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This paper is concerned with a containment problem of networked fractional-order system with
multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed
protocol is proposed in delayed communication channels. By employing the algebraic graph
theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically
proved that the whole follower agents will flock to the convex hull which is formed by the
leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated
in the dynamic network is obtained. As a special case, the interconnection topology under the
undirected case is also discussed. Finally, some numerical examples with simulations are presented
to demonstrate the effectiveness and correctness of the theoretical results.

1. Introduction

In recent years, coordination of multiagent systems has attracted considerable interest in
the control community due to their wide application areas in formation control [1–3],
flocking/swarming [4, 5], consensus [6–9], sensor networks [10, 11], synchronization of
complex networks [12, 13], and distributed computation [14]. A common character of
these applications is that each individual agent lacks a global knowledge of the whole
system and can only send and/or obtain state information from its neighbors through local
communications. Significant progress has been made in the coordination problem (see, e.g.,
[11, 15, 16] and the references therein).
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As a special case of coordination control, containment control means to drive the
followers to be in the convex hull which is spanned by the leaders. Different from general
leader-following consensus problems, where there exist multiple leaders and multiple
followers in containment problems. The coordinate objective is likely to be one or several
target sets in multiagent coordination control. These target sets may be a biological
communities, a team of robots, a food enrichment area, and so on. For example, a kind of
biological group hunts another kind of biological communities, a team of biological group
cooperatively builds their nest, and several agents lead a team of agents avoiding hazardous
obstacles. Thus, how to control a multiagent system to achieve a common target becomes an
interesting problem.

The idea of fractional calculus has been known since the development of the regular
calculus, with the first reference probably being dated back to the seventeenth century [17],
where the meaning of derivative of order one-half was first mentioned. Although it has a
long history, the fractional calculus applications to physics and engineering are just a recent
focus of interest. Moreover, fractional derivatives provide an excellent tool for the description
of memory and hereditary properties of various materials and processes. As pointed out by
many researchers, many physical systems aremore suitable to bemodeled by fractional-order
dynamic equations [18]. Many systems are known to display fractional-order dynamics, such
as viscoelastic systems, electromagnetic waves, and quantum evolution of complex systems.
In additional, integer-order systems can be regarded as a special case of fractional-order
systems.

More recently, many interesting agent-related consensus problems are under inves-
tigation, and fractional-order consensus becomes a hot topic. The consensus problem of
fractional-order systems is first proposed and investigated by Cao et al. [19, 20], where
three different cases of coordination models are introduced. By employing a varying-
order fractional coordination strategy, a higher convergence performance is obtained. Sun
et al. [21] study the consensus problem for fractional-order systems under undirected
scale-free networks. They also compared the convergence rate of fractional-order dynamics
and the integer-order dynamics. In order to increase the convergence speed and ensure
the exponential convergence, a switching order consensus protocol is employed. Shen et
al. [22, 23] consider the consensus problem of fractional-order systems with nonuniform
input and/or communication delays over directed networks. Based on the Nyquist stability
criterion and frequency domain approach, some sufficient conditions are obtained to
ensure the fractional-order consensus. Formation control problems for fractional-order
systems were discussed in [24]. However, little research work has been done toward the
problem of containment control of fractional-order system, which is the main focus of this
paper.

Motivated by the above discussion, in this paper, we consider the containment
problem of networked fractional-order systems over directed topologies. Different from
generally leader-following consensus problem, there exist multiple leaders in a containment
control problem. The objective is to drive the followers to be in the convex hull formed by
the leaders. On the other hand, in practice delays unavoidably exist due to the finite speed
of transmission, acquisition, and traffic congestions. Therefore, studying the agents with
the form of fractional-order dynamics over delayed communication channel becomes very
significant.

The rest of the paper is organized as follows. Section 2 gives some preliminaries on
algebraic graph theory and Caputo fractional operator and formulates the problem under
investigation. In Section 3, containment control under fixed directed topologies and delayed
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communication channels is investigated. In Section 4, two examples are provided to verify
the theoretical analysis. Finally, some concluding remarks will be drawn in Section 5.

Some remarks on the notation are given as follows: [α] stands for the integer part of
α, 1n is an n-dimension column vector with all ones. IN is the identity matrix with dimension
N × N. R

N×N and R
N , respectively, denote the family of all N × N dimensional matrices

and the N dimensional column vector. The notation A > 0 (A ≥ 0) means that matrix A is
positive definite (semidefinite). “‖x‖′′ stands for the Euclidean norm of vector x. λi(A) and
ρ(A) denote the ith eigenvalue of matrixA and spectral radius of matrixA, respectively. diag
{· · · } stands for a block diagonal matrix.A⊗Bmeans the Kronecker product of matricesA and
B. A set Θ ∈ R

N is convex if the line segment between any two elements in Θ lies in Θ, that
is, if for any x, y ∈ Θ and any γ with 0 ≤ γ ≤ 1, we have γx + (1 − γ)y ∈ Θ. Similarly, a vector
sum γ1x1 + γ2x2 + · · · + γnxn is called a convex combination of x1, x2, . . . , xn if the coefficients
satisfy γi ≥ 0 and

∑n
i=1 γi = 1. The convex hull of Θ denoted by co{Θ} is the intersection of all

convex sets containing Θ. For nonempty set E, the Euclid distance between point x and set E
is defined as dE(x) = infy∈E‖x − y‖.I = {1, 2, . . . ,N}.

2. Preliminary

Before formulating our problem, we introduce some basic concepts in graph theory and the
Caputo fractional operator for fractional-order networks.

2.1. Algebraic Graph Theory

Algebraic graph theory is a natural framework for analyzing coordination problems. Let the
interaction topology of information exchanged between N agents be described by a directed
graph G = {V,E,A}, where V = {1, 2, . . . ,N} is the set of vertices, vertex i represents the
ith agent, E ⊂ V × V is the set of edge. An edge in G is denoted by an ordered pair (j, i),
representing that agent i can receive information from agent j. The neighborhood of the ith
agent is denoted by Ni = {j ∈ V | (j, i) ∈ E}. A = [aij]N×N ∈ RN is called the weighted
adjacency matrix of G with nonnegative elements where aii = 0 and aij ≥ 0 with aij > 0 for
j ∈ Ni. The in-degree of agent i is defined as degin (i) =

∑N
j=1 aij , and the out-degree of agent

i is defined as degout(i) =
∑N

j=1 aji. The Laplacian matrix of G is defined as L = D −A, where
D = diag{degin(1),degin(2), . . . ,degin(N)}. A sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is
called a path from agent i1 to agent ik. A directed tree is a directed graph, where every agent
has exactly one neighbor except one agent has no neighbors. A spanning tree ofG is a directed
tree whose vertex set is V and whose edge set is a subset of E. In undirected graphs, if there is
a path between any two vertices of a graph G, then G is connected, otherwise disconnected.

2.2. Caputo Fractional Operator

For an arbitrary real number α, the Riemann-Liouville and Caputo fractional derivatives are
defined, respectively, as

aD
α
t f(t) =

1
Γ(m − α)

dm

dtm

∫ t

a

(t − τ)m−α−1f(τ)dτ, (2.1)

C
aD

α
t f(t) =

1
Γ(m − α)

∫ t

a

fm(τ)

(t − τ)α+1−m
dτ, (2.2)
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where m = [α] + 1 is the first integer which is not less than α and Γ(·) is the Euler’s gamma
function.

It is worth pointing out that the advantage of Caputo approach is that the initial
conditions for fractional-order differential equations with Caputo derivatives take on the
same form as that for integer-order differential equations. For details, please refer to [17].
Therefore, we will only use the Caputo fractional operator in this paper to model the system
dynamics. For notational simplicity, we rewrite C

aD
α
t f(t) as f

(α)(t) in the rest of the paper.

2.3. Laplace Transform

In the following, we will introduce the Laplace transform of the caputo fractional derivative
which will fascinate the development of the subsequent results:

L
{
f (α)(t)

}
=

{
sαF(s) − sα−1f(0), α ∈ (0, 1];
sαF(s) − sα−1f(0) − sα−2ḟ(0), α ∈ (1, 2].

(2.3)

2.4. Problem Formulation

Consider a networked fractional-order system consisting of N + m agents, where N agents
labeled by 1, 2, . . . ,N are referred to as the follower agents and the other agents labeled by
N + 1, . . . ,N +m act as leaders of the team. The information interaction topology among N
following-agents is described by the graph G = (V,E,A), and the whole system involving
N + m agents is conveniently modeled by a weighted directed graph G = (V,E,A) with
V = {1, 2, . . . ,N +m} andA = aij ∈ R

(N+m)×(N+m), i, j = 1, 2, . . . ,N +m, where the lower block
submatrix of orderN can be regarded asA. In this paper, we regard the convex hull spanned
by multiple leaders as a virtual leader. The graph G has a spanning tree meaning that there
exits a path from the virtual leader to every follower agent. In general, the dynamic of each
leader is independent of the follower agents. xk represents the position state of the leader k
and keeps being a constant.

The dynamic of follower agent i takes the following form:

x
(α)
i (t) = ui(t), i ∈ I, (2.4)

where xi(t) ∈ R
n is the position state, ui(t) ∈ R

n is the control input of agent i, and x
(α)
i (t) ∈ R

n

is the αth derivative of xi(t). In practice, the fractional order α often lies in (0, 1], so we assume
that the order α is a positive real number but not more than 1 in this paper.

For the aforementioned fractional-order dynamics, the following control rule will be
used for follower agent i:

ui(t) =
∑

j∈Ni

aij

(
xj(t − τ) − xi(t − τ)

)
+

N+m∑

k=N+1

bik(xk(t − τ) − xi(t − τ)), (2.5)

where bik ≥ 0, bik > 0 if and only if the leader k (k = N + 1,N + 2, . . . ,N +m) is a neighbor of
agent i. Let B = [BN+1,BN+2, . . . ,BN+m], where Bk ∈ R

N×N is a diagonal matrix with bik (i =
1, 2, . . . ,N) as its diagonal entry. Assume the time delay in (2.5) satisfies 0 < τ ≤ h.
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Inserting the control rule (2.5) into each follower agent dynamic (2.4), the dynamics
of agent i becomes

x(α)(t) = −(H⊗ In)x(t − τ) + [B(Im ⊗ 1N)] ⊗ Inx(t − τ), (2.6)

where x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N(t)]T , x(t) = [xT

N+1(t), x
T
N+2(t), . . . , x

T
N+m(t)]

T , H = L +
B(1m ⊗ IN).

Our objective is to let the N follower agents move into the polytope region formed
by the leaders; that is, for any xi(t) (i = 1, 2, . . . ,N) it can be represented as a convex hull of
xk(t) (k = N + 1,N + 2, . . . ,N +m) when t → +∞, namely:

lim
t→+∞

dΘ(xi(t)) = 0, i = 1, 2, . . . ,N, (2.7)

where Θ = {μ | μ ∈ co{xN+1(t), xN+2(t), . . . , xN+m(t)}}.

3. Convergence Analysis

Before starting our main results, we begin with the following lemmas which will play an
important role in the proof of main results.

Lemma 3.1. If graph G has a spanning tree, then the matrix H associated with G is a positive stable
matrix; that is, all the eigenvalues of H lie in the open right hand plane.

Proof. This lemma follows from Lemma 4 in [9] by considering the convex region formed by
the leaders as a virtual leader.

Lemma 3.2 (see [25]). The following autonomous system:

dαx(t)
dtα

= Ax(t), x(0) = x0, (3.1)

with 0 < α ≤ 1, x ∈ Rn, and A ∈ Rn×n, is asymptotically stable if and only if | arg(ρ(A))| > απ/2 is
satisfied for all eigenvalues of matrixA. Also, this system is stable if and only if | arg(ρ(A))| ≥ απ/2 is
satisfied for all eigenvalues of matrixAwith those critical eigenvalues satisfying | arg(ρ(A))| = απ/2
having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of the matrix A is
the dimension of the subspace of vectors v for which Av = λv.

When the time delay τ = 0, the dynamic network degenerates to the delay-free case,
and the dynamic (2.6) can be rewritten as

x(α)(t) = −(H⊗ In)x(t) + [B(Im ⊗ 1N)] ⊗ Inx(t). (3.2)

Then, we have the following theorem.

Theorem 3.3. For the fractional-order dynamic system (3.2), the follower agents can enter the region
spanned by the leaders if the fixed interaction graph G has a directed spanning tree.
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Proof . By Lemma 3.1, we learn that matrixH is invertible. Let δ(t) = x(t)−[H−1B(Im⊗1N)]⊗
Inx(t). Then, we get the following error system:

δ(α)(t) = −(H⊗ In)δ(t). (3.3)

Since all the eigenvalues of matrix H lie in the open right hand plane, then, | arg(−H))| ∈
(π/2, π] and 2 arg(ρ(H))/π > 1 hold. It follows from Lemma 3.2 that system (3.3) is
asymptotically stable for any α ∈ (0, 1].

In the sequel, wewill prove that all the follower agents can be aggregated in a polytope
region formed by the leaders. In other words, we need only to prove that for any vector
x∗
i (t) ∈ R

n (i = 1, 2, . . . ,N), the region can be expressed as a convex hull of xk(t) ∈ R
n(k = N+

1,N+2, . . . ,N+m). This problem can be transformed to prove that matrix [H−1B(Im⊗1N)]⊗In
is a row stochastic matrix that is, it is a nonnegative matrix, and the sum of the items in every
row is 1.

Since all the eigenvalues of H have positive real parts, there exist a positive scalar
κ > 0 and nonnegative matrix Z such that H = κI − Z holds. Obviously, κ > ρ(Z) and
λi(H) = κ − λi(Z), ∀i = 1, 2, . . . ,N. Therefore,

H−1 = (κI − Z)−1 =
1
κ

(

I +
1
κ
Z +

1
κ2

Z2 + · · ·
)

≥ 0. (3.4)

It can be seen that matrix H−1 ⊗ In is a nonnegative matrix and so is [H−1B(Im ⊗ 1N)] ⊗ In.
Notice that H = L + B(1m ⊗ IN) and L1N = 0; we obtain

(H⊗ In)(1N ⊗ 1n) = ((L + B(1m ⊗ IN)) ⊗ In)(1N ⊗ 1n)

=

(
N+m∑

i=N+1

Bi1N

)

⊗ 1n.
(3.5)

Thus,

([
H−1B(Im ⊗ 1N)

]
⊗ In
)
(1m ⊗ 1n) =

(
(H⊗ In)−1[B(Im ⊗ 1N)] ⊗ In

)
(1m ⊗ 1n)

= (H⊗ In)−1
(

N+m∑

i=N+1

Bi1N

)

⊗ 1n

= 1N ⊗ 1n.

(3.6)

It is obvious that [H−1B(Im ⊗ 1N)] ⊗ In is a row stochastic matrix. Thus, the conclusion of
Theorem 3.3 holds.

Remark 3.4. This result coincides with the existing results in [26] and has been extended to
fractional order cases.

In what follows, we will focus on the convergence analysis of (2.6) under fixed and
directed interconnection topologies in delayed communication channels.
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Theorem 3.5. For the fractional-order dynamic system (2.6), the follower agents can enter the region
spanned by the leaders if the fixed interaction graph G has a directed spanning tree and τ < τ∗, where

τ∗ = min
i∈I

π − (απ/2) + ηi
(∣
∣μi

∣
∣
)1/α , (3.7)

μi, i ∈ I is the ith eigenvalue of matrixH, ηi = arctan(Im(μi)/Re(μi)).

Proof. Since the communication topology G has a spanning tree, all the eigenvalues of H
have positive real parts by Lemma 3.1. Therefore, matrix H is invertible. Let δ(t) = x(t) −
x∗(t), x∗(t) = [H−1B(Im ⊗ 1N)] ⊗ Inx(t). Then, we get the following error system

δ(α)(t) = −(H⊗ In)δ(t − τ). (3.8)

Taking Laplace transform of system (3.8), it yields that

sαξ(s) − sα−1ξ(0) = −e−τs(H⊗ In)ξ(s), (3.9)

where ξ(s) is the Laplace transforms of position states δ(t). After some simple manipulation
we obtain

ξ(s) = (Δ(s))−1ξ(0), (3.10)

whereΔ(s) = sαI+e−τs(H⊗In), which is called a characteristic matrix in [27]. The distribution
of det(Δ(s))’s eigenvalues totally determines the stability of system (3.8). Thus, a sufficient
condition for the error dynamics (3.8)which converges to zero is that all the poles ofΔ(s) are
located at the open left half plane or s = 0.

Then, the characteristic equation of (3.8) is

sα + e−τsμi = 0, (3.11)

where μi is the ith eigenvalue of matrix H.
Obviously, s /= 0. Now, we turn to prove that the poles of (3.11) are located at the open

left half plane. Since the directed graph G has a spanning tree, all the eigenvalues of H have
positive real parts. Without loss of generality, we assume that the eigenvalues satisfy 0 <
Re(μ1) ≤ Re(μ2) ≤ · · · ≤ Re(μn). Based on the Nyquist stability theorem, all the roots of (3.11)
lie in the open left half complex plane, if and only if the Nyquist curve e−τsμi/s

α does not
enclose the point (−1, 0i) for any w ∈ R, where i is the imaginary unit.

Therefore, assume that s = iw = w(cos(π/2) + i sin(π/2)) (w > 0) is a root of (3.11);
we have

wα
(
cos

απ

2
+ i sin

απ

2

)
+
∣
∣μi

∣
∣
(
cos
(
ηi −wτ

)
+ i sin

(
ηi −wτ

))
= 0, (3.12)
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where ηi = arctan(Im(μi)/Re(μi)). Separating the real and imaginary parts of (3.12) yields

wα cos
απ

2
+
∣
∣μi

∣
∣ cos

(
ηi −wτ

)
= 0,

wα sin
απ

2
+
∣
∣μi

∣
∣ sin

(
ηi −wτ

)
= 0.

(3.13)

From the above two equations, one gets

w2α +
∣
∣μi

∣
∣2 + 2

∣
∣μi

∣
∣wα cos

(απ

2
− ηi +wτ

)
= 0, (3.14)

that is

(
wα − ∣∣μi

∣
∣
)2 + 2

∣
∣μi

∣
∣wα
[
1 + cos

(απ

2
− ηi +wτ

)]
= 0. (3.15)

Obviously, the two terms in the left-hand side of (3.15) are nonnegative the equality holds if
and only if both the two terms are zero, namely:

wα =
∣
∣μi

∣
∣, (3.16)

1 + cos
(απ

2
− ηi +wτ

)
= 0. (3.17)

Thus, combining (3.16) and (3.17), we can easily obtain that

π + 2kπ =
(∣
∣μi

∣
∣
)1/α

τ +
απ

2
− ηi, k = 0, 1, 2, . . . . (3.18)

Therefore, the smallest time-delay τ > 0 occurs at k = 0 and satisfies

τ =
π − (απ/2) + ηi

(
∣
∣μi

∣
∣)1/α

. (3.19)

Similarly, one can repeat the very argument for the case thatw < 0 and get similar conclusion.
Thus, the Nyquist plot of e−τsμi/s

α does not enclose the point (−1, 0i) for all i > 1 if

τ <
π − (απ/2) + ηi
(∣
∣μi

∣
∣
)1/α . (3.20)

Then all the roots of det(Δ(s)) lie in the open left hand plan. Therefore, the error system (3.8)
is asymptotically stable, that is, x → x∗ = [H−1B(Im ⊗ 1N)] ⊗ Inx, as t → +∞. The rest of the
proof is similar to that of Theorem 3.3 and hence is omitted.

For the case of the considered undirected graph, that is, agent i and agent j can receive
information from each other when there exists an edge between i and j; we can get the
following result.
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Figure 1: Directed graph G1 and G1.
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Figure 2: Directed graph G2 and G2.

Theorem 3.6. Under an undirected time-invariant interaction graph G, that is, strongly connected,
the follower agents can enter the region spanned by the leaders if τ < τ∗, where

τ∗ = min
i∈I,μi>0

π − (απ/2)
(∣
∣μi

∣
∣
)1/α , (3.21)

μi, i ∈ I is the ith eigenvalue of matrixH.

Proof . The proof of Theorem 3.6 is similar to that of the Theorem 3.5 by noting that the
eigenvalues of H are nonnegative real number, and hence omitted.

4. Numerical Examples

In this section, two numerical simulations will be presented to illustrate the effectiveness of
the theoretical results obtained in the previous sections. In all the simulations, all dynamics of
agent are integrated with a fixed time step 0.05. The following two directed graphs with 0-1
weights will be needed in the analysis of this section. Circle and triangle stand for follower
agent and leader, respectively.

Example 4.1. Consider a dynamic fractional-order network of four follower agents and two
leaders with a fixed topology given in Figure 1. Obviously, the topology G1 has a spanning
tree. Suppose that all the agents are moving in a horizontal line and each follower agent can

receive the state information of its neighbors precisely. The matrix H is
( 2 −1 0 0

0 2 −1 −1
0 0 1 −1
0 0 0 1

)

, and its

four eigenvalues are 0.2451, 1.0000, 1.8774 + 0.7449i, 1.8774 − 0.7449i, respectively. The initial
position states of follower agents are generated randomly in [1, 6], and leaders are chosen as
x1(0) = 0.5, x2(0) = −0.5. Let α = 0.92 and u0(t) = 0.2. The state trajectories of the fractional-
order close-loop systems (2.6) are shown in Figure 3. It can be easily seen that as time goes
on, the whole follower agents will be flocked in the segment [−0.5, 0.5], which is formed by
the two leaders.
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Figure 3: State trajectories of four follower agents and two leaders under the topology G1.

Example 4.2. Consider a dynamic fractional-order network of five follower agents and four
leaders moving in a plane. The interconnection topology among the above agents is given in
Figure 2. Clearly, G2 is strongly connected. The matrix H is

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 0
−1 3 −1 0 0
0 −1 2 −1 0
0 0 −1 3 −1
0 0 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.1)

and its five eigenvalues are 0.6972, 1.3820, 2.0000, 3.6180, 4.3028, respectively. The initial
position states of agents and leaders are given as follows:

x1(0) = (0, 2)T , x2(0) = (0, 3)T , x3(0) = (0, 4)T , x4(0) = (0, 5)T , x5(0) = (0, 6)T ,

x1(0) = (4, 5)T , x2(0) = (5, 6)T , x3(0) = (6, 5)T , x4(0) = (5, 4)T .
(4.2)

Take the fractional order α = 0.96 in (2.1). Then, it can be seen from Theorem 3.6 that all
the followers will enter into the region formed by the leaders if τ < 0.3573. Figures 4 and 5
depict the simulation results for position trajectories under different time delays. From these
simulations, one can easily find that the containment control is realized via protocol (2.5)
as long as the time delay doesnot exceed the upper bound. These simulations are consistent
with the theoretical result in Section 3.
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Figure 4: State trajectories of five follower agents and four leaders under the topology G2 and time delay
τ = 0.12.
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Figure 5: State trajectories of five follower agents and four leaders under the topology G2 and time delay
τ = 0.4.
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5. Conclusion

In this paper, the containment control problem of multiple leaders has been considered
for networks of fractional-order dynamics with delay-dependent communication channels.
Utilizing algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency
domain method, some sufficient conditions are obtained. It is shown that all the follower
agents will ultimately move into the convex hull which is spanned by the leaders, for
appropriate communication time delay if the topology of weighted network has a spanning
tree. Moreover, two numerical simulations are provided to validate the effectiveness of our
theoretical analysis.
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