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Many industrial processes and physical systems are spatially distributed systems. Recently, a novel
3-D FLC was developed for such systems. The previous study on the 3-D FLC was concentrated
on an expert knowledge-based approach. However, in most of situations, we may lack the expert
knowledge, while input-output data sets hidden with effective control laws are usually available.
Under such circumstance, a data-driven approach could be a very effective way to design the 3-D
FLC. In this study, we aim at developing a new 3-D FLC design methodology based on clustering
and support vector machine (SVM) regression. The design consists of three parts: initial rule
generation, rule-base simplification, and parameter learning. Firstly, the initial rules are extracted
by a nearest neighborhood clustering algorithm with Frobenius norm as a distance. Secondly, the
initial rule-base is simplified by merging similar 3-D fuzzy sets and similar 3-D fuzzy rules based
on similarity measure technique. Thirdly, the consequent parameters are learned by a linear SVM
regression algorithm. Additionally, the universal approximation capability of the proposed 3-D
fuzzy system is discussed. Finally, the control of a catalytic packed-bed reactor is taken as an
application to demonstrate the effectiveness of the proposed 3-D FLC design.

1. Introduction

Many industrial processes and physical systems such as industrial chemical reactor [1, 2],
semiconductor manufacturing [3], and thermal processing [4] are “distributed” in space.
They are usually called spatially distributed systems, or distributed parameter systems [1].
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Figure 1: A three-dimensional fuzzy set.

The states, controls, and outputs of such systems depend on the space position as well as
on the time [2]. Traditionally, model-based methods are used to control such systems, where
a good mathematical model is definitely required. However, the process model may not be
easily obtained in many complex situations, and then, a model-free control method has to
be used. This leads to the recent development of the novel three-dimensional fuzzy-logic
control (3-D FLC) [5–8], which has the inherent capability to process spatiotemporal dynamic
systems. The 3-D FLC uses one kind of three-dimensional (3-D) fuzzy set (shown in Figure 1),
which is composed of the traditional fuzzy set and a third dimension for the spatial
information, and executes a 3-D rule inference engine. It is actually a kind of spatiotemporal
fuzzy-control system with the traditional model-free advantage.

To date, the 3-D FLC design has been focused on an expert-knowledge-based approach
[5], that is, the fuzzy-rule design is from human experts’ knowledge. In this approach, human
knowledge to the control solution must exist, and be structured. Practically, experts may have
problems structuring the knowledge [9]. Sometimes, although experts have the structured
knowledge, they may sway between extreme cases: offering too much knowledge in the field
of expertise, or tending to hide their knowledge [9]. Thus, we often lack expert knowledge
for control that is usually hidden in an input-output data set. Under this circumstance, a
data-driven design becomes a good choice for the 3-D FLC, that is, extraction of fuzzy rules
from a spatiotemporal input-output data set. Since the research on the 3-D FLC is just at the
beginning stage, extracting 3-D fuzzy control rules from a spatiotemporal data set is still a
challenging and open problem for spatially distributed systems.

Traditional data-driven FLC design methods have been developed in the past three
decades. They are usually composed of three parts: rule generation, structure optimization,
and parameter optimization [10]. For instance, grid partitioning of multidimensional space
[11] and clustering technique [12] can be used to generate rules automatically; reducing
redundancy variable [12], fusing similar clusters [13], and fusing similar fuzzy set [14] can be
applied to reduce the rule number and realize the structure optimization; genetic algorithm
[15] and gradient decent approach [16] can be adopted for fine tuning of membership
function and realize the parameter optimization. For a complete review of data-driven fuzzy
system design, one can further refer to [10]. These methods provide useful solutions to a
traditional FLC design.

In this study, we aim at developing a new data-driven 3-D FLC design method
based on clustering and SVM-regression learning. The initial 3-D rule base is first generated
by a nearest-neighborhood-clustering method from a spatiotemporal data set via defining
Frobenius norm as a distance. Then, the initial 3-D rule base is simplified based on similarity
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Figure 2: Basic structure of a 3-D FLC.

measure technique defined for 3-D fuzzy sets and 3-D fuzzy rules. Subsequently, an SVM-
regression learning algorithm is used to learn the parameters of the rule consequent parts.
In addition, the universal approximation capability of the proposed 3-D fuzzy system is
discussed.

The paper is organized as follows. Preliminaries about 3-D FLC and SVM regression
are addressed in Section 2. In Section 3, a clustering and SVM-regression learning-based
3-D fuzzy control design methodology is presented in detail. In Section 4, the universal
approximation capability of the proposed 3-D fuzzy system is presented. In Section 5, a
catalytic packed-bed reactor is presented as an example to illustrate the proposed design
scheme of a 3-D FLC and validate its effectiveness. Finally, conclusions are given in Section 6.

2. Preliminaries

2.1. 3-D FLC

The 3-D FLC is designed to have the inherent capability to deal with spatial information
and its basic structure is shown in Figure 2. It has a similar functional structure similar
to the traditional FLC, which consists of three basic blocks: fuzzification, rule inference,
and defuzzification. However, it will differ in the detailed operations because of the spatial
processing requirement. Generally, the 3-D FLC will be involved with the following basic
designs: 3-D membership function (MF), 3-D fuzzification, 3-D rule base, 3-D rule inference,
and defuzzification. One can refer to [5] for detailed description. Once each component of a
3-D FLC is set, a precise mathematical formula of the 3-D FLC can be derived.

Assumed that we have 3-D fuzzy rules represented by the following expression:

R
l
: IF x1(z) is C

l

1 and · · · and xs(z) is C
l

s, Then u is Bl, (2.1)

where xi(z) = (xi(z1)xi(z2) · · ·xi(zp))
T denotes the ith spatial input variable (1 ≤ i ≤ s), xi(zj)

is the input of xi(z) from the sensing location z = zj (1 ≤ j ≤ p); z denotes one-dimensional

space in a discrete space domain Z = {z1, z2, . . . , zp}; C
l

i denotes a 3-D fuzzy set, l = 1, . . . ,N;
u denotes output variable (the control action); Bl denotes a traditional fuzzy set.
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If Gaussian type 3-D membership functions (MF) are used to describe 3-D fuzzy sets
in (2.1), then we have

μl
Gi(xi(z)) = exp

⎛
⎝−

(
xi(z) − cli(z)

σl
i(z)

)2
⎞
⎠, (2.2)

where μl
Gi denotes the Gaussian type 3-D MF of the ith spatial input xi(z) in the lth rule;

cli(z) = (cli(z1), . . . , c
l
i(zp))

T and σl
i(z) = (σl

i(z1), . . . ,σ
l
i(zp))

T are the center and width of μl
Gi,

respectively; cli(zj) and σl
i(zj) denote center and width of the Gaussian type 2D MF of the

ith spatial input xi(z) at the sensing location z = zj . The Gaussian type 3-D MF μl
Gi can be

regarded as an assembly of multiple Gaussian type 2-D MFs over the space domain Z. Then,
the Gaussian type 2-D MF of the ith spatial input xi(z) at the sensing location z = zj is given
as

μGij

(
xi

(
zj
))

= exp

⎛
⎜⎝−

⎛
⎝xi

(
zj
) − clij
σl
ij

⎞
⎠

2
⎞
⎟⎠, (2.3)

where clij = cli(zj) and σl
ij = σl

i(zj).
Furthermore, if we employ singleton fuzzification, “product” t-norm and “weighted

aggregation” dimension reduction [6] in the 3-D rule inference, singleton fuzzy sets for the
output variable, and “center of sets” defuzzification [17], the 3-D FLC can be mathematically
expressed as

u(xz) =

∑N
l=1 ζ

l
∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

∑N
l=1

∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

=

∑N
l=1 ζ

l
∑p

j=1 aj
∏s

i=1 exp
(
−
((

xi

(
zj
) − clij

)
/σl

ij

)2
)

∑N
l=1

∑p

j=1 aj
∏s

i=1 exp
(
−
((

xi

(
zj
) − clij

)
/σl

ij

)2
) ,

(2.4)

where xz = (x1(z)x2(z) · · ·xs(z)) ∈ Ω ⊂ Rp×s is a spatial input vector with Ω as the input
domain, p as the number of sensors, and s as the number of spatial inputs; N is the number
of rules; aj is the spatial weight from the jth spatial point [6]; ζl ∈ U is the nonzero value in
the singleton fuzzy set of the output variable for the lth rule.

In (2.4), let

φl(xz) =

∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
))

∑N
l=1
∑p

j=1 aj
∏s

i=1μGij

(
xi

(
zj
)) , (2.5)
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then (2.4) can be rewritten as

u(xz) =
N∑
l=1

ζlφl(xz). (2.6)

Similar to a traditional FLC [16], we define φl(xz) as a spatial fuzzy basis function (SFBF).
Each SFBF corresponds to a 3-D fuzzy rule, and all the SFBFs correspond to a 3-D rule base.
Mathematically, a 3-D FLC is a linear combination of all the SFBFs.

Equation (2.6) shows that the 3-D FLC is a nonlinear mapping from the input space
xz ∈ Ω ⊂ Rp×s to the output space u(xz) ∈ U ⊂ R. It provides us a way to understand
and analyze the 3-D FLC from the point of view of function approximation. In Section 4, we
will prove that the 3-D FLC has a universal approximation property based on the nonlinear
mapping in (2.6).

2.2. Linear SVM Regression

An SVM is a learning algorithm that originated from theoretical foundations of the statistical
learning theory [18] and has been widely used in many practical applications, such as
bioinformatics, machine vision, text categorization, handwritten character recognition, time
series analysis, and so on. The distinct advantage of the SVM over other machine learning
algorithms is that it has a good generalization ability and can simultaneously minimize the
empirical risk and the expected risk [19]. The SVM algorithms can be categorized into two
categories: SVM classification and SVM regression. In this study, we are concerned with the
SVM regression with ε-insensitive loss function [20].

Suppose we have a training setD = {[xi,yi] ∈ Rs×R, i = 1, . . . , q} consisting of q pairs
(x1,y1), (x2,y2), . . . , (xq,yq), where the inputs are s-dimensional vectors, and the labels are
continuous values. In ε-SVM regression, the goal is to find a function f(x,w) so that for all
training patterns x has a maximum deviation ε from the target values yi and has a maximum
margin. The ε-insensitive loss function is defined as follows:

∣∣y − f(x,w)
∣∣
ε =

{
0, if

∣∣y − f(x,w)
∣∣ ≤ ε,∣∣y − f(x,w)

∣∣ − ε, otherwise.
(2.7)

The ε-insensitive loss function defines an ε tube [9].
The regression problem can be formulated as a convex optimization problem as

follows:

min
w,b,ξi,ξ

∗
i

=
1
2
‖w‖2 + C

(
l∑

i=1

ξi +
l∑

i=1

ξ∗i

)
(2.8)
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subject to

yi − 〈w · xi〉 − b ≤ ε + ξi

〈w · xi〉 + b − yi ≤ ε + ξ∗i

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , q,

(2.9)

where ξi and ξ∗i are slack variables, and the constant C is a design parameter chosen by the
user, which determines the trade off between the complexity of f(x,w) and the approximate
error.

The above optimization problem can be solved in a dual space. By introducing the
Lagrange multipliers, the primal optimization problem can be formulated in its dual form as
follows:

max
αi,α

∗
i

⎧
⎨
⎩−

1
2

q∑
i=1

q∑
j=1

(
α∗i − αi

)(
α∗j − αj

)〈
xi · xj

〉 − ε
q∑
i=1

(
α∗i + αi

)
+

q∑
i=1

(
α∗i − αi

)
yi

⎫
⎬
⎭ (2.10)

subject to

q∑
j=1

α∗i =
q∑
i=1

αi,

0 ≤ α∗i ≤ C, 0 ≤ αi ≤ C, i = 1, . . . , q.

(2.11)

Solving the dual quadratic programming problem, we can find an optimal weight vector w
and an optimal bias b of the regression hypersurface given as follows:

w =
q∑
i=1

(
α∗i − αi

)
xi,

b =
1
q

(
q∑
i=1

(
yi − 〈w · xi〉

)
.

(2.12)

Then, the best regression hypersurface is given by

f(x,w) =
q∑
i=1

(
α∗i − αi

)〈x · xi〉 + b =
∑
i∈SV

(
α∗i − αi

)〈x · xi〉 + b (2.13)

The training pattern xi with nonzero (α∗i − αi) is called support vector (SV).

3. Clustering and SVM-Regression Learning-Based 3-D FLC Design

Clustering and SVM-regression learning-based 3-D FLC design is a novel design of a 3-D
FLC by integrating a nearest-neighborhood-clustering and an SVM-regression. The design
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Figure 3: Conceptual configuration of a clustering and SVM-regression learning-based 3-D FLC.

methodology can be depicted by Figure 3. Firstly, a nearest-neighborhood-clustering method
with Frobenius norm defined as a distance is employed to mine the underlying knowledge
of the spatiotemporal data set S and yield the initial structure, that is, antecedent part of 3-D
fuzzy rules. Because the obtained input space partition may have redundancy in terms of
highly overlapping MFs, it is necessary to optimize the obtained initial fuzzy partition. Then,
a similaritymeasure technique is utilized tomerge similar 3-D fuzzy sets and tomerge similar
3-D fuzzy rules, and then to simplify the initial rule structure. Finally, a linear SVM-regression
algorithm is used to learn the parameters of the consequent parts based on an equivalence
relationship between a linear SVM regression and a 3-D FLC.

The spatiotemporal data set S from a spatially distributed system is composed of n
spatiotemporal input-output data pairs given as follows:

S =
{(

xk
z , u

k
)
| xk

z ∈ Rp×s, uk ∈ R, k = 1, . . . ,n
}
, (3.1)

where xk
z = (xk

1 (z), . . . ,x
k
s (z)) denotes the value of s spatial input variables at the kth sampling

time, xk
i (z) = (xk

i (z1), . . . ,x
k
i (zp))

Tdenotes the value of ith spatial input variable at the kth
sampling time (i = 1, . . . , s), uk denotes the output value at the kth sampling time, n denotes
the number of sampling time, and p denotes the number of sensors. Since infinite sensors are
used, xk

z is a matrix with p rows and s columns.
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3.1. Initial Structure Learning

3.1.1. Nearest Neighborhood Clustering Method

Clustering method is one of the data-driven learning tools for unlabeled data. It can mine
underlying knowledge (or data structure) from a dataset that is difficult for humans to
manually identify. One of the simplest clustering algorithms is the nearest-neighborhood
clustering algorithm [16]. However, the existing nearest-neighborhood clustering algorithm
has not the capability to deal with spatiotemporal data. In this study, we expand its capability
to deal with spatiotemporal data set S, which is of matrix form. The key point is that the
Frobenius norm given in (3.2) is used for defining a distance in a nearest neighborhood
clustering algorithm.

‖X‖F =
√
tr
(
XTX

) (
X ∈ Rp×s). (3.2)

The nearest neighborhood clustering algorithm is summarized as follows.

(i) Step 1: Begin from the first spatiotemporal data x1
z. Let the first cluster center c

1
z be

x1
z, the number of data pairs m1 be 1, and the threshold be ρ0 for generating new

fuzzy rules.

(ii) Step 2: Suppose that the kth spatiotemporal data xk
z (k = 2, . . . ,n) is considered,

when N clusters have been generated and their centers are c1z, c
2
z, . . ., and cNz

respectively. Firstly, compute the distance between xk
z and each center of N clusters

using ‖xk
z − clz‖F (l = 1, . . . ,N). Then, compute the threshold ρ using

ρ = max
l=1,...,N

⎛
⎜⎝ 1

1 +
∥∥∥xk

z − clz

∥∥∥
F

⎞
⎟⎠ (3.3)

Hence, the corresponding cluster center clkz is taken as the nearest neighborhood
cluster of xk

z .

(iii) Step 3: (a) If ρ < ρ0, then xk
z is taken as a new cluster center, and letN = N+1, mN =

1, and cNz = xk
z . (b) If ρ ≥ ρ0,x

k
z belongs to the cluster with the center clkz . The center

of lkth cluster is tuned by introducing a learning rate η = η0/(mlk + 1) (η0 ∈ [0, 1])
as follows:

clkz = clkz + η
(
xk
z − clkz

)
, (3.4)

and let mlk = mlk + 1.

(iv) Step 4: Let k = k + 1. If k ≥ n + 1, then quit. Otherwise, back to Step 2.

3.1.2. Rule Extraction and 3-D MF Construction

After clustering learning, we obtain an input space partition with N cluster centers
c1z, c

2
z, . . . , c

N
z . Then, we will produce antecedent part of rule base and construct 3-D MFs in
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terms of the partition. Each cluster corresponds to a 3-D fuzzy rule. Assumed that we employ
Gaussian type 3-D MF. Then, the cluster center corresponds to the center of Gaussian type
3-D MFs in the antecedent part. Thus, the number of fuzzy rules is equal to the number of
clusters N. In addition, we determine the width of the Gaussian MFs in terms of the domain
of variables. For instance, the width of the Gaussian type 3-D MFs from the same sensing
location are defined as

σ
(
zj
)
= max

1≤i≤s

(
xmax
i

(
zj
) − xmin

i

(
zj
)

10

)
, (3.5)

where xmax
i (zj) and xmin

i (zj) are the maximum and the minimum bound values of the ith
spatial input variable, respectively.

3.2. Structure Simplication

After the initial structure learning, the obtained fuzzy partition of the input space and fuzzy
rules may have redundancy in terms of highly overlappingMFs. In this step, we will simplify
the fuzzy partition and fuzzy rules. The crucial technique for simpification is similarity
measure. The previous similarity measure techniques [14, 21, 22] developed for traditional
fuzzy sets and traditional fuzzy rules are not suitable to 3-D fuzzy sets and 3-D fuzzy rules.
In this study, we will define a new similarity measure technique.

3.2.1. Similarity Measure

Firstly, we define the similarity of two 3-D fuzzy sets A and B as below.

S
(
A,B

)
=

1

1 + d
(
A,B

) , S(·) ∈ (0, 1], (3.6)

where d(A,B) is a distance between A and B. Since Gaussian type 3-D MFs are chosen, the
following simple expression can be used to approximate the distance:

d
(
A,B

)
=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
cA(z1) σA(z1)

...
...

cA(zp) σA(zp)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
cB(z1) σB(z1)
...

...
cB(zp) σB(zp)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
F

, (3.7)

where cA(zj )(cB(zj )) and σA(zj )(σB(zj )) are center and width of the Gaussian type 3-D MF A(B)
at sensing location z = zj (j = 1, . . . , p), respectively.

Based on the similarity measure, we canmerge similar 3-D fuzzy sets, or merge similar
3-D fuzzy rules.
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(i) Merge of Two Similar 3-D Fuzzy Sets A and B

Firstly, the similarity between A and B is computed according to (3.6). If S(A,B) is higher
than a threshold, we can conclude that A and B are similar, and then merge them into a new
3-D fuzzy set C. The center and width of C are viewed as the average values of A and B, and
are given as the following:

cC(zj ) =
cA(zj ) + cB(zj )

2
,

σC(zj ) =
σA(zj ) + σB(zj )

2
.

(3.8)

(ii) Merge of Two Similar 3-D Fuzzy Rules R
l1
and R

l2

The similarity R
l1
and R

l2
is inferred by measuring their similarity in the antecedent part. For

instance, the similarity computation between R
l1
and R

l2
is given by

Srule

(
R

l1
,R

l2
)

= min
1≤i≤s

{
S

(
C

l1
i ,C

l2
i

)}
, (3.9)

where R
l1
and R

l2
have the same rule form as in (2.1), C

l1
i (C

l2
i ) denotes the 3-D fuzzy set

for the ith spatial input variable xi(z) in the l1th (l2th) rule. If Srule(R
l1
,R

l2) is higher than a

threshold, we can conclude that R
l1
and R

l2
are similar, and then merge them into a new 3-D

fuzzy rule R
l1l2

. The merging of two 3-D fuzzy rules is realized by merging the two fuzzy sets
of each spatial input variable in the two 3-D fuzzy rules, respectively.

3.2.2. Similarity Measure-Based Structure Simplification

Based on the similarity measure, the simplification task includes removing 3-D fuzzy sets
similar to the universal set, merging similar 3-D fuzzy sets, and merging similar rules. The
detailed procedure of structure simplification is summarized as follows.

(i) Step 1: Given a 3-D fuzzy rule base � = {Rl}
K

l=1. Firstly, set proper thresholds: λu ∈
(0, 1] for removing 3-D fuzzy sets that are similar to the universal set, λset ∈ (0, 1]
for merging similar 3-D fuzzy sets, and λrule ∈ (0, 1] for merging 3-D fuzzy rules
with similar antecedents.

(ii) Step 2: Calculate sjki = S(C
j

i ,C
k

i ) with j /= k, j = 1, . . . ,K, k = 1, . . . ,K, and i =
1, . . . , s. Let srmq = maxj /= k{sjki} and select C

r

q and C
m

q .

(iii) Step 3: If srmq ≥ λset, merge C
r

q and C
m

q into a new 3-D fuzzy set C
rm

q , set C
r

q = C
rm

q

and C
m

q = C
rm

q , and back to step 2. If no more two 3-D fuzzy sets have the similarity
with srmq ≥ λset (j /= k), then go to step 4.

(iv) Step 4: Remove the 3-D fuzzy set similar to the universal set and the rule with
membership function that is always near zero over the space domain.



Journal of Applied Mathematics 11

(v) Step 5: Calculate the similarity of two rules sl1l2 = Srule(R
l1
,R

l2) with l1 /= l2, l1 =
1, . . . ,N, l2 = 1, . . . ,N. Let srm = maxl1 /= l2{sl1l2}.

(vi) Step 6: If srm ≥ λrule, merge the rth and the mth rules into a new rule Rnew and
substitute them. LetN = N − 1, and back to step 5. If no more rules have similarity
with srm ≥ λrule (r /=m), then quit.

Generally speaking, the threshold λu is higher than the threshold λset, while the choice
of a suitable threshold λrule depends on the application. The lower λset is set, the less fuzzy
sets and less fuzzy rules are yielded in the resulting rule base. In this study, we set λu =
0.95, λset = 0.75, and λrule = 1.

3.3. Parameter Learning

After the structure simplification, we obtain a rule base with optimized antecedent parts.
For a complete rule base, the rest task is to determine the consequent part parameters. In
this study, we employ an SVM regression algorithm to learn the consequent part parameter
ξl (l = 1, . . . ,N) in the 3-D FLC.

Firstly, the original input samples are transformed into new samples. Utilizing the
spatial fuzzy basis functions φl(xk

z) (l = 1, . . . ,N) in (2.5), we can transform each spatial input
sample xk

z (k = 1, . . . ,n) in S into a new input sample φ(xk
z) = (φ1(xk

z),φ
2(xk

z), . . . ,φ
N(xk

z)).
Then, the original data set S in (3.1) can be transformed into a new data set S′ as follows:

S′ =
{(

φ
(
xk
z

)
, uk

)
| φ
(
xk
z

)
∈ RN , uk ∈ R, k = 1, . . . ,n

}
. (3.10)

Secondly, an equivalence relationship of an SVM regression and a 3-D FLC can be
derived based on the new data set S′. From (2.13), the final decision function f(φ(xk

z)) of an
SVM can be described with the following form:

f
(
φ
(
xk
z

))
=

n∑
k=1

(
α∗k − αk

)〈
φ
(
xk
z

)
,φ(xz)

〉
+ b, (3.11)

where α∗
k
and αk are associated learning parameters in a SVM, The training pattern φ(xk

z)with
nonzero (α∗

k
− αk) is called support vector (SV). Furthermore, (3.11) can further be expressed

by

f
(
φ
(
xk
z

))
=

n∑
k=1

(
α∗k − αk

) N∑
l=1

φl
(
xk
z

)
φl(xz) + b

=
N∑
l=1

(
n∑

k=1

(
α∗k − αk

)
φl
(
xk
z

))
φl(xz) + b

=
N∑
l=1

ξlφl(xz) + b

= u(xz)

(3.12)
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In (3.12), the bias term b in a 3-D FLC can be realized by adding a fuzzy rule as follows:

R
0
: IF x1(z) is C

0
1 and · · · and xs(z) is C

0
s, THEN u is b, (3.13)

where C
0
i is a universal 3-D fuzzy set, whose fuzzy degree is 1 over the space domain for any

spatial input xi(z), i = 1, . . . , s. From (3.12), we can see that an SVM will be equivalent to a
3-D FLC if (3.14) holds.

ξl =
n∑

k=1

(
α∗k − αk

)
φl
(
xk
z

)
. (3.14)

Finally, a linear SVM regression is employed to learn the consequent part parameters.
Using (3.14), the parameters ξl (l = 1, . . . ,N) in consequent parts are obtained in terms of the
SVM learning, that is,

ξl =
∑
k∈SV

(
α∗k − αk

)
φl
(
xk
z

)
. (3.15)

4. Universal Approximation of Clustering and
SVM-Regression Learning-Based 3-D FLC

In essence, the clustering and SVM-regression learning-based 3-D FLC design is a fuzzy
modeling that extracts fuzzy control rules and constructs a 3-D FLC from spatiotemporal
data hidden with effective control laws. In other words, the proposed 3-D FLC aims
at approximating an unknown nonlinear control function. Thus, in this subsection, we
are concerned with its universal approximation capability. The universal approximation
capability of the SVM learning-based 3-D FLC can be described by the following theorem.

Theorem 4.1. Suppose that the input universe of discourse Ω is a compact set in Rp×s. Then, for
any given real continuous function g(xz) on Ω and arbitrary ε > 0, there exists a 3-D FLC u(xz) as
described in (2.4) satisfying the following inequality:

sup
xz∈Ω

(∣∣u(xz) − g(xz)
∣∣) < ε. (4.1)

The proof of the theorem is given in the appendix by using Stone-Weierstrass theorem
[23]. Theorem 4.1 indicates that the clustering and SVM-regression learning-based 3-D FLC is
a universal approximator, that is, it can approximate continuous control functions to arbitrary
accuracy.

5. Application

5.1. A Catalytic Packed-Bed Reactor

We take a catalytic packed-bed reactor [1, 5] as an example. The reactor is long and thin as
shown in Figure 4. It is fed with gaseous reactant C from the right side, and the zero-order
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Jacket

Gas C

Reaction C→D

Catalyst

Figure 4: Sketch of a catalytic packed-bed reactor.

gas phase reaction C → D is carried out on the catalyst. The reaction is endothermic, and a
jacket is used to heat the reactor. A dimensionless model that describes this nonlinear tubular
chemical reactor is provided as follows:

εp
∂Tg

∂t
= −∂Tg

∂z
+ αc

(
Ts − Tg

) − αg

(
Tg − u

)
,

∂Ts
∂t

=
∂2Ts
∂z2

+ B0 exp
(

γTs
1 + Ts

)
− βc

(
Ts − Tg

) − βp(Ts − b(z)u)

(5.1)

subject to the boundary conditions

z = 0, Tg = 0,
∂Ts
∂z

= 0; z = 1,
∂Ts
∂z

= 0, (5.2)

where Tg , Ts, and u denote the dimensionless temperature of the gas, the catalyst, and jacket,
respectively. The values of the process parameters are given as follows:

εp = 0.01, γ = 21.14, βc = 1.0, βp = 15.62, (5.3)

B0 = −0.003, αc = 0.5, αg = 0.5. (5.4)

The concerned control problem is to control the catalyst temperature Ts(z, t)
throughout the reactor to track a spatial reference profile (Tsd(z) = 0.42 − 0.2 cos(πz)) in
order to maintain a desired degree of reaction rate using the measurements of catalyst
temperature from five sensing locations z′ = [0 0.25 0.5 0.75 1] and manipulating one
spatially distributed heating source (b(z) = 1 − cos(πz)). The mathematical model (5.1)-(5.2)
is only for the process simulation for evaluation of the control scheme. The method of lines
[24] is used to simulate the model.

In this application, we aim at extracting 3-D fuzzy rules from a spatiotemporal data
set using clustering and SVM regression learning algorithm and constructing a complete 3-D
FLC without any prior knowledge.
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Figure 5: Distributions of Gaussian type 3-D fuzzy sets in the simplified fuzzy-rule base.

5.2. Design of a Clustering and SVM-Regression Learning-Based 3-D FLC

5.2.1. Spatiotemporal Data Collection

The spatiotemporal input-output data set is collected from the catalytic packed-bed reactor
controlled by expert-knowledge-based 3-D FLC [5], where pseudorandom quinary signal
(PRQS) [25] with maximum length of 124 as perturbed signal is added to the control
input. Each spatiotemporal input-output data pair consists of a spatial error input e∗(z) =
[e∗1, . . . , e

∗
5]

T , a spatial error in change input r∗(z) = [r∗1 , . . . , r
∗
5]

T , and an incremental output
Δu∗, where e∗i = Ts(zi, q) − Tsd(zi) r∗i = e∗i (q) − e∗i (q − 1); q and q − 1 denotes the qth and q-
1th sampling time, respectively. The detailed design of the expert-knowledge-based 3-D FLC,
including fuzzification, 3-D rule inference, and defuzzification, can refer to [5]. The scaling
factors for the spatial error, the spatial error in change, and the incremental output are set as
2.0, 0.001, and 0.8716, respectively. The parameters of PRQS are chosen with the following
settings: the number of the levels is 5, the length of the period is 124, the sampling time is
0.2 s, and the minimum switching time (i.e., clock period) is 0.2 s.

Two groups of data sets are obtained by adding PRQS signal with different scaling
factor (i.e., 0.447 and 0.1) to the control input. The first group with 150 data pairs is generated
for training by adding PRQS perturbation signal with a scaling factor 0.447, and the other
group with 150 data pairs is generated for test by adding PRQS perturbation signal with a
scaling factor 0.1. To evaluate the performance, we employ the following root-mean-squared
error (RMSE) as the criteria:

RMSE =

√√√√ n∑
k=1

(
Δu∗

k
−Δuk

)2
n

, (5.5)
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Table 1: Learning results of an SVM regression with different values of C and ε.

C ε
Number of

SV
RMSE training

(×10−2)
RMSE testing

(×10−2)
SSE

(×10−2)
IAE

(×10−1)
ITAE
(×10−1)

1

0.00001 149 4.89 3.48 1.70 2.566 8.656
0.0001 140 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

10

0.00001 149 4.89 3.48 1.70 2.566 8.656
0.0001 140 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

100

0.00001 149 4.89 3.48 170 2.566 8.656
0.0001 141 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.573 8.699
0.01 105 4.75 3.13 1.84 2.699 9.389
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

1000

0.00001 149 4.89 3.48 170 2.566 8.656
0.0001 141 4.89 3.48 1.70 2.566 8.655
0.001 129 4.86 3.45 1.71 2.574 8.702
0.01 106 4.75 3.13 1.84 2.700 9.395
0.1 13 6.35 3.24 1.99 2.901 10.163
0.2 12 12.80 6.44 3.74 4.653 19.063
0.3 10 19.29 7.76 4.77 5.715 24.248

where n denotes the number of samples, Δu∗
k
denotes actual output, and Δuk denotes

expected output.

5.2.2. Design of a Clustering and SVM-Regression Learning-Based 3-D FLC

The design procedure of the proposed 3-D FLC is given as follows:

(i) Employ the nearest neighborhood clustering algorithm to deal with the spatiotem-
poral data set for the input space partition with ρ0 = 0.7 and η0 = 0, and then
generate 16 3-D fuzzy rules with 32 3-D fuzzy sets, where the width of Gaussian
type 3-D fuzzy sets is σz = [0.0620, 0.0902, 0.1518, 0.2008, 0.2175]T from (3.5).

(ii) Simplify the 3-D fuzzy sets and 3-D fuzzy rules based on similarity measure (as
described in Section 3.2) with λu = 0.95, λset = 0.75, and λrule = 1, and then obtain
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Table 2: Performance comparisons.

Performance index
Clustering and
SVM-regression

learning-based 3-D FLC

Expert-knowledge-based 3-D
FLC

Number of rules 15 49
No disturbance

ISS (×10−2) 1.70 1.69
IAE (×10−1) 2.566 2.557
ITAE (×10−1) 8.655 8.646

With 50% increase disturbance in velocity of gas

ISS (×10−2) 1.77 1.78
IAE (×10−1) 2.675 2.680
ITAE (×10−1) 9.058 9.062

15 3-D fuzzy rules with 15 3-D fuzzy sets. The distributions of Gaussian type 3-D
fuzzy sets are shown in Figure 5.

(iii) SVM algorithm described in Section 3.2 is used to learn the consequent part
parameters with C = {1, 10, 100, 1000} and ε = {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2}.
The RMSE in (5.5) for training and test are listed in Table 1. From Table 1, we can
find that: (1) smaller ε yielded more support vectors and led to reasonable training
and test performance; while larger ε yielded less support vectors and led to worse
training and test performance. (2) C almost had no influence on the training and
test performance, once ε was fixed. In this study, we choose C = 100 and ε = 0.0001.
Finally, a complete 3-D FLC is constructed with 15 3-D fuzzy rules and 15 3-D fuzzy
sets as shown in Figure 6. Using the linguistic hedges approach [14, 21], we can
interpret these 3-D fuzzy rules using linguistic words. For instance, the first 3 fuzzy
rules are interpreted as follows.

(a) R
1
: IF e∗(z) is less than POSITIVE SMALL and r∗(z) is more than POSITIVE

SMALL, THEN Δu∗ is sort of POSITIVE MEDIUM.

(b) R
2
: IF e∗(z) is very ZERO and r∗(z) is very NEGATIVE SMALL, THEN Δu∗

is very ZERO.

(c) R
3
: IF e∗(z) is sort of POSITIVE SMALL and r∗(z) is more than POSITIVE

MEDIUM, THEN Δu∗ is more than POSITIVE MEDIUM.

5.2.3. Control-Performance Validation

The designed clustering and SVM regression learning-based 3-D FLC is applied to the
control of the catalytic packed-bed reactor, where simulation time is 10 s. We select the
same quantitative performance criteria as in [5]: steady-state error (SSE), integral of the
absolute error (IAE), and integral of time multiplied by absolute error (ITAE). The control
performance is given in Table 2, and the control profile is given in Figures 7 and 8, where (a),
(b), and (c) represent catalyst temperature evolution profile, manipulated input, and catalyst
temperature profiles in steady state, respectively. We can find that the proposed 3-D FLC has
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Figure 6: Continued.
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Figure 6: 3-D fuzzy rules and their associated 3-D fuzzy sets of a clustering and SVM-regression learning-
based 3-D FLC.

comparable control performance to the expert-knowledge-based 3-D FLC in [5] both in ideal
condition and in disturbed condition.

In addition, we domore control experiments when the SVM-learning algorithm adopts
differentC and ε. According to the experimental results (see the last three columns in Table 1),
we can find that the proposed 3-D FLC shows good control performance when a smaller ε is
chosen.
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Figure 7: Controlled by a clustering and SVM-regression learning-based 3-D FLC under ideal situation
(dotted line: reference profile).
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Figure 8:Controlled by a clustering and SVM-regression learning-based 3-D FLC under disturbed situation
(dotted line: reference profile).

The above simulation results demonstrate that the proposed design method of a
clustering and SVM-regression learning-based 3-D FLC is effective. It provides a beneficial
complementary design method to 3-D FLCs.

6. Conclusions

In this paper, we have proposed a new 3-D FLC design methodology based on clustering and
SVM regression learning from a spatiotemporal data set. The 3-D FLC design is divided into
three steps. Firstly, an initial rule structure is extracted by a nearest neighborhood clustering
method, which is modified to be suitable for spatio-temporal data. Secondly, the initial
structure is simplified via using similarity measure technique, which is defined for 3-D fuzzy
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sets and 3-D fuzzy rules. Thirdly, the parameters of the rule consequent parts are learned by a
spatial fuzzy basis function-based SVM regression learning algorithm. Besides, the universal
approximation capability of the proposed 3-D fuzzy system is discussed. Finally, effectiveness
of the proposed 3-D FLC design methodology is validated on a catalytic packed-bed reactor.

Appendix

A. Proof of the Clustering and SVM-Regression Learning-Based 3-D
FLC as a Universal Approximator

Let Θ be a set of 3-D FLCs defined in Ω, which is a compact set in Rp×s. Then, Preliminary 1
is given as follows.

Preliminary 1

Let d∞(u, g) be a semimetric [26]with the following definition

d∞
(
u, g

)
= sup

xz∈Ω

(∣∣u(xz) − g(xz)
∣∣)

(A.1)

Therefore, (Θ,d∞) is a metric space. Since there is at least one fuzzy rule in the rule base of a
3-D FLC, Θ is non-empty. Thus, (Θ,d∞) is strictly defined.

Subsequently, we will prove that (Θ,d∞) is dense in (C[Ω],d∞) using Stone-
Weierstrass theorem, where C[Ω] is a set of real continuous functions defined in a compact
set Ω. The Stone-Weierstrass theorem is first stated here as follows.

Stone-Weierstrass Theorem (see [16, 23])

Let Z be a set of real continuous functions on a compact set U. If (1)Z is an algebra, that is,
the set Z is closed under addition, multiplication, and scalar multiplication; (2) Z separates
points on U, that is, for every x,y ∈ U,x /=y, there exists f ∈ Z such that f(x)/= f(y); and
(3) Z vanishes at no point of U, that is, for each x ∈ U there exists f ∈ Z such that f(x)/= 0;
then, the uniform closure of Z consists of all real continuous functions on U, that is, (Z,d∞)
is dense in (C[U],d∞).

Proof . (1) Firstly, we prove (Θ,d∞) is an algebra. Let u1, u2 ∈ Θ, then we can write them as

u1(xz) =

∑N1
l1=1

ul1
1
∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1
j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
) + b1,

u2(xz) =

∑N2
l2=1

ul2
2

p2∑
j2=1

a
↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
)

∑N2
l2=1

∑p2
j2=1

a
↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
) + b2.

(A.2)

Subsequently, we have three derivation procedures.
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(i) Addition

u1(xz) + u2(xz)

=

∑N1
l1=1

∑N2
l2=1

(
ul1
1 + ul2

2

)∑p1
j1=1

∑p2
j2=1
←→a j1a↔j2

∏s
i=1 expZ

∑N1
l1=1

∑N2
l2=1

∑p1
j1=1

∑p2
j2=1
←→a j1a↔j2

∏s
i=1 expZ

+ (b1 + b2),

(A.3)

where Z denotes (−((xi(zj1) −←→c
l1
ij1)/
←→σ l1

ij1)
2 − ((xi(zj2) − c

↔
l2

ij2
)/σ
↔
l2

ij2
)2). Equation (A.3) has the

same form as (3.12), then u1(xz) + u2(xz) ∈ Θ.

(ii) Multiplication

u1(xz)u2(xz)

=

∑N1
l1=1

∑N2
l2=1

ul1
1 u

l2
2
∑p1

j1=1

∑p2
j2=1
←→a j1a↔j2

∏s
i=1 expZ

∑N1
l1=1

∑N2
l2=1

∑p1
j1=1

∑p2
j2=1
←→a j1a↔j2

∏s
i=1 expZ

+ b2

∑N1
l1=1

ul1
1

∑p1
j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1
j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

+ b1

∑N2
l2=1

ul2
2
∑p2

j2=1
a
↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
)

∑N2
l2=1

∑p2
j2=1

a
↔j2

∏s
i=1 exp

(
−
((

xi

(
zj2
) − c

↔
l2

ij2

)
/σ
↔
l2

ij2

)2
) + b1b2,

(A.4)

where Z denotes (−((xi(zj1) −←→c
l1
ij1)/
←→σ l1

ij1)
2 − ((xi(zj2) − c

↔
l2

ij2
)/σ
↔
l2

ij2
)2). In terms of algebraic

operation, the product of functions in Gaussian form is also a function in Gaussian form.
Thus, (A.4) has the same form as (3.12), and u1(xz)u2(xz) ∈ Θ.

(iii) Scalar Multiplication

For arbitrary c ∈ R, we have

cu1(xz) = c

∑N1
l1=1

ul1
1
∑p1

j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
)

∑N1
l1=1

∑p1
j1=1
←→a j1

∏s
i=1 exp

(
−
((

xi

(
zj1
) −←→c l1

ij1

)
/←→σ l1

ij1

)2
) + cb1. (A.5)

Equation (A.5) has the same form as (3.12), and cu1(xz) ∈ Θ.
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Finally, by combining (A.3)∼(A.5) together, we can conclude that (Θ,d∞) is an algebra.
(2) Secondly, we will prove that (Θ,d∞) separates point onΩ by constructing a simple

3-D FLC u(xz) as in (3.12), namely, u(x0
z)/=u(y0

z) holds for arbitrarily given x0
z,y

0
z ∈ Ω with

x0
z /=y0

z.
We choose two fuzzy rules, that is, N = 2.
Let

x0
z =

((
x0
1(z1), . . . ,x

0
1

(
zp
))T

, . . . ,
(
x0
s(z1), . . . ,x

0
s

(
zp
))T

)

y0
z =

((
y0
1(z1), . . . ,y

0
1

(
zp
))T

, . . . ,
(
y0
s(z1), . . . ,y

0
s

(
zp
))T

)
,

aj =
1
p
, σ1

ij = σ2
ij = 1, c1ij = x0

i

(
zj
)
, c2ij = y0

i

(
zj
)
,

x1
z = x0

z, x2
z = y0

z

(
j = 1, . . . , p

)
.

(A.6)

We have

u
(
x0
z

)
=

u1 + u2(1/p)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2)

1 +
(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2) + b

= ζu1 + (1 − ζ)u2 + b,

u
(
y0
z

)
=

u2 + u1(1/p)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2)

1 +
(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2) + b

= ζu2 + (1 − ζ)u1 + b,

ζ =
1

1 +
(
1/p

)∑p

j=1

∏s
i=1 exp

(
−(x0

i

(
zj
) − y0

i

(
zj
))2) .

(A.7)

Since x0
z /=y0

z, there must be some i and j such that x0
i (zj)/=y0

i (zj). Thus, we have∏s
i=1 exp(−(x0

i (zj) − y0
i (zj))

2)/= 1. For arbitrary j,
∏s

i=1 exp(−(x0
i (zj) − y0

i (zj))
2) ≤ 1 holds,

therefore, we have
∑p

j=1

∏s
i=1 exp(−(x0

i (zj)−y0
i (zj))

2)/= p. If we choose u1 = 0 and u2 = 1, then

u
(
x0
z

)
= 1 − ξ + b /= ξ + b = u

(
y0
z

)
. (A.8)

Therefore, (Θ,d∞) separates point on Ω.
(3) Finally, we prove (Θ,d∞) vanishes at no point of Ω.
For any 3-D FLC u(xz) expressed as in (3.12), if we choose ζl ≥ 0 (l = 1, . . . ,N) and

b > 0, then for any xz ∈ Ω, we have u(xz) > 0.
Therefore, (Θ,d∞) vanishes at no point of Ω.
By combining the results from (1) to (3) together, Theorem 4.1 is proven.
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