control, vol. 34, no. 5, pp. 544-546, 1989.



32 Journal of Applied Mathematics

[8] B. R. Barmish, “A generalization of Kharitonov’s four-polynomial concept for robust stability
problems with linearly dependent coefficient perturbations,” IEEE Transactions on Automatic Control,
vol. 34, no. 2, pp. 157-165, 1989.

[9] L. Ljung, System Identification: Theory for the User, PTR Prentice Hall, 1999.

[10] R. Hernandez, J. A. Garcia, and A. P. de Madrid, “Interval plant identification from value sets with
five vertices in a quadrant,” International Journal of Robust and Nonlinear Control, vol. 21, no. 1, pp.
21-43,2011.

[11] N. Tan, “Computation of the frequency response of multilinear affine systems,” IEEE Transactions on
Automatic Control, vol. 47, no. 10, pp. 1691-1696, 2002.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



