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This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and only if
there is a complete edge or a complete arc lying on a quadrant. This algorithm is nonconservative
in the sense that if the value-set boundary of an interval plant is exactly known, and particularly
its vertices, then the Kharitonov rectangles are exactly those used to obtain these value sets.

1. Introduction

In reference to the identification problem, these have been widely motivated and analysed
over recent years [1]. Van Overschee and De Moor in [2] explains a subspace identification
algorithm. In [3] the authors present a robust identification procedure for a priori classes of
models in H∞; the authors consider casual, linear time invariant, stable, both continuous or
discrete time models, and only SISO systems.

Interval plants have been widely motivated and analysed over recent years. For
further engineering motivation, among the numerous papers and books, [4–9] must be
pointed out and the references thereof.

The identification problem using the interval plant framework, that is, to compute
an interval plant from the frequency response, has not been completely solved. Interval plant
identification was investigated by Bhattacharyya et al. [5], who developed amethod in which
identification is carried out for interval plants so that the numerator and denominator have
the same degree, starting from the variation of the coefficient values of a nominal transfer
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function at certain intervals. So, the identification of a nominal transfer function is carried
out first, and then the intervals of variation of the coefficients are determined.

A different approach was developed by Hernández et al. [10] studying the problem
from the extreme point results point of view. This was a first step for the identification of
an interval plant, showing three main properties to characterize the value set lying on a
quadrant. Then an algorithm for the identification of interval plants from the vertices of the
value sets is obtained. However, this algorithm solves the identification problem when the
value set contains at least five vertices in a quadrant.

This paper improves the results obtained in [10] and shows how to obtain the values
of the numerator and denominator Kharitonov polynomials when the value sets have less
than five vertices in the same quadrant. Identification with such an interval plant allows
engineers predict the worst case performance and stability margins using the results on
interval systems, particularly extreme point results.

2. Problem Statement

Let us consider a linear interval plant of real coefficients, of the form

P(s, a, b) =
Np(s, a)
DP (s, b)

, (2.1)

where Np(s, a) and DP (s, b) are interval polynomials given as

Np(s, a) = ams
m + am−1sm−1 + · · · + a0, a ∈ A =

{
a : a−

i ≤ ai ≤ a+
i , i = 0, . . . , m

}
,

DP (s, b) = bns
n + bn−1sn−1 + · · · + b0, b ∈ B =

{
b : b−i ≤ bi ≤ b+i , i = 0, . . . , n

}
,

(2.2)

with m ≥ 1, n ≥ 1, 0 /∈ Dp(s, b), and where vectors a = [a0, a1, . . . , am], am /= 0, and b =
[b0, b1, . . . , bn], bn /= 0 are the uncertainty parameters that lie in the hyperrectangles A and B,
respectively.

Numerator and denominator polynomial families are characterized by their respective
Kharitonov polynomials, and they can be expressed in terms of their even and odd parts, at
s = jω, as follows:

Family Np(s) :

kn1 = pemin
(
jω

)
+ jpomin

(
jω

)
, kn2 = pemax

(
jω

)
+ jpomin

(
jω

)
,

kn3 = pemax
(
jω

)
+ jpomax

(
jω

)
, kn4 = pemin

(
jω

)
+ jpomax

(
jω

)
,

(2.3)

where

pemin
(
jω

)
=a−

0−a+
2ω

2+a−
4ω

4−a+
6ω

6+· · · , pemax
(
jω

)
=a+

0− a−
2ω

2+a+
4ω

4−a−
6ω

6+· · · ,

pomin
(
jω

)
=a−

1ω−a+
3ω

3+a−
5ω

5−a+
7ω

7+· · · , pomax
(
jω

)
=a+

1ω−a−
3ω

3+a+
5ω

5−a−
7ω

7 + · · · .
(2.4)
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Family Dp(s):

kd1 = qemin
(
jω

)
+ jqomin

(
jω

)
, kd2 = qemax

(
jω

)
+ jqomin

(
jω

)
,

kd3 = qemax
(
jω

)
+ jqomax

(
jω

)
, kd4 = qemin

(
jω

)
+ jqomax

(
jω

)
,

(2.5)

where

qemin
(
jω

)
=b−0 −b+2ω2+b−4ω

4−b+6ω6+· · · , qemax
(
jω

)
=b+0 −b−2ω2+b+4ω

4−b−6ω6+· · · ,

qomin
(
jω

)
=b−1ω−b+3ω3+b−5ω

5−b+7ω7+· · · , qomax
(
jω

)
=b+1ω−b−3ω3+b+5ω

5−b−7ω7 + · · · .
(2.6)

As is well known, the values G(jω) of the complex plane obtained for the transfer
function G(s) at a given frequency are denominated as a value set. The identification of the
system consists in determining the transfer function coefficients from the value set.

As can be observed in [10], when the values {kn1(jω), kn2(jω), kn3(jω), kn4(jω)} and
{kd1(jω), kd2(jω), kd3(jω), kd4(jω)} are known, then the system of equations given in [10,
equation 14] can be solved and therefore the interval plant is identified (see [10] for details).

As is shown [10] the vertices of the value-set boundary of an interval plant can be
assigned as

vi =
nj

dk
, (2.7)

where nj, j = 1, 2, 3, 4 and dk, k = 1, 2, 3, 4 are the assigned polynomials numerator and
denominator, respectively. When they are in the same quadrant they are a Sorted Set of Vertices
(SSV).

As is well known, the Kharitonov polynomials values can be obtained from

kn1
(
jω

)
= min[Re(n1, n3)] +jmin[Im(n1, n3)],

kn2
(
jω

)
= max[Re(n1, n3)] + jmin[Im(n1, n3)],

kn3
(
jω

)
= max[Re(n1, n3)] + jmax[Im(n1, n3)],

kn4
(
jω

)
= min[Re(n1, n3)] + jmax[Im(n1, n3)],

kd1
(
jω

)
= min[Re(d1, d3)] + jmin[Im(d1, d3)],

kd2
(
jω

)
= max[Re(d1, d3)] + jmin[Im(d1, d3)],

kd3
(
jω

)
= max[Re(d1, d3)] + jmax[Im(d1, d3)],

kd4
(
jω

)
= min[Re(d1, d3)] + jmax[Im(d1, d3)].

(2.8)

It must be pointed out that the results presented in [10]must be considered as the background
necessary for this work. Thus, the geometry of the value set is described in [10] and
the concepts necessary for its description are defined, (such as the successor, predecessor
element, etc.) and the fundamental properties on which this work is based are proven.
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Figure 1: egment and complete arcs.

−2 −1 0 1 2 3 4 5 6
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1  

n2/d2λ

n1/d1λ
n1/d1n2/d1

Arcs
Segments

Figure 2: Segment and no complete arcs.

This paper is organized as follows. Section 3 shows how to determine the assigned
polynomial with the only condition that there is a complete segment in a quadrant. Similarly
Section 4 shows it when there is an arc in a quadrant. Section 5 illustrates the algorithm and
examples. Finally, the conclusions are shown in Section 6.

3. Assigned Polynomial Determination When There Is a Complete
Segment in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of a segment in
a quadrant will be considered. So, let S1 be a segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1. Continuity segment-arc in a quadrant (see [10, Theorem 2])
implies that there will be a successor arc with vertices v2 = n2/d1, v2 succ = n2/d2λ counter-
clockwise and a predecessor arc with vertices v1 pred = n1/d4λ counter-clockwise. When these
arcs are completed the denominators are vertices of the Kharitonov rectangle. Figures 1 and
2 show this situation.
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Figure 3: vx vertex of two elements, arc-segment.

As was shown, the values of n1, n2, and d1 can be calculated from the complete
segment based on a normalization (see [10, Theorem 4]). The following normalization
simplifies the nomenclature.

Lemma 3.1 (segment normalization). Let S1 be a complete segment of the value-set boundary with
vertices v1 = n1/d1 and v2 = n2/d1 and the normalization d1 = cos(ϕ(d1)) + j sin(ϕ(d1)), where
ϕ(d1) = 360◦ − arg(v2 − v1) arg(v2 − v1) being the argument of the segment v2 − v1. Then n1 =
v1d1, n2 = v2d1, d2λ = n2/v2 succ , and d4λ = n1/v1 pred , where v2 succ (v1 pred ) is any point of the
next (previous) arc of the segment S1.

Proof. It is trivial. This normalization is one of the infinite possible solutions [10] for a value
set. This normalization implies fitting d1 with modulus |d1| = 1 and angle so that the segment
of the Kharitonov polynomial numerator with vertices n1 and n2 will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete segment in a quadrant
the values of d1, n1, n2, d2λ, and d4λ can be calculated.

This paper deals with the general case where n2R /= 0, n2I /= 0, n1R /= 0, and n1I /= 0.
Given a vertex vx = nx/dx in a quadrant, the target is to determine the polynomials nx

and dx. The vertex vx belongs to a part of a segment and a part of an arc, due to the continuity
segment-arc in a quadrant. So, vx will be the vertex of two elements, arc-segment (Figure 3)
or segment-arc (Figure 4).

The following Lemma shows the necessary conditions on the denominator dx to be a
solution of vx = nx/dx.

Lemma 3.2 (denominator condition). Let S1 be a complete segment in a quadrant and let dx be the
denominator of a vertex vx = nx/dx in a quadrant. Then it is a necessary condition that dx satisfies
one of the following conditions:

(1) (d1R < d2λR and d1I < d4λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≥ d1I) [dx = d4] or (dxI = d1I and dxR ≥ d1R) [dx = d2] or (dxR >
d1R and dxI > d1I) [dx = d3]},
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Figure 4: vx vertex of two elements, segment-arc.

(2) (d1R > d4λR and d1I < d2λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≥ d1I) [dx = d2] or (dxI = d1I and dxR ≤ d1R) [dx = d4] or (dxR <
d1R and dxI > d1I) [dx = d3]},

(3) (d1R > d2λR and d1I > d4λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≤ d1I) [dx = d4] or (dxI = d1I and dxR ≤ d1R) [dx = d2] or (dxR <
d1R and dxI < d1I) [dx = d3]},

(4) (d1R < d4λR and d1I > d2λI) and {(dxR = d1R and dxI = d1I) [dx = d1] or (dxR =
d1R and dxI ≤ d1I) [dx = d2] or (dxI = d1I and dxR ≥ d1R) [dx = d4] or (dxR >
d1R and dxI < d1I) [dx = d3]},

where diR is the real part of di and diI is the imaginary part of di, and the corresponding assigned
denominator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete segment in a
quadrant and the properties of the Kharitonov rectangle. So, from the complete segment and
the normalization (Lemma 3.1), the values of d1, d2λ, and d4λ are known. Then, d1 can be
established as kd1, kd2, kd3, or kd4.

(1) If (d1R < d2λR and d1I < d4λI) then d1 is kd1. Given a value dx, it will be a vertex
of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I (dx is
d1 = kd1) or dxR = d1R and dxI > d1I (dx is d4 = kd4) or dxI = d1I and dxR > d1R

(dx is d2 = kd2) or dxR > d1R and dxI > d1I (dx is d3 = kd3). (Figures 5(a), 5(b),
5(c), and 5(d)).

Note that if any of these conditions is not satisfied, then dx cannot be a solution.
For example, if dxR = d1R and dxI < d1I , dx does not belong to the rectangle with
vertex d1, d2λ, and d4λ are elements of the successor and predecessor edges. Figure 6
shows these considerations.

(2) Similarly, if (d1R > d4λR and d1I < d2λI) then d1 is kd2. Given a value dx, it will be
a vertex of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I

(dx is d1 = kd2) or dxR = d1R and dxI > d1I (dx is d2 = kd3) or dxI = d1I and dxR <
d1R (dx is d4 = kd1) or dxR < d1R and dxI > d1I (dx is d3 = kd4).

(3) If d1R > d2λR and d1I > d4λI then d1 is kd3. Given a value dx, it will be a vertex
of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I (dx is
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Figure 5: Cases where dx is a vertex of the kharitonov rectangle denominator.

d1 = kd3) or dxR = d1R and dxI < d1I (dx is d4 = kd2) or dxI = d1I and dxR < d1R

(dx is d2 = kd4) or dxR < d1R and dxI < d1I (dx is d3 = kd1).

(4) Finally, if d1R < d4λR and d1I > d2λI then d1 is kd4. Given a value dx, it will be a
vertex of the Kharitonov rectangle denominator only if dxR = d1R and dxI = d1I

(dx is d1 = kd4) or dxR = d1R and dxI < d1I (dx is d2 = kd1) or dxI = d1I and dxR >
d1R (dx is d4 = kd3) or dxR > d1R and dxI < d1I (dx is d3 = kd2).

On the other hand, the behaviour of a segment on the complex plane when divided by a
complex number is well known. The following property shows this behaviour.

Property 1. Let Sx = S/dx be a segment on the complex plane with vertices vx1 and vx2

counter-clockwise where S is a segment with vertices na and nb counter-clockwise. Let dx

be a complex number with argument arg(dx). Let ϕ(Sx) be ϕ(Sx) ≡ arg(vx2 − vx1). Then the
relation between the argument of dx and ϕ(Sx), is given by

(1) arg(dx) = −ϕ(Sx) if and only if arg(nb − na) = 0◦,

(2) arg(dx) = 90◦ − ϕ(Sx) if and only if arg(nb − na) = 90◦,

(3) arg(dx) = 180◦ − ϕ(Sx) if and only if arg(nb − na) = 180◦,

(4) arg(dx) = 270◦ − ϕ(Sx) if and only if arg(nb − na) = 270◦.

The following Theorem shows how to characterize and calculate the polynomials nx and dx

associated with a vertex vx = nx/dx from the information of the boundary with a segment Sx

in a quadrant, vx = nx/dx belonging to a segment-arc.
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Figure 7: Vertices for the conditions of the Theorem 3.3.

Theorem 3.3 (predecessor). Let S1 be a complete segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1, the successor arc with vertices v2 = n2/d1, v2 succ = n2/d2λ counter-
clockwise, and the predecessor arc with vertices v1 pred = n1/d4λ, v1 = n1/d1 counter-clockwise. Let
Sx be a segment with vertices vx pred = nx pred /dx and vx = nx/dx counter-clockwise, where vx

belongs to the intersection of Sx and an arc of the boundary (Figure 7). Then

(1) arg(vx/v2) = arg(d1) + ϕ(Sx) (condition C1) and the denominator dx of vx defined by
n2/vx satisfies the denominator condition (Lemma 3.2), if and only if nx = n2 and cannot
be any other assigned polynomial,

(2) when nx /=n2, arg(vx/v1) = arg(d1) + ϕ(Sx) + 90◦ (condition C2) and the denominator
dx of vx defined by n1/vx satisfies the denominator condition (Lemma 3.2) if and only if
nx = n1 and cannot be any other assigned polynomial,

(3) when nx /=n1 and nx /=n2, tan(arg(vx) − ϕ(Sx) + 90◦)n2R > n2I (condition C3), and the
denominator dx of vx defined by n2R[1 + j tan(arg(vx) − ϕ(Sx) + 90◦)]/vx satisfies the
denominator condition (Lemma 3.2) if and only if nx = n3 = n2R[1 + j tan(arg(vx) −
ϕ(Sx) + 90◦)] and cannot be any other assigned polynomial,

(4) when nx /=n1, nx /=n2, and nx /=n3, tan(arg(vx)−ϕ(Sx)+180◦)n1R > n1I (condition C4),
and the denominator dx of vx defined by n1R[1+j tan(arg(vx)−ϕ(Sx)+180◦)]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n4 = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)].
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Proof. From the complete segment S1 using the normalization (Lemma 3.1) the values of
d1, n1 = v1d1, n2 = v2d1, d2λ = n2/v2succ, and d4λ = n1/v1pred are known. Obviously the
value vx is known.

(1) ⇐ If nx = n2 the value of dx = n2/vx can be calculated and the denominator
condition (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices vx = n2/dx

and v2 = n2/d1 is vx/v2 = d1/dx, and arg(vx/v2) = arg(d1) − arg(dx). Sx = S2/dx, where
S2 is part of the segment with vertices n1 and n2, then arg(n2 − n1) = 0◦ (normalization).
Thus arg(dx) = −ϕ(Sx) (Property 1) and arg(vx/v2) = arg(d1) + ϕ(Sx); Theorem 3.3(C1) is
satisfied.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C1)
and the denominator condition are satisfied then the solution dx = n2/vx, nx = n2 is unique.
It must be noted that Theorem 3.3(C1) can be satisfied when (a) nx = n3, (b) nx = n4 or (c)
nx = n1 and in all the cases, the value of dx determined, verify the denominator condition.

Let dx be the denominator of vx determined by n2/vx, verifying Theorem 3.3(C1), and
denominator condition, and let Sx = S2/dx where S2 is part of the segment with vertices n1

and n2, arg(n2 − n1) = 0◦.
(a) Let d∗

x be the denominator of vx determined by n3/vx. Then Sx = S3/d
∗
x where S3

is part of the segment with vertices n2 and n3, arg(n3 − n2) = 90◦ (normalization) and using
Property 1 arg(d∗

x) = 90◦ − ϕ(Sx). As vx is the same vertex, then arg(n3/d
∗
x) = arg(n2/dx),

and arg(n3) = arg(n2) + 90◦. nx = n3 verify Theorem 3.3(C1), because

arg
(
vx

v2

)
= arg(n2) + 90◦ − arg(n2) + arg(d1) − 90◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.1)

Let α = arg(n2) with tan(α) = n2I/n2R. Then arg(n3) = α + 90◦ and tan(α + 90◦) = n3I/n3R =
n3I/n2R (by normalization n3R = n2R). Thus n3 = n2R + jn3I = n2R + j tan(α + 90◦)n2R =
n2R−j(n2

2R/n2I). Moreover arg(d∗
x) = 90◦+arg(dx), and if dx = dxR+jdxI then d∗

x = ρej(π/2)dx =
−ρdxI + jρdxR. As vx = n2/dx and vx = n3/d

∗
x, then n2d

∗
x = n3dx and they have equal real and

imaginary parts.
Re[n2d

∗
x] = Re[n3dx] then

−ρdxIn2R − ρdxRn2I = n2RdxR +
n2
2R

n2I
dxI ,

−ρdxIn2Rn2I − ρdxRn
2
2I = n2Rn2IdxR + n2

2RdxI ,

−(ρn2I + n2R
)
dxRn2I =

(
n2R + ρn2I

)
dxIn2R.

(3.2)

Thus dxI/dxR = −n2I/n2R

Im[n2d
∗
x] = Im[n3dx] then

ρdxRn2R − ρdxIn2I = dxIn2R − dxR

n2
2R

n2I
,

ρdxRn2Rn2I − ρdxIn
2
2I = dxIn2Rn2I − dxRn

2
2R,(

n2Iρ + n2R
)
n2RdxR = dxIn2I

(
n2R + ρn2I

)
.

(3.3)

Thus dxI/dxR = n2R/n2I .
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Taking into account both conditions, n2R/n2I = −n2I/n2R ⇔ n2
2R < 0. This relation is

impossible. Therefore, if dx is a solution then d∗
x is not, and nx = n3 is not a solution.

(b) Let d∗
x be the denominator of vx determined by n4/vx. Then Sx = S4/d

∗
x where S4

is part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx). As vx is the same vertex, then arg(n4/d
∗
x) = arg(n2/dx)

and arg(n4) = arg(n2) + 180◦. nx = n4 verify Theorem 3.3(C1), because

arg
(
vx

v2

)
= arg(n2) + 180◦ − arg(n2) + arg(d1) − 180◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.4)

In this case the demonstration is trivial noting that arg(d∗
x) = 180◦ + arg(dx). This is not

possible because the Kharitonov polynomial denominator cannot contain the zero.
(c) Let d∗

x be the denominator of vx determined by n1/vx. Then Sx = S1/d
∗
x where S1

is part of the segment with vertices n4 and n1, arg(n1 − n4) = 270◦ (normalization) and using
Property 1 arg(d∗

x) = 270◦ − ϕ(Sx). As vx is the same vertex, then arg(n1/d
∗
x) = arg(n2/dx),

and arg(n1) = arg(n2) + 270◦. nx = n1 verify Theorem 3.3(C1), because

arg
(
vx

v2

)
= arg(n2) + 270◦ − arg(n2) + arg(d1) − 270◦ + ϕ(Sx) = arg(d1) + ϕ(Sx). (3.5)

Let α = arg(n2)with tan(α) = n2I/n2R. Then arg(n1) = α + 270◦ and tan(α + 270◦) = n1I/n1R =
n2I/n1R (by normalization n3R = n2R). Thus n1 = n1R + jn2I = (n2I/ tan(α + 270◦)) + jn2I =
−(n2

2I/n2R) + jn2I . Moreover arg(d∗
x) = 270◦ + arg(dx), and if dx = dxR + jdxI then d∗

x =
ρej3(π/2)dx = ρdxI − jρdxR. As vx = n2/dx and vx = n1/d

∗
x, then n2d

∗
x = n1dx and they have

equals real and imaginary parts.
Re[n2d

∗
x] = Re[n1dx] then

+ρdxIn2R + ρdxRn2I = − n2
2I

n2R
dxR − n2IdxI ,

(
n2I + n2Rρ

)
dxIn2R = −(n2Rρ + n2I

)
dxRn2I .

(3.6)

Thus dxI/dxR = −n2I/n2R.
Im[n2d

∗
x] = Im[n1dx] then

−ρdxRn2R + ρdxIn2I = −dxI

n2
2I

n2R
+ dxRn2I ,

−ρdxRn2Rn2R + ρdxIn2In2R = −dxIn
2
2I + dxRn2In2R,

(
n2I + ρn2R

)
dxIn2I = dxRn2R

(
ρn2R + n2I

)
.

(3.7)

Thus dxI/dxR = n2R/n2I .
Taking into account both conditions, n2R/n2I = −n2I/n2R. This relation is impossible.

Therefore, if dx is a solution, d∗
x is not and nx = n1 cannot be a solution.

(2) ⇐ If nx = n1 the value of dx = n1/vx can be calculated and the denominator condi-
tion (Lemma 3.2) is satisfied. On the other hand, the quotient of the vertices vx = n1/dx and
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v2 = n1/d1 is vx/v1 = d1/dx, and arg(vx/v1) = arg(d1) − arg(dx). Sx = S1/dx where S1 is
part of the segment with vertices n4 and n1, then arg(n1 − n4) = 270◦ (normalization). Thus
arg(dx) = 270◦ − ϕ(Sx) (Property 1) and arg(vx/v1) = arg(d1) + ϕ(Sx) + 90◦; Theorem 3.3(C2)
is satisfied.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C2)
and the denominator condition are satisfied then the solution dx = n1/vx, nx = n1 is unique.
It must be noted that Theorem 3.3(C2) can be satisfied when (a) nx = n3 or (b) nx = n4 and in
all the cases, the value of dx determined, verify the denominator condition.

Let dx be the denominator of vx determined by n1/vx, verifying Theorem 3.3(C2), and
denominator condition, and let Sx = S1/dx where S1 is part of the segment with vertices n4

and n1, arg(n2 − n1) = 270◦.
(a) Let d∗

x be the denominator of vx determined by n3/vx. Then Sx = S3/d
∗
x where S3

is part of the segment with vertices n2 and n3, arg(n3 − n2) = 90◦ (normalization) and using
Property 1 arg(d∗

x) = 90◦ − ϕ(Sx). As vx is the same vertex, then arg(n3/d
∗
x) = arg(n1/dx)

and arg(n3) = arg(n1) + 180◦. nx = n3 verify Theorem 3.3(C2), because

arg
(
vx

v1

)
= arg(n1) + 180◦ − arg(n1) + arg(d1) − 90◦ + ϕ(Sx) = arg(d1) + ϕ(Sx) + 90◦. (3.8)

In this case the demonstration is trivial noting that arg(d∗
x) = −180◦ + arg(dx). This is

not possible because the Kharitonov polynomial denominator cannot contain the zero.
(b) Let d∗

x be the denominator determined by n4/vx. Then Sx = S4/d
∗
x where S4 is

part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx). As vx is the same vertex, then arg(n4/d
∗
x) = arg(n1/dx),

and arg(n4) = arg(n1) + 270◦. nx = n4 verify Theorem 3.3(C2), because

arg
(
vx

v1

)
= arg(n1) + 270◦ − arg(n1) + arg(d1) − 180◦ + ϕ(Sx) = arg(d1) + ϕ(Sx) + 90◦. (3.9)

Let α = arg(n1) with tan(α) = n1I/n1R. Then arg(n1) = α + 270◦ and tan(α + 270◦) =
n4I/n4R = −n1R/n1I (by normalization n1R = n4R). Thus n4 = n4R + jn4I = n1R + jn2R tan(α +
270◦) = n1R − j(n2

1R/n1I). Moreover arg(d∗
x) = −90◦ + arg(dx), and if dx = dxR + jdxI then

d∗
x = ρej3(π/2)dx = ρdxI − jρdxR. How vx = n1/dx and vx = n4/d

∗
x, then n1d

∗
x = n4dx and they

have equals real and imaginary parts.
Re[n1d

∗
x] = Re[n4dx]

ρdxIn1R + ρdxRn1I = +
n2
1R

n1I
dxI + n1RdxR,

ρdxIn1Rn1I + ρdxRn1In1I = +n2
1RdxI + n1RdxRn1I ,

(
ρn1I − n1R

)
dxIn1R =

(
n1R − ρn1I

)
dxRn1I .

(3.10)

Thus dxI/dxR = −n1I/n1R.
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Im[n1d
∗
x] = Im[n4dx]

−ρdxRn1R + ρdxIn1I = −dxR

n2
1R

n1I
+ dxIn1R,

−ρdxRn1Rn1I + ρdxIn1In1I = −dxRn
2
1R + dxIn1Rn1I ,

(−ρn1I + n1R
)
dxRn1R =

(
n1R − ρn1I

)
dxIn1I .

(3.11)

and finally dxI/dxR = n1R/n1I .
Taking into account both conditions, −n1I/n1R = n1R/n1I . This relation is impossible.

Therefore, if dx is a solution, d∗
x is not and nx = n4 is not a solution.

(3) ⇐ If nx = n3 then dx = n3/vx cannot be directly calculated because n3 is not
known. First, Theorem 3.3(C3) is developed. If nx = n3 then Sx = S3/dx where S3 is part
of the segment with vertices n2 and n3 and arg(n3 − n2) = 90◦. Thus arg(dx) = 90◦ − ϕ(Sx)
(Property 1) and arg(n3) = arg(vx) + arg(dx) = arg(vx) + 90◦ − ϕ(Sx).

As n2R = n3R, then n3 = n3R + jn3I = n2R + jn2R tan(arg(vx) + 90◦ − ϕ(Sx)). On the
other hand, n3I is greater than n2I because it is counter-clockwise. Therefore tan(arg(vx) −
ϕ(Sx)+90◦)n2R > n2I (Theorem 3.3(C3)) is satisfied and dx can be calculated by the expression
dx = n3/vx = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 90◦)]/vx.

⇒ In order to demonstrate the “only if” part, it must be proven that if Theorem 3.3(C3)
and the denominator condition are satisfied then the solution dx = n3/vx, nx = n3 is unique.
If nx /=n2 and nx /=n1, it must be noted that Theorem 3.3(C3) can be satisfied when nx = n4.

Let dx be the denominator of vx determined by n3/vx verifying Theorem 3.3(C3) and
denominator condition. Sx = S3/d

∗
x where S3 is part of the segment with vertices n2 and n3,

arg(n3 − n2) = 90◦.
Let d∗

x be the denominator of vx determined by n4/vx. Then Sx = S4/d
∗
x where S4 is

part of the segment with vertices n3 and n4, arg(n4 − n3) = 180◦ (normalization) and using
Property 1 arg(d∗

x) = 180◦ − ϕ(Sx) = arg(dx) + 90◦. Thus d∗
x = ρej(π/2)dx = −ρdxI + jρdxR.

As vx is the same vertex, arg(n4/d
∗
x) = arg(n3/dx), and then arg(n4) = arg(n3) + 90◦.

Let α = arg(n3), then α + 90◦ = arg(n4) = arg(vx) + arg(d∗
x) = arg(vx =) + 180◦ − ϕ(Sx),

and because arg(n3) verifies n3 = n2R tan(α) > n2I (by normalization), Theorem 3.3(C3) is
satisfied.

n3 = n2R+j tan(α)n2R = n2R+jn2R(n3R/n3I). If nx = n4 then n4 = n1R+j tan(α+90◦)n1R =
n1R − jn1R(n3R/n3I). As vx = n3/dx and vx = n4/d

∗
x, then n2d

∗
x = n3dx and they have equal

real and imaginary parts.
Re[n3d

∗
x] = Re[n4dx]

−n2RρdxI − n3IρdxR = n1RdxR + dxIn1R
n2R

n3I
,

−n2Rn3IρdxI − n3In3IρdxR = n1Rn3IdxR + dxIn1Rn3R,

−(n3Iρ + n1R
)
n2RdxI =

(
n1R + n3Iρ

)
n3IdxR,

(3.12)

and finally dxI/dxR = −n3I/n3R.
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Im[n3d
∗
x] = Im[n4dx]

−n3IρdxI + n2RρdxR = dxIn1R − dxRn1R
n2R

n3I
,

−n3In3IρdxI + n3In2RρdxR = dxIn1Rn3I − dxRn1Rn2R,

−(n3Iρ + n1R
)
dxIn3I = −(n3Iρ + n1R

)
dxRn2R

(3.13)

and finally dxI/dxR = n3R/n3I .
Taking into account both conditions, −n3I/n3R = n3R/n3I . This relation is impossible.

Therefore, if dx is a solution, d∗
x is not, and nx = n3 is not a solution.

(4) ⇐ If nx = n4 then dx = n4/vx cannot be directly calculated because n4 is not known.
First, Theorem 3.3(C4) is developed.

If nx = n4 then Sx = S4/dx where S4 is part of the segment with vertices n3 and n4

verifying that arg(n4 − n3) = 180◦. Thus arg(dx) = 180◦ − ϕ(Sx) (Property 1) and arg(n4) =
arg(vx) + arg(dx) = arg(vx) + 180◦ − ϕ(Sx). Moreover, n1R = n4R. Then n4 = n4R + jn4I =
n1R + jn1R tan(arg(vx) + 180◦ − ϕ(Sx)). On the other hand, n4I is greater than n1I because it is
counter-clockwise.

Therefore the condition tan(arg(vx) − ϕ(Sx) + 180◦)n1R > n1I Theorem 3.3(C4) is
satisfied and dx can be calculated using the expression dx = n4/vx = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)]/vx.

⇒ If nx /=n2, nx /=n1 and nx /=n3 it is nx = n4.

Remark 3.4. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the second and fifth vertices.

The following Theorem is analogous to Theorem 3.3 when Sx is a segment with
vertices vx = nx/dx and vxsucc = nxsucc/dx counter-clockwise, and belonging to an arc-
segment.

Theorem 3.5 (successor). Let S1 be a complete segment of the value-set boundary with vertices
v1 = n1/d1 and v2 = n2/d1, the successor arc to S1, with vertices v2 = n2/d1, v2 succ = n2/d2λ

counter-clockwise, and the predecessor arc to S1 with vertices v1 pred = n1/d4λ, v1 = n1/d1 counter-
clockwise. Let Sx be a boundary segment with vertices vx = nx/dx and vx succ = nx succ /dx counter-
clockwise, where vx belongs to the intersection of an arc of the boundary and Sx. Then

(1) arg(vx/v2) = arg(d1)+ϕ(Sx)−90◦ (condition C1) and the denominator dx of vx defined by
n2/vx satisfies the denominator condition (Lemma 3.2), if and only if nx = n2 and cannot
be any other assigned polynomial,

(2) when nx /=n2, arg(vx/v1) = arg(d1)+ϕ(Sx) (condition C2) and the denominator dx of vx

of defined by n1/vx satisfies the denominator condition (Lemma 3.2) if and only if nx = n1

and cannot be any other assigned polynomial,

(3) when nx /=n1 and nx /=n2, tan(arg(vx) − ϕ(Sx) + 180◦)n2R > n2I (condition C3), and
the denominator dx of vx defined by n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180◦)]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n3 = n2R[1 + j tan(arg(vx) −
ϕ(Sx) + 180◦)] and cannot be any other assigned polynomial,
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Figure 8: Arc and two complete segments.

(4) when nx /=n1, nx /=n2, and nx /=n3, tan(arg(vx)−ϕ(Sx)+270◦)n1R > n1I (condition C4),
and the denominator dx of vx defined by n1R[1+j tan(arg(vx)−ϕ(Sx)+270◦]/vx satisfies
the denominator condition (Lemma 3.2) if and only if nx = n4 = n1R[1 + j tan(arg(vx) −
ϕ(Sx) + 270◦)].

Proof. Analogous to Theorem 3.3.

Remark 3.6. This theorem is used in the example of Section 5, for the value set III (frequency
w = 1.2) in order to assign the third, fifth, and sixth vertices.

4. Assigned Polynomial Determination When There Is a Complete
Arc in a Quadrant

In order to determine the polynomials numerator and denominator associated to a vertex of
the value set boundary with the minimum number of elements, the situation of an arc in a
quadrant will be considered. So, let A1 be an arc of the value-set boundary with vertices v1 =
n1/d1 and v2 = n1/d2. A continuity arc-segment in a quadrant (see [10, Theorem 2]) implies
that there will be a successor segment with vertices v2 = n1/d2, v2succ = n2λ/d2 counter-
clockwise and a predecessor segment with vertices v1 = n1/d1 and v1pred = n4λ/d1 counter-
clockwise.

When these segments are completed the denominators are vertices of the Kharitonov
rectangle. Figure 8 shows this situation.

As was shown, the values of d1, d2, and n1 can be calculated from the complete arc
based on a normalization (see [10, Theorem 5]). The following normalization simplifies the
nomenclature.

Lemma 4.1 (arc normalization). Let A1 be a complete arc of the value-set boundary with vertices
v1 = n1/d1 and v2 = n1/d2, the normalization n1 = cos(ϕ(n1)) + j sin(ϕ(n1)), where ϕ(n1) =
360◦ − arg(1/v2 − 1/v1), arg(1/v2 − 1/v1) being the argument of the segment 1/v2 − 1/v1. Then
d1 = n1/v1, d2 = n1/v2, n4λ = d1v1 pred, and n2λ = d2v2 succ, where v2 succ (v1 pred ) is any point of
the next (previous) segment of the arc A1.
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Figure 9: (a) vx vertex of two elements, segment-arc. (b) vx vertex of two elements, arc-segment.

Proof. It is trivial. This normalization is one of the infinite possible solutions for a value set.
This normalization implies fitting n1 with modulus |n1| = 1 and angle so that the segment of
the Kharitonov polynomial denominator with vertices d1 and d2 will be parallel to the real
axis counter-clockwise. Thus, from the information with a complete arc in a quadrant the
values of d1, d2, n1, n2λ, and n4λ can be calculated.

This paper deals with the general case where d2R /= 0, d2I /= 0, d1R /= 0, and d1I /= 0.
Given a vertex vx = nx/dx in a quadrant, the target is to determine the polynomials

nx and dx. The vertex vx belongs to a part of an arc and a part of a segment, due to the
continuity arc-segment in a quadrant. So, vx will be the vertex of two elements, segment-arc
(Figure 9(a)) or arc-segment (Figure 9(b)).

The following Lemma shows the necessary conditions on the denominator dx to be a
solution of vx = nx/dx.
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Lemma 4.2 (numerator condition). Let A1 be a complete arc in a quadrant and let nx be the
numerator of a vertex vx = nx/dx in a quadrant. Then it is a necessary condition that nx satisfies
one of the following conditions:

(1) (n1R < n2λR and n1I < n4˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≥ n1I) [nx = n4] or (nxI = n1I and nxR ≥ n1R) [nx = n2] or (nxR >
n1R and nxI > n1I) [nx = n3]},

(2) (n1R > n4λR and n1I < n2˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≥ n1I) [nx = n2] or (nxI = n1I and nxR ≤ n1R) [nx = n4] or (nxR <
n1R and nxI > n1I) [nx = n3]},

(3) (n1R > n2λR and n1I > n4˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≤ n1I) [nx = n4] or (nxI = n1I and nxR ≤ n1R) [nx = n2] or (nxR <
n1R and nxI < n1I) [nx = n3]},

(4) (n1R < n4λR and n1I > n2˘I) and {(nxR = n1R and nxI = n1I) [nx = n1] or (nxR =
n1R and nxI ≤ n1I) [nx = n2] or (nxI = n1I and nxR ≥ n1R) [nx = n4] or (nxR >
n1R and nxI < n1I) [nx = n3]},

where niR is the real part of ni and niI is the imaginary part of ni, and the corresponding assigned
numerator is shown between brackets.

Proof. The proof is obtained directly from the information of a complete arc in a quadrant and
the properties of the Kharitonov rectangle. So, from the complete arc and the normalization
(Lemma 3.2), the values of n1, n2λ, and n4λ are known. Then, n1 can be established as kn1, kn2,
kn3, or kd4.

(1) If (n1R < n2λR and n1I < n4˘I) then n1 is kn1. Given a value nx, it will be a vertex
of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx is n1 =
kn1) or nxR = n1R and nxI > n1I (nx is n4 = kn4) or nxI = n1I and nxR > n1R

(nx is n2 = kn2) or nxR > n1R and nxI > n1I (nx is n3 = kn3). Note that if any
of these conditions is not satisfied, then nx cannot be a solution. For example, if
nxR = n1R and nxI < n1I, nx does not belong to the rectangle with vertex n1, n2λ,
and n4λ are elements of the successor and predecessor edge.

(2) Similarly, if (n1R > n4λR and n1I < n2˘I) then n1 is kn2. Given a value nx, it will be a
vertex of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx

is n1 = kn2) or nxR = n1R and nxI > n1I (nx is n2 = kn3) or nxI = n1I and nxR < n1R

(nx is n4 = kn1) or nxR < n1R and nxI > n1I (nx is n3 = kn4).

(3) If n1R > n2λR and n1I > n4˘I then n1 is kn3. Given a value nx, it will be a vertex of the
Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx is n1 = kn3)
or nxR = n1R and nxI < n1I (nx is n4 = kn2) or nxI = n1I and nxR < n1R (nx is
n2 = kn4) or nxR < n1R and nxI < n1I (nx is n3 = kn1).

(4) Finally, if n1R < n4λR and n1I > n2˘I then n1 is kn4. Given a value nx, it will be a
vertex of the Kharitonov rectangle numerator only if nxR = n1R and nxI = n1I (nx

is n1 = kn4) or nxR = n1R and nxI < n1I (nx is n2 = kn1) or nxI = n1I and nxR > n1R

(nx is n4 = kn3) or nxR > n1R and nxI < n1I (nx is n3 = kn2).

On the other hand, the behaviour of an arc on the complex plane when it is divided by
a complex number is well known. The following property shows this behaviour.
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Property 2. Let Ax = nx/S be an arc on the complex plane with vertices vx1 and vx2 counter-
clockwise where S is a segment with vertices da and db counter-clockwise. Let nx be a
complex number with argument arg(nx). Let ϕ(Ax) be ϕ(Ax) ≡ arg(1/vx2 − 1/vx1). Then
the relation between the argument of nx and ϕ(Ax), is given by

(1) arg(nx) = −ϕ(Ax) if and only if arg(db − da) = 0◦,

(2) arg(nx) = 90◦ − ϕ(Ax) if and only if arg(db − da) = 90◦,

(3) arg(nx) = 180◦ − ϕ(Ax) if and only if arg(db − da) = 180◦,

(4) arg(nx) = 270◦ − ϕ(Ax) if and only if arg(db − da) = 270◦.

The following Theorem shows how to characterize and calculate the polynomials nx

and dx associated with a vertex vx = nx/dx from the information of the boundary with an arc
Ax in a quadrant, belonging to an arc-segment.

Theorem 4.3 (predecessor). Let A1 be an arc of the value-set boundary with vertices v1 = n1/d1

and v2 = n1/d2, the successor segment with vertices v2 = n1/d2, v2 succ = n2λ/d2 counter-clockwise,
and the predecessor segment with vertices v1 pred = n4λ/d1, v1 = n1/d1 counter-clockwise Let Ax be
an arc with vertices vx pred = nx/dx pred and vx = nx/dx counter-clockwise. Then

(1) arg(v2/vx) = arg(n1) + ϕ(Ax) (condition C1) and nx satisfies the numerator condition,
where nx = d2vx, if and only if dx = d2 and cannot be any other assigned polynomial,

(2) when dx /=d2, arg(v1/vx) = arg(n1)+ϕ(Ax)+90◦ (condition C2) and nx = d1vx satisfies
the numerator condition if and only if dx = d1 and cannot be any other assigned polynomial,

(3) when dx /=d1 and dx /=d2, tan(arg(1/vx) − ϕ(Ax) + 90◦)d2R > d2I (condition C3), and
nx = d2R[1 + j tan(arg(1/vx) − ϕ(Ax) + 90◦)]vx satisfies the numerator condition if and
only if dx = d3 = d2R(1 + j tan(arg(1/vx) − ϕ(Ax) + 90◦)) and cannot be any other
assigned polynomial,

(4) when dx /=d1, dx /=d2, and dx /=d3, tan(arg(1/vx) − ϕ(Ax) + 180◦)d1R > d1I (condition
C4), and nx = d1R[1+j tan(arg(1/vx)−ϕ(Ax)+180◦)]vx satisfies the numerator condition
if and only if dx = d4 = d1R(1 + j tan(arg(1/vx) − ϕ(Ax) + 180◦)).

Proof. Analogous to Theorem 3.3.

Remark 4.4. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the fifth and seventh vertices, and for the value set II (frequency
w = 1.1) to assign the third, fifth, and seventh vertices.

The following theorem is analogous to Theorem 4.3 when Ax is an arc with vertices
vx = nx/dx and vxsucc = nx/dxsucc counter-clockwise, and belonging to a segment-arc.

Theorem 4.5 (successor). Let A1 be a complete arc of the value-set boundary with vertices v1 =
n1/d1 and v2 = n1/d2, the successor segment with vertices v2 = n1/d2, v2 succ = n2λ/d2 counter-
clockwise and the predecessor segment with vertices v1 pred = n4λ/d1, v1 = n1/d1 counter-clockwise.
Let Ax be an arc with vertices vx succ = nx/dx succ and vx = nx/dx counter-clockwise

Then

(1) arg(v2/vx) = ϕ(Ax) + arg(n1) − 90◦ (condition C1) and nx satisfies the numerator
condition, where nx = d2vx, if and only if dx = d2 and cannot be any other assigned
polynomial,
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(2) when dx /=d2, arg(v1/vx) = ϕ(Ax) + arg(n1) (condition C2) and nx = d1vx satisfies the
numerator condition if and only if dx = d1 and cannot be any other assigned polynomial,

(3) when dx /=d1 and dx /=d2, tan(arg(1/vx) − ϕ(Ax) + 180◦)d2R > d2I (condition C3), and
nx = d2R[1+ j tan(arg(1/vx)−ϕ(Ax) + 180◦)]vx satisfies the numerator condition if and
only if dx = d3 = d2R(1 + j tan(arg(1/vx) − ϕ(Ax) + 180◦)) and cannot be any other
assigned polynomial,

(4) when dx /=d1, dx /=d2, and dx /=d3, tan(arg(1/vx) − ϕ(Ax) + 270◦)d1R > d1I (condition
C4), and nx = d1R[1+j tan(arg(1/vx)−ϕ(Ax)+270◦)]vx satisfies the numerator condition
if and only if dx = d4 = d1R(1 + j tan(arg(1/vx) − ϕ(Ax) + 270◦)).

Proof. Analogous to Theorem 3.3.

Remark 4.6. This theorem is used in the example of Section 5, for the value set I (frequency
w = 1.0) in order to assign the third, fourth, and sixth vertices, and for the value set II
(frequency w = 1.1) to assign the fourth and sixth vertices.

Finally, the following theorem points out the necessary and sufficient condition.

Theorem 4.7. Given a value set, all the assigned polynomials of the vertices can be determined if
and only if there is a complete edge or a complete arc lying on a quadrant when the normalized edge
satisfies n2R /= 0, n2I /= 0, n1R /= 0, and n1I /= 0 or the normalized arc satisfies d2R /= 0, d2I /= 0, d1R /= 0,
and d1I /= 0.

Proof. It is obvious from Theorems 3.3–4.5.

5. Algorithm and Examples

Algorithm 5.1. Given a value set with a complete segment or a complete arc in a quadrant, to
obtain the Kharitonov polynomials the following.

(1) If there is a complete segment in a quadrant, S1, with vertices v1 = n1/d1 and v2 =
n2/d1, the successor arc with vertices v2 = n2/d1, v2succ = n2/d2λ counter-clockwise
and the predecessor arc with vertices v1pred = n1/d4λ, v1 = n1/d1 counter-clockwise
then for all vertex vx = nx/dx:

(a) if vx = nx/dx is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 3.3,

(b) if vx = nx/dx is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 3.5.

(2) If there is a complete arc in a quadrant,A1, with vertices v1 = n1/d1 and v2 = n1/d2,
the successor segment with vertices v2 = n1/d2, v2succ = n2λ/d2 counter-clockwise
and the predecessor segment with vertices v1pred = n4λ/d1, v1 = n1/d1 counter-
clockwise, then given a vertex vx = nx/dx:

(a) if vx = nx/dx is a vertex intersection of an arc and a segment counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 4.3,
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Table 1: Value set boundary information.

ω = 1.0 ω = 1.1 ω = 1.2
(a) (b) (c) (a) (b) (c) (a) (b) (c)
v1 1.5676 + 2.5946j 0 v1 −2.8422 + 2.9830j 0 v1 6.1015 + 5.2779j 1
v2 2.0000 + 8.0000j 1 v2 −0.9808 + 2.4599j 1 v2 6.5135 + 6.8573j 0
v3 0.8000 + 10.4000j 0 0 + 3.0420j 0 0 + 8.5560j 0

0 + 10.0000j 1 v3 0.4996 + 3.0386j 1 v3 −3.0339 + 6.1294j 1
v4 −4.8000 + 7.6000j 0 v4 2.3317 + 3.0261j 0 v4 −2.2110 + 5.1007j 0
v5 −3.5862 + 1.0345j 1 v5 5.1859 + 6.6181j 1 v5 −0.4710 + 3.4462j 1
v6 2.5517 + 0.6207j 0 v6 5.2164 + 8.6623j 0 0 + 3.6463j 0
v7 −1.3443 + 1.2131j 1 0 + 8.7404j 0 v6 1.4690 + 3.4428j 1

0 + 2.3336j 1 v7 −3.8291 + 3.7385j 1 v7 2.9559 + 3.2369j 0
(a): Vertex (vi) or cut point (blank)with an axis. (b): Value of the vertex or cut point.
(c): Edge (2.1) or arc (0) between this element and the next element. If the element is the last, the next element is the first.

(b) if vx = nx/dx is a vertex intersection of a segment and an arc counter-
clockwise, then the assigned polynomials numerator and denominator, nx and
dx, determine applying Theorem 4.5.

(3) Calculate the values of the assigned polynomials nj , dk, solving the equation system
(2.7):

vi =
nj

dk
. (5.1)

(4) Calculate the numerator and denominator rectangles with Kharitonov
polynomial values N = (kn1(jω), kn2(jω), kn3(jω), kn4(jω)), D =
(kd1(jω), kd2(jω), kd3(jω), kd4(jω)) applying (2.8).

Example 5.2. Figure 10 shows three value sets of an interval plant. The necessary information
(Table 1) is

(i) the vertices,

(ii) the intersections with the axis,

(iii) the shape of the boundary’s elements: arc or segment.

This example illustrates how to obtain the assigned polynomials and the numerator and
denominator rectangles for each value set, and remarks the theorem used in each step.

5.1. Value Set at Frequency ω = 1.0

The complete arc with vertices v1 = n1/d1 = 1.5676+2.5946j and v2 = n1/d2 = 2.0000+8.0000j
is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

v2succ =
n2λ

d2
= 0.8000 + 10.4000j, v1pred =

n4λ

d1
= 2.3336j. (5.2)
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Figure 10: Three value sets of an interval plant.

Applying the arc normalization (Lemma 4.1) the following data are obtained

ϕ(n1) = 229.40, n1 = −0.6508 − 0.7592j, d1 = −0.3254 + 0.0542j, d2 = −0.1085 + 0.0542j,

n4λ = −0.1266 − 0.7594j, n2λ = −0.6508 − 1.0846j.
(5.3)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = 0.8000 + 10.4000j. Then vxpred = nx/dxpred = 2.0000 +

8.0000j. These are the vertices of an edge, and Theorem 4.5 is applied, vxsucc = 10.0000j,
ϕ(Ax) = 210.97.

Case 1. Theorem 4.5(C1) is satisfied: arg(v2/vx) = ϕ(Ax) + arg(n1) − 90 = 350.36 and nx =
d2vx = −0.6508 − 1.0846j satisfies the Numerator Condition (Lemma 4.2(4), nx = n2):

(n1R = −0.6508 < n4λR = −0.1266, n1I = −0.7592 > n2λI = −1.0846),
(nxR = n1R = −0.6508, nxI = −1.0846 ≤ n1I = −0.7592).

(5.4)

Then dx = d2 = −0.1085 + 0.0542j. Therefore v3 = vx = n2/d2.
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(2)Vertex v4 = vx = nx/dx = −4.8000+7.6000j. Then vxpred = 10j. These are the vertices
of an edge, and Theorem 4.5 is applied: vxsucc = −3.5862 + 1.0345j, ϕ(Ax) = 174.29.

Case 1. Theorem 4.5(C1) is satisfied: arg(v2/vx) = ϕ(Ax) + arg(n1) − 90 = 313.69 and nx =
d2vx = 0.1084 − 1.0847j satisfies the Numerator Condition (Lemma 4.2(4), nx = n3). Then
dx = d2 = −0.1085 + 0.0542j. Therefore v4 = vx = n3/d2.

(3) Vertex v5 = vx = nx/dx = −3.5862 + 1.0345j. Then vxpred = nx/dxpred = −4.8000 +
7.6000j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 174.29.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v2/vx) = 272.06/= arg(n1) + ϕ(Ax) = 43.69.

Case 2. Theorem 4.3(C2) is not satisfied:arg(v1/vx) = 254.95/= arg(n1) + ϕ(Ax) + 90 = 133.69.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = 0.2712 > d2I = 0.0542
and nx = 0.1085 − 1.0846j satisfies the Numerator Condition (Lemma 4.2(4)) nx = n3. Then
dx = d3 = −0.1085 + 0.2712j v5 = vx = n3/d3.

(4) Vertex v6 = vx = nx/dx = −2.5517 + 0.6207j. Then vxpred = nx/dxpred = −3.5862 +
1.0345j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc−1.3443+1.2131j,
ϕ(Ax) = 261.87.

Case 1. Theorem 4.5(C1) is not satisfied: arg(v2/vx) = 269.64/=ϕ(Ax) + arg(n1) − 90 = 41.27.

Case 2. Theorem 4.5(C2) is not satisfied: arg(v1/vx) = 252.53/=ϕ(Ax) + arg(n1) = 131.27.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 180)d2R = 0.2712 > d2I = 0.0542
and nx = 0.1085 − 0.7592j satisfies the Numerator Condition (Lemma 4.2(3)) nx = n4: then
dx = d3 = −0.1085 + 0.2712j and v6 = vx = n4/d3.

(5) Vertex v7 = vx = nx/dx = −1.3443 + 1.2131j. Then vxpred = nx/dxpred = −2.5517 +
0.6207j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 261.87.

Case 1. Theorem 4.3(C1) is not satisfied: arg(v2/vx) = 298.03/= arg(n1) + ϕ(Ax) = 131.27.

Case 2. Theorem 4.3(C2) is not satisfied: arg(v1/vx) = 280.93/= arg(n1) + ϕ(Ax) + 90 = 221.27.

Case 3. Theorem 4.3(C3) is not satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = −0.1302 < d2I =
0.0542.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 180)d1R = 0.2712 > d1I = 0.0542
and nx = 0.1085 − 0.7592j satisfies the Numerator Condition (Lemma 4.2(4)) nx = n4. Then
dx = d4 = −0.3254 + 0.2712j; v7 = vx = n4/d4.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n1

d2
, v3 =

n2

d2
, v4 =

n3

d2
, v5 =

n3

d3
, v6 =

n4

d3
, v7 =

n4

d4
,

(5.5)

and the values can be calculated: from normalization,

n1 = −0.6508 − 0.7592j, d1 = −0.3254 + 0.0542j, d2 = −0.1085 + 0.0542j, (5.6)
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and from the vertices,

v3 : n2 = −0.6508 − 1.0846j, d2 = −0.1085 + 0.0542j,

v4 : n3 = 0.1084 − 1.0847j, d2 = −0.1085 + 0.0542j,

v5 : n3 = 0.1085 − 1.0846j, d3 = −0.8464 + 2.0152j,

v6 : n4 = 0.1085 − 0.7592j, d3 = −0.1085 + 0.2712j,

v7 : n4 = 0.1085 − 0.7593j, d4 = −0.3254 + 0.2712j.

(5.7)

Then

kn1
(
jω

)
= −0.6508 − 1.0847j, kn2

(
jω

)
= 0.1085 − 1.0847j,

kn3
(
jω

)
= 0.1085 − 0.7592j, kn4

(
jω

)
= −0.6508 − 0.7592j,

kd1
(
jω

)
= −0.3254 + 0.0542j, kd2

(
jω

)
= −0.1085 + 0.0542j,

kd3
(
jω

)
= −0.1085 + 0.2712j, kd4

(
jω

)
= −0.3254 + 0.2712j.

(5.8)

Table 2 shows the results of the algorithm for the value set at frequency ω = 1.0.
From these Kharitonov rectangles the value set given in Figure 11(a) is directly

obtained.

5.2. Value Set at Frequency ω = 1.1

The complete arc with vertices v1 = n1/d1 = −2.8422 + 2.9830j and v2 = n1/d2 = −0.9808 +
2.4599j is taken as initial element. Then Theorems 4.3 and 4.5 will be applied. So

v2succ =
n2λ

d2
= 3.0420j, v1pred =

n4λ

d1
= −3.8291 + 3.7385j. (5.9)

Applying the arc normalization (Lemma 4.1) the following data are obtained:

ϕ(n1) = 360 − arg
(

1
v2

− 1
v1

)
= 81.05, n1 = 0.1556 + 0.9878j,

d1 =
n1

v1
= 0.1475 − 0.1927j;

d2 =
n1

v2
= 0.3247 − 0.1927j, n4λ = d1v1pred = 0.1556 + 1.2895j,

(5.10)

n2λ = d2v2succ = 0.5862 + 0.9878j. (5.11)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = 0.4996+ 3.0386j. Then vxpred = nx/dxpred = 3.0420j. These

are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 8.95.
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Figure 11

Cases 1 and 2. Theorem 4.3(C1) and (C2) are not satisfied.

Case 3. Theorem 4.3(C3) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 90)d2R = 0.0022 > d2I = −0.1927
and nx = 0.1555 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n1. Then
dx = d3 = 0.3247 + 0.0022j v3 = vx = n1/d3.

(2) Vertex v4 = vx = nx/dx = 2.3317 + 3.0261j. Then vxpred = nx/dxpred = 0.4996 +
3.0386j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc = 5.1859+6.6181j
and ϕ(Ax) = 127.23.

Cases 1 and 2. Theorem 4.5(C1) and (C2) are not satisfied.

Case 3. Theorem 4.5(C3) is satisfied: tan(arg(1/vx)−ϕ(Ax)+180)d2R = 0.0022 > d2I = −0.1927
and nx = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n2. Then
dx = d3 = 0.3247 + 0.0022j. v4 = vx = n2/d3.
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(3) Vertex v5 = vx = nx/dx = 5.1859 + 6.6181j. Then vxpred = nx/dxpred = 2.3317 +
3.0261j. These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 127.23.

Cases 1, 2, and 3. Theorem 4.3(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.3(C4) is satisfied: tan(arg(1/vx)−ϕ(Ax)+180)d1R = 0.0022 > d1I = −0.1927
and nx = 0.7505 + 0.9878j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n2. Then
dx = d4 = 0.1475 + 0.0022j v5 = vx = n2/d4.

(4) Vertex v6 = vx = nx/dx = 5.2164 + 8.6623j. Then vxpred = nx/dxpred = 5.1859 +
6.6181j. These are the vertices of an edge, and Theorem 4.5 is applied: vxsucc = 8.7404j,
ϕ(Ax) = 210.20.

Cases 1, 2, and 3. Theorem 4.5(C1), (C2), and (C3) are not satisfied.

Case 4. Theorem 4.5(C4) is satisfied: tan(arg(1/vx) − ϕ(Ax) + 270)d1R = 0.0022 > d1I =
−0.1927 and nx = 0.7505+ 1.2895j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n3:
then dx = d4 = 0.1475 + 0.0022j, v6 = vx = n3/d4.

(5) Vertex v7 = vx = nx/dx = −3.8291 + 3.7385j. Then vxpred = nx/dxpred = 8.7404j.
These are the vertices of an arc, and Theorem 4.3 is applied: ϕ(Ax) = 186.88.

Case 1. Theorem 4.3(C1) is not satisfied.

Case 2. Theorem 4.3(C2) is satisfied: arg(v1/vx) = arg(n1) + ϕ(Ax) + 90 = 357.93 and nx =
d1vx = 0.1556 + 1.2895j satisfies the Numerator Condition (Lemma 4.2(1)) nx = n4. Then
dx = d1 = 0.1475 − 0.1927j, v7 = vx = n4/d1.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n1

d2
, v3 =

n1

d3
, v4 =

n2

d3
, v5 =

n2

d4
, v6 =

n3

d4
, v7 =

n4

d1
(5.12)

and the values can be calculated: from normalization,

n1 = 0.1556 + 0.9878j, d1 = 0.1475 − 0.1927j, d2 = 0.3247 − 0.1927j, (5.13)

and from the vertices,

v3 : n1 = 0.1555 + 0.9878j, d3 = 0.3247 + 0.0022j,

v4 : n2 = 0.7505 + 0.9878j, d3 = 0.3247 + 0.0022j,

v5 : n2 = 0.7505 + 0.9878j, d4 = 0.1475 + 0.0022j,

v6 : n3 = 0.7505 + 1.2895j, d4 = 0.1475 + 0.0022j,

v7 : n4 = 0.1556 + 1.2895j, d1 = 0.1475 − 0.1927j.

(5.14)
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Then

kn1
(
jω

)
= 0.1555 + 0.9878j, kn2

(
jω

)
= 0.7505 + 0.9878j,

kn3
(
jω

)
= 0.7505 + 1.2895j, kn4

(
jω

)
= 0.1556 + 1.2895j,

kd1
(
jω

)
= 0.1475 − 0.1927j, kd2

(
jω

)
= 0.3247 − 0.1927j,

kd3
(
jω

)
= 0.3247 + 0.0022j, kd4

(
jω

)
= 0.1475 + 0.0022j.

(5.15)

Table 3 shows the results of the algorithm for the value set at frequency ω = 1.1.
From these Kharitonov rectangles the value set given in Figure 11(b) is directly

obtained.

5.3. Value Set at Frequency ω = 1.2

The complete edge with vertices v1 = n1/d1 = 6.1015 + 5.2779j and v2 = n2/d1 = 6.5135 +
6.8573j is taken as initial element. Then Theorems 3.3 and 3.5 will be applied. So

v2succ =
n2

d2λ
= 8.5560j, v1pred =

n1

d4λ
= 2.9559 + 3.2369j. (5.16)

Applying the edge normalization (Lemma 3.1) the following data are obtained:

φ(d1) = 360 − arg(v2 − v1) = 284.62, d1 = cos
(
ϕ(d1)

)
+ j sin

(
ϕ(d1)

)
= 0.2524 − 0.9676j,

n1 = v1d1 = 6.6471 − 4.5717j, n2 = v2d1 = 8.2793 − 4.5717j,

d2λ =
n2

v2succ
= −0.5343 − 0.9677j, d4λ =

n1

v1pred
= 0.2524 − 1.8230j.

(5.17)

Then, all the other vertices are assigned as follows.
(1) Vertex v3 = vx = nx/dx = −3.0339 + 6.1294j. Then vxpred = nx/dxpred = 8.5560j.

These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = −2.2110 + 5.1007j and
ϕ(Sx) = arg(vxsucc − vx) = 308.66.

Cases 1 and 2. Theorem 3.5(C1) and (C2) are not satisfied.

Case 3. Theorem 3.5(C3) is satisfied: tan(arg(vx)−ϕ(Sx)+180)n2R = −1.8087 > n2I = −4.571 and
dx = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180)]/vx = −0.7740 − 0.9676j satisfies the Denominator
Condition (Lemma 3.2(3)) dx = d2: then nx = n3 = n2R[1 + j tan(arg(vx) − ϕ(Sx) + 180)] =
8.2793 − 1.8087j; v3 = vx = n3/d2.

(2) Vertex v4 = vx = nx/dx = −2.211 + 5.1007j. Then vxpred = nx/dxpred = −3.0339 +
6.1294j. These are the vertices of an edge, and Theorem 3.3 is applied: ϕ(Sx) = arg(vx −
vxpred) = 308.66.

Cases 1 and 2. Theorem 3.3(C1) and (C2) are not satisfied.

Case 3. Theorem 3.3(C3) is satisfied: tan(arg(vx)−ϕ(Sx)+90)n2R = 30.4258 > n2I = −4.5717 but
dx = n2R[1+j tan(arg(vx)−ϕ(Sx)+90)]/vx = 4.4292−3.5431j does not satisfy the Denominator
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Condition: (d1R = 0.2524 > d2λR = −0.5343 and d1I = −0.9676 > d4λI = −1.8230) (Case 3) but
(dxR = 4.4292/=d1R = 0.2524) then dx /=d1 and dx /=d4 (dxI = −3.5431/=d1I − 0.9676) then
dx /=d2(dxR = 4.4292 > d1R = 0.2524 and dxI = −3.5431 < d1I = −0.9676) then dx /=d3.

Case 4. Theorem 3.3(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 180)n1R = −1.8088 > n1I = −4.5717
and dx = n1R[1+j tan(arg(vx)−ϕ(Sx)+180)]/vx = −0.7741−0.9676j satisfies the Denominator
Condition (Lemma 3.2(3)) dx = d2:

(d1R = 0.2524 > d2λR = −0.5343, d1I = −0.9676 > d4λI = −1.8230),
(dxI = d1I = −0.9676, dxR = −0.7740 ≤ d1R = 0.2524).

(5.18)

Then nx = n4 = n1R[1 + j tan(arg(vx) − ϕ(Sx) + 180)] = 6.6471 − 1.8088j, v4 = vx = n4/d2.

(3) Vertex v5 = vx = nx/dx = −0.47099 + 3.4462j. Then vxpred = nx/dxpred = −2.2110 +
5.1007j. These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = 3.6463j and
ϕ(Sx) = arg(vxsucc − vx) = 23.01.

Cases 1, 2, and 3. Theorems 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
dx = 8.3397 − 3.5422j does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 270)n1R = −1.8098 > n1I = −4.5717
and dx = n1R[1+j tan(arg(vx)−ϕ(Sx)+270)]/vx = −0.7743−1.8230j satisfies the Denominator
Condition (Lemma 3.2(3)).

Then nx = n4 = n1R[1+ j tan(arg(vx)−ϕ(Sx)+270)] = 6.6471−1.8098j, v5 = vx = n4/d3.

(4) Vertex v6 = vx = nx/dx = 1.469 + 3.4428j. Then vxpred = nx/dxpred = 3.6463j.
These are the vertices of an arc, and Theorem 3.5 is applied: vxsucc = 2.9559 + 3.2369j and
ϕ(Sx) = arg(vxsucc − vx) = 352.12.

Cases 1, 2, and 3. Theorem 3.5(C1) and (C2) are not satisfied. Theorem 3.5(C3) is satisfied but
dx = 8.3440 + 1.1554j does not satisfy the Denominator Condition (Lemma 3.2(3)).

Case 4. Theorem 3.5(C4) is satisfied: tan(arg(vx) − ϕ(Sx) + 270)n1R = −1.8089 > n1I = −4.5717
and dx = 0.2524 − 1.8230j satisfies the Denominator Condition (Lemma 3.2(3)) dx = d4.

Then nx = n4 = n1R[1+ j tan(arg(vx)−ϕ(Sx)+270)] = 6.6471−1.8089j, v6 = vx = n4/d4.

(5) Vertex v7 = vx = nx/dx = 2.9559 + 3.2369j. Then vxpred = nx/dxpred = 1.4690 +
3.4428j. These are the vertices of an edge, and Theorem 3.3 is applied: ϕ(Sx) = arg(vx −
vxpred) = 352.12.

Case 1. Theorem 3.3(C1) is not satisfied.

Case 2. Theorem 3.3(C2) is satisfied: arg(vx/v1) = arg(d1)+ϕ(Sx)+90 = 6.74 and dx = n1/vx =
0.2524− 1.8230j satisfies the Denominator Condition (Lemma 3.2(3)) dx = d4. Then nx = n1 =
6.6471 − 4.5717j, v7 = vx = n1/d4.

In summary, the assigned polynomials are

v1 =
n1

d1
, v2 =

n2

d1
, v3 =

n3

d2
, v4 =

n4

d2
, v5 =

n4

d3
, v6 =

n4

d4
, v7 =

n1

d4
,

(5.19)
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and the values can be calculated: from normalization,

d1 = 0.2524 − 0.9676, n1 = 6.6471 − 4.5717j, n2 = 8.2793 − 4.5717j, (5.20)

and from the vertices,

v3 : n3 = 8.2793 − 1.8087j, d2 = −0.7741 − 0.9676j,

v4 : n4 = 6.6471 − 1.8087j, d2 = −0.7741 − 0.9676j,

v5 : n4 = 6.6471 − 1.8087j, d3 = −0.7743 − 1.8230j,

v6 : n4 = 6.6471 − 1.8087j, d4 = 0.2524 − 1.8230j,

v7 : n1 = 6.6471 − 4.5717j, d4 = 0.2524 − 1.8230j.

(5.21)

Then

kn1
(
jω

)
= 6.6471 − 4.5717j, kn2

(
jω

)
= 8.2793 − 4.5717j,

kn3
(
jω

)
= 8.2793 − 1.8087j, kn4

(
jω

)
= 6.6471 − 1.8087j,

kd1
(
jω

)
= −0.7743 − 1.8230j, kd2

(
jω

)
= 0.2524 − 1.8230j,

kd3
(
jω

)
= 0.2524 − 0.9676j, kd4

(
jω

)
= −0.7743 − 0.9676j.

(5.22)

Table 4 shows the results of the algorithm for the value set at frequeny w = 1.2.
From these kharitonov rectangles the value set given in Figure 11(c) is directly

obtained.
Finally, solving the equation system [10, equation (16)], the interval plant is obtained:

Gp(s) =
[10 11]s3 + [7 8]s2 + [6 6.5]s + [5 7.5]

[0.75 1.25]s3 + [2 2.5]s2 + [1.5 2]s + [1 1.5]
. (5.23)

Applying Gp(s = jω) at ω = 1.0, ω = 1.1 and ω = 1.2 the value sets given in Figure 12 are
obtained.

6. Conclusions

This paper shows how to obtain the values of the numerator and denominator Kharitonov
polynomials of an interval plant from its value set at a given frequency. Moreover, it is proven
that given a value set, all the assigned polynomials of the vertices can be determined if and
only if there is a complete edge or a complete arc lying on a quadrant, that is, if there are two
vertices in a quadrant. This necessary and sufficient condition is not restrictive and practically
all the value sets satisfy it. Finally, the interval plant can be identified solving the equation
system between the Kharitonov rectangles and the parameters of the plant.

The algorithm has been formulated using the frequency domain properties of linear
interval systems. The identification procedure of multilinear (affine, polynomial) systems
will be studied using the results in [11].
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Figure 12: Value sets obtained at w = 1.0, w = 1.1, and w = 1.2.
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