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This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system.
The system is obtained in accordance with the complicated relationship between energy saving
and emission reduction, carbon emission, economic growth, and new energy development.
The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and
equilibrium points. Linear feedback control methods are used to suppress chaos to unstable
equilibrium. Numerical simulations are presented to show these results.

1. Introduction

Since energy saving and emission reduction is the most effective way to control carbon
emissions, how to promote energy saving and emission reduction is becoming the hot topic
of academic research. Calculation and control analysis of carbon emissions have attracted
a great deal of attention from various fields of researchers. Feng et al. [1] conducted a
research on the long-run equilibrium relationships, temporal dynamic relationships, and
causal relationships between energy consumption structure, economic structure, and energy
intensity in China. In order to decrease energy intensity, the Chinese government should
continue to reduce the proportion of coal in energy consumption, increase the utilization
efficiency of coal, and promote the upgrade of economic structure. Amjad et al. [2] indicated
that petroleum is the major energy consumption of most of the nations in the world, so taking
actions to reduce the petroleum consumption, such as replacing the diesel locomotive with
hybrid electrical vehicle, could reduce humans dependence on petroleum and hence decrease
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carbon emissions. Liao [3] analyzed the role of developing hydro-energy, wind energy,
nuclear power, and so forth. Guo et al. [4] found technical innovations and standard manage-
ment a decisive role in the energy use per unit of GDP, for which the ratio of oil consumption
was the major limiting factor. Mendiluce et al. [5] compared the evolution of energy intensity
in Spain with that in the EU15 and found the increasing of energy intensity in Spain since
1990 is mainly due to strong transport growth and the construction boom.

From the above analysis, we can see that previous researches mainly explored the
influence of energy intensity by energy structures, technical change and management level,
energy consumption structure, economic structure, energy prices, and so on [4, 6]. Some
were proceeded from the world or state perspectives [4–6], some from provincial and local
governments perspectives [7, 8], which figured out the variables which influence energy
intensity and came up with the corresponding measures to reduce energy intensity. The
research achievements are satisfying. Compared with the previous researches, this study was
undertaken from continuous dynamic equation, making clear the quantitative relationships
among the concerning variables. It brought energy saving and emission reduction, carbon
emissions, economic growth, and new energy development into a nonlinear dynamics
system with the analysis of the relationship between the variables and their influence on
energy intensity. With the aid of simulation figures, the evolution behavior and the change
regularity of the four-dimension system, and their influence trends on energy intensity
are shown vividly. It is clear that this paper is more vivid and more adherent to the
reality.

Chaos analysis and applications in dynamical systems are observed in many practical
applications in engineering, biology, and economics [9–13]. Energy-saving and emission-
reduction system is a complex nonlinear system, which includes energy-saving and emission-
reduction, carbon emissions, economic growth, energy efficiency, carbon tax, energy intensity,
and so forth [11–13]. One of themost noticeable problems is how to conduct a further research
of energy saving and emission reduction through nonlinear dynamics, which is currently a
method of rapid development. While most previous studies focused on scenario analysis,
Fang et al. [14] established a three-dimensional system in accordance with the complicated
relationship between energy saving and emission reduction, carbon emissions and economic
growth. This system displays a very complex phenomenon and contains a special chaotic
attractor named the energy-saving and emission-reduction attractor, which is different from
the previous chaotic attractor, such as Lorenz attractor [15], Chen attractor [16], Lü attractor
[17], Energy resource attractor [18–20], and so forth.

In the three-dimensional energy-saving and emission-reduction system, the authors
have not considered clean energy development (including wind energy, solar energy,
hydropower, geothermal, biomass energy, and so forth), but most of the countries are
developing and making use of new energy resources. Therefore, it is necessary to add new
energy resources to the three-dimensional energy-saving and emission-reduction system.

By adding a new variable (new energy development) to the three-dimensional energy-
saving and emission-reduction system, a new four-dimensional energy-saving and emission-
reduction system is obtained.

This paper establishes a new four-dimensional energy-saving and emission-reduction
system. It is organized as follows: Section 2 sets up the model; Section 3 discusses basic
properties of the system and gives numerical results. Simulation results show that the
system can generate complex chaotic attractors when the system parameters are chosen
appropriately. Linear feedback control criterions are presented in Section 4. Conclusions are
finally given in Section 5.
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2. Establishment of the Model

By adding a new variable u(t): the time-dependent variable of new energy development
during a given economic period to the three-dimensional energy-saving and emission-
reduction system, a new four-dimensional energy-saving and emission-reduction system is
obtained as follows:

ẋ = a1x
( y

M
− 1

)
− a2y + a3z,

ẏ = −b1x + b2y

(
1 − y

C

)
+ b3z

(
1 − z

E

)
− d4u,

ż = c1x
( x

N
− 1

)
− c2y − c3z + c4u

(u
L
− 1

)
,

u̇ = d1y + d2z
( z

K
− 1

)
− d3u,

(2.1)

where x(t) is the time-dependent variable of energy saving and emission reduction, y(t) is
the time-dependent variable of carbon emissions, and z(t) is the time-dependent variable of
economic growth (GDP). ai, bi, cj , dj , M, N, L, K are positive constants, t ∈ I, I is a given
economic period (i = 1, 2, 3, j = 1, 2, 3, 4, the units ofM, N, L, K can be transformed into tons
of standard coal). a1 is the development coefficient of x(t), a2 is the influence coefficient of
y(t) to x(t), a3 is the impudence coefficient of z(t) to x(t),M is the inflexion (local maximum
point) of y(t) to x(t); b1 is the influence coefficient of x(t) to y(t), b2 is the development
coefficient of y(t), b3 is the influence coefficient of z(t) to y(t), C is the peak value of y(t)
during a given period, E is the peak value of z(t) during a given period, d4 is the influence
coefficient of u(t) to y(t), c1 is the influence coefficient of x(t) to z(t), c2 is the influence
coefficient of y(t) to z(t), c3 is the influence coefficient of x(t) to z(t), N is the inflexion of
x(t) to z(t), c4 is the influence coefficient of u(t) to z(t), and L is the inflexion of u(t) to z(t).
d1 is the influence coefficient of y(t) to u(t), d2 is the influence coefficient of z(t) to u(t), K is
the inflexion of z(t) to u(t), and d3 is the influence coefficient of to itself.

The first formula in (2.1) expresses the complicated relationship between the change
rate of time-dependent energy saving and emission reduction d(x)/d(t), energy saving and
emission reduction, carbon emissions and economic growth during a given period, which
indicates that the change rate of time-dependent energy saving and emission reduction
d(x)/d(t) is associated with energy saving and emission reduction x(t) and the share of
energy saving and emission reduction potential y/M − 1 simultaneously, in a positive
proportion to them. As for a1x(y/M−1), when y < M, that is, Y/M−1 < 0, the development
trend of x(t) becomes weaker; when y > M, the development trend of x(t) becomes faster.
d(x)/d(t) is inversely proportional to carbon emissions y(t), that is, the accession of y(t)will
counteract the change rate of d(x)/d(t). d(x)/d(t) is positively proportional to economic
growth z(t), that is, the increasing investment in x(t)will promote the growth of d(x)/d(t).

The second formula in (2.1) indicates that the change rate of time-dependent carbon
emissions dy/dt is positively proportional to x(t), that is, the development of x(t) will
slowdown the pace of dy/dt. The development speed of y(t) is fast before the peak value
C and will slow down after the peak value. The early stage of development of z(t)will bring
about much carbon emissions, the influence of which on y(t)will become moderate after the
peak value E. As for b2y(1−y/C), when y < C, that is, 1−y/C > 0, the development speed of
y(t) is fast; when y > C, the development trend of y(t) gets weaker. As for b3z(1−z/E), when
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z < E, that is, 1 − z/E > 0, the influence of z(t) for y(t) is positive; when z(t) arrives at the
peak value E, the influence of z(t) on y(t) will be negative. dy/dt is inversely proportional
to new energy development u(t), that is, the accession of u(t) will counteract the change rate
of dy/dt.

The third formula in (2.1) indicates that the early investment to x(t) will counteract
the development of z(t). With technology progress and integrated development of x(t), x(t)
will promote z(t) in turn. As for c1x(x/N−1), when x < N, that is, x/N−1 < 0, the influence
of x(t) on z(t) is negative; when x > N, the influence of x(t) on z(t) is positive. The change
rate of time-dependent economic growth dz/dt is inversely proportional to y(t), that is, the
accession of y(t) will counteract the development of z(t). dz/dt is inversely proportional to
investment to energy-saving and emission-reduction, that is, the investment will counteract
the development of z(t) to a certain extent. The early investment to u(t) will counteract the
development of z(t). With the progress of u(t), u(t)will promote z(t) in turn. As for c4u(u/L−
1), when u < L, that is, u/L − 1 < 0, the influence of u(t) on z(t) is negative; when u > L, the
influence of u(t) on z(t) is positive.

The fourth formula in (2.1) indicates that du/dt is positively proportional to carbon
emissions y(t), that is, the increasing carbon emissions will promote the growth of du/dt. The
low level of z(t) will counteract the development of u(t). With the development of z(t), z(t)
will promote u(t) in turn. As for d2z(z/K−1), when z < K, that is, z/K−1 < 0, the influence of
z(t) on u(t) is negative. The change rate of time-dependent new energy development du/dt
is inversely proportional to u(t), that is, du/dtwill decrease with the increase of u(t).

3. The Basic Properties Analysis of the Four-Dimensional
Energy-Saving and Emission-Reduction System

3.1. Equilibrium Point

We can obtain that the system (2.1) has four equilibriums: O(0, 0, 0, 0), S1(x1, y1, z1, u1),
S2(x2, y2, z2, u2), and S3(x3, y3, z3, u3). Linearizing the system (2.1) at equilibriumO(0, 0, 0, 0)
yields the Jacobian matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1y

M
− a1

a1x

M
− a2 a3 0

−b1 b2 −
2b2y
C

b3 − 2b3z
E

−d4

2c1x
N

− c1 −c2 −c3 2c4u
L

− c4

0 d1
2d2z

K
− d2 −d3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1)

For simplicity, we fix the following parameters: a1 = 0.09, a2 = 0.003, a3 = 0.012,
b1 = 0.0412, b2 = 0.08, b3 = 0.8, c1 = 0.035, c2 = 0.0062, c3 = 0.08, c4 = 0.02, d1 = 0.01, d2 = 0.02,
d3 = 0.06, d4 = 0.03, M = 0.9, C = 1.6, E = 2.8, N = 0.35, K = 2, and L = 2. By calculations, we
can obtain that the eigenvalues of the Jacobian matrix of the system (2.1) at O(0, 0, 0, 0) are

λ1 = −0.0103, λ2 = 0.0380, λ3 = −0.0899 + 0.0216i, λ4 = −0.0899 − 0.0216i. (3.2)

Therefore O(0, 0, 0, 0) is an unstable saddle focus.
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Theorem 3.1. (1) If 5.9986 < d1 < 9.8401, the equilibrium point O(0, 0, 0, 0) is stable. (2) If 0 <
d1 ≤ 5.9986 or d1 ≥ 9.8401, the equilibrium point O(0, 0, 0, 0) is unstable.

Proof. We fix the following parameters: a1 = 0.09, a2 = 0.003, a3 = 0.012, b1 = 0.0412, b2 = 0.08,
b3 = 0.8, c1 = 0.035, c2 = 0.0062, c3 = 0.08, c4 = 0.02, d2 = 0.02, d3 = 0.06, d4 = 0.03, M = 0.9,
C = 1.6, E = 2.8, N = 0.35, K = 2, and L = 2. While we let parameter d1 be varied, and the
corresponding characteristic equation of Jacobian matrix of the system (2.1) at O(0, 0, 0, 0) is

f(λ) = (λ + 0.0489)
(
λ3 + 0.1011λ2 + 0.0057λ + 0.00015d1 − 0.00089979

)
. (3.3)

Solving (3.3) gives λ1 = −0.0489 < 0, and the following equation:

λ3 + 0.1011λ2 + 0.0057λ + 0.00015d1 − 0.00089979 = 0. (3.4)

Let p1 = 0.1011, p2 = 0.0057, and p3 = 0.00015d1 − 0.00089979. By the Routh-Hurwitz
criterion, all real eigenvalues and all real parts of complex conjugate eigenvalues of (3.4) are
negative if and only if the following conditions hold:

p1 > 0, p3 > 0, p1p2 − p3 > 0. (3.5)

That is, 5.9986 < d1 < 9.8401. Therefore, when 5.9986 < d1 < 9.8401, the equilibrium point
O(0, 0, 0, 0) is stable; when 0 < d1 ≤ 5.9986 or d1 ≥ 9.8401, the equilibrium point O(0, 0, 0, 0) is
unstable.

We fix parameters as above, and then obtain the equilibrium point S1(1.3748,
0.7691, 1.6915, 0.0412), S2(0.8733, 0.8609, 0.4999, 0.0185), and S3(−1.5441, 1.1453, 3.4423,
1.0183). By calculations, we can obtain that the eigenvalues of the Jacobian matrix of system
(2.1) at S1 are λ1 = −0.1516, λ2 = −0.0644, λ3,4 = 0.0330 ± 0.2482i; the eigenvalues of the
Jacobian matrix of system (2.1) at S2 are λ1 = 0.0691, λ2 = −0.0634, λ3,4 = −0.0778 ± 0.2044i;
the eigenvalues of the Jacobian matrix of system (2.1) at S3 are λ1 = −0.4812, λ2 = −0.0613,
λ3,4 = 0.1963 ± 0.2874i. Therefore, S1, S2, and S3 are three saddle points.

3.2. Dissipation

Consider the following:

∇V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
+
∂u̇

∂u
=

a1y

M
− a1 + b2 −

2b2y
C

− c3 − d3

=
(
a1

M
− 2b2

C

)
y + (b2 − a1 − c3 − d3).

(3.6)

If a1/M = 2b2/C and b2 −a1 − c3 −d3 < 0, then the system (2.1) is a dissipative system.
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3.3. Theoretical Proof of the Existence of Smale Horseshoes and
the Horseshoes Chaos

To study the long-term dynamical behavior of the system (2.1), the system is divided into
subsystems. Let u = 0; then the first subsystem is obtained:

ẋ = a1x
( y

M
− 1

)
− a2y + a3z,
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)
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E

)
,

ż = c1x
( x

N
− 1

)
− c2y − c3z.

(3.7)

Let z is a known function of the time t; then the second subsystem is obtained:

ẋ = a1x
( y

M
− 1

)
− a2y + a3z,

ẏ = −b1x + b2y

(
1 − y

C

)
+ b3z

(
1 − z

E

)
− d4u,

u̇ = d1y + d2z
( z

K
− 1

)
− d3u.

(3.8)

When t = t0, z is a constant number, then the system (3.8) is a three-dimensional nonlinear
system.

Theorem 3.2. The subsystem presented in (3.7) exhibits horseshoe chaos.

Proof. Equation (3.7) has four equilibrium points:

O(0, 0, 0, 0), S1
(
x1, y1, z1, u1

)
, S2

(
x2, y2, z2, u2

)
, S3

(
x3, y3, z3, u3

)
. (3.9)

Step 1. S1 is saddle foci, that is, the eigenvalues of the real matrixA = Df(S1) and the Jacobin
derivative of f at S1 are the forms: λ1 = r, λ2,3 = σ ± iω, r < 0, σ > 0, |r| > σ, where r, σ, ω are
real. Here the equilibrium point S1 is discussed with the Jacobin matrix

J1 =

⎛
⎜⎜⎜⎜⎝

a1y

M
− a1

a1x

M
− a2 a3

−b1 b2 −
2b2y
C

b3 − 2b3z
E

2c1x
N

− c1 −c2 −c3

⎞
⎟⎟⎟⎟⎠

. (3.10)

The characteristic polynomial is obtained as

det(λI − J1) = λ3 + q1λ
2 + q2λ + q3 = 0. (3.11)
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Suppose λ = η−q1/3, (3.11) produces η3+qη+p = 0, where p = q3−q1q2/3+2q31/27, q =
q2 − q21/3. Then turn to the Cardano formula, ensure the roots of (3.11)meet the requirement
of S̆ilnikov theorem. It yields Δ = (p/2)2 + (q/3)2 < min(−2q1/3, q1/3).

When parameters are fixed as above at S1(−1.519, 1.151, 3.460), the following can be
obtained: λ1 = −0.4786, λ2,3 = 0.1943 ± 0.2848i, which satisfy r, σ ± iω, r < 0, σ > 0, |r| > σ.

Step 2. There exists a homoclinic orbit τ1 at S1.
For the discussion of the homoclinic orbit of S1, it can be supposed as series form like

x(t) = l0 +
+∞∑
k=1

lke
kαt,

y(t) = m0 +
+∞∑
k=1

mke
kαt,

z(t) = n0 +
+∞∑
k=1

nke
kαt,

(3.12)

where lk, mk, nk (k ≥ 1) are undetermined coefficients, α is attenuation index, when t → +∞,
(x(t), y(t), z(t)) → (x1, y1, z1).

Next, substitute (3.12) into (2.1), and match constants of items coefficient

a1l0m0

M
− a1l0 − a2m0 + a3n0 = 0,

−b1l0 + b2m0 −
b2m

2
0

C
+ b3n0 −

b3n
2
0

E
= 0,

c1l
2
0

N
− c1l0 − c2m0 − c3n0 = 0.

(3.13)

The following equation can be obtained: (l0, m0, n0) = (x1, y1, z1). Comparing coef-
ficients of ekαt of the same power terms, the following is obtained:

(kαI − J1)

⎛
⎝

lk
mk

nk

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
(1)
k (ai, bi, ci, α, ξ)

ϕ
(2)
k (ai, bi, ci, α, ξ)

ϕ
(3)
k (ai, bi, ci, α, ξ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.14)

If (l1, m1, n1) = (0, 0, 0), then (lk,mk, nk) = (0, 0, 0), (k > 1); therefore, (l1, m1,
n1)/= (0, 0, 0). J1 has the only negative eigenvalues, and then the only α(α < 0) satisfies
det(αI−J1) = 0. Note that det(kαI−J1)/= 0 (α is the only negative real eigenvalues of J1, so kα is
not the eigenvalues of J1); therefore, lk, mk, nk can be identified uniquely and x(t), y(t), z(t)
for t > 0. For the opposite time symmetric track x(t), y(t), z(t), the linear transform can be
adopted τ = −t, t > 0. The proof is similar to the procedure as t > 0.
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According to the above analysis, homoclinic orbit τ1 based on equilibrium point S1 is
formally obtained as

x(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞∑
k=1

lk(ai, bi, ci, α, ξ)ekαt, t > 0,

+∞∑
k=1

lk(ai, bi, ci,−α, ξ)e−kαt, t < 0,

y(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞∑
k=1

mk(ai, bi, ci, α, ξ)ekαt, t > 0,

+∞∑
k=1

mk(ai, bi, ci,−α, ξ)e−kαt, t < 0,

z(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞∑
k=1

nk(ai, bi, ci, α, ξ)ekαt, t > 0,

+∞∑
k=1

nk(ai, bi, ci,−α, ξ)e−kαt, t < 0.

(3.15)

lk, mk, nk, (k > 1) are determined by (3.14), while α is determined by det(αI − J1) = 0, and ξ
is determined by

∑+∞
k=1 lk(ai, bi, ciα, ξ) =

∑+∞
k=1 lk(ai, bi, ci,−α, ξ).

Step 3. S3 is saddle foci, and there exists a homoclinic orbit τ2 based at S3. The proof is similar
to Steps 1 and 2. So, by the Šilnikov theorem, the horseshoe chaos may expect to occur in a
reasonable regime.

Theorem 3.3. The subsystem presented in (3.8) exhibits horseshoe chaos.

Proof. The proof is similar to the proof of Theorem 3.2.

Remark 3.4. Theorems 3.2 and 3.3 show that the energy-saving and emission-reduction
system exhibits horseshoe chaos. This is not to say that the system is chaotic all the time,
which means that the system is chaotic under appropriate conditions, and stable under other
appropriate conditions.

3.4. Numerical Results

We chose a set of parameters as follows: a1 = 0.09, a2 = 0.003, a3 = 0.012, b1 = 0.0412, b2 = 0.08,
b3 = 0.8, c1 = 0.035, c2 = 0.0062, c3 = 0.08, c4 = 0.02, d1 = 0.01, d2 = 0.02, d3 = 0.06, d4 = 0.03,
M = 0.9, C = 1.6, E = 2.8, N = 0.35, K = 2, and L = 2. Let initial condition be (0.015, 0.785,
1.83, 0.01), and the corresponding Lyapunov exponents are L1 = 0.0272 > 0, L2 = −0.0011 < 0,
L3 = −0.0839 < 0, and L4 = −0.0772 < 0. Therefore, the Lyapunov dimension of this system is

Dl = j +
1∣∣Lj+1

∣∣
j∑
i=1

Li = 3 +
L1 + L2 + L3

|L4| = 2.2522, (3.16)

which means that the Lyapunov dimension is fractional under the same condition.
The system has a chaotic attractor, as shown in Figures 1(a)–1(c), the time series of
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x(t), y(t), z(t), u(t) as shown in Figure 1(d). Let d1 = 0.094, fixed other parameters and initial
condition, and then produce a limit cycle as shown in Figure 2. By calculations, the Lyapunov
exponent spectrum with respect to parameter d1 is shown in Figure 3. According to Figure 3,
the system (2.1) has very rich dynamical behaviors, which are summarized as follows. When
d1 ∈ (0.0935, 0.095), the system (2.1) is chaotic with a positive Lyapunov exponent (e.g.,
with d1 = 0.01, the phase portrait is shown in Figure 1); while for d1 ∈ (0.0935, 0.095), the
maximum Lyapunov exponent equals zero, implying that the system has a periodic orbit
(Figure 2 shows the periodic orbit when d1 = 0.094).

4. Linear Feedback Control

Because an energy resource system in the chaotic state is very sensitive to its initial condition
and chaos often causes irregular behavior, chaos is undesirable. In this section, linear
feedback methods [21] are applied to control chaos of the energy resource system (2.1).
Firstly, we prove this chaos can be controlled to equilibrium point O(0, 0, 0, 0).

We guide the chaotic trajectory (x(t), y(t), z(t), u(t)) to equilibrium point O(0, 0, 0, 0).
Let the system (2.1) be controlled by a linear feedback control of the form:

ẋ = a1x
( y

M
− 1

)
− a2y + a3z − F11x,

ẏ = −b1x + b2y

(
1 − y

C

)
+ b3z

(
1 − z

E

)
− d4u − F22y,

ż = c1x
( x

N
− 1

)
− c2y − c3z + c4u

(u
L
− 1

)
− F33z,

u̇ = d1y + d2z
( z

K
− 1

)
− d3u − F44u,

(4.1)

where F11, F22, F33, F44 are the positive feedback gains, which are needed to be chosen such
that the trajectory of the system (2.1) is stabilized to equilibrium point O(0, 0, 0, 0).

The Jacobian matrix of the system (4.1) is

J0 =

⎛
⎜⎜⎝

−a1 − F11 −a2 a3 0
−b1 b2 − F22 b3 −d4

−c1 −c2 −c3 − F33 −c4
0 d1 −d2 −d3 − F44

⎞
⎟⎟⎠, (4.2)

where a1 = 0.09, a2 = 0.003, a3 = 0.012, b1 = 0.0412, b2 = 0.08, b3 = 0.8, c1 = 0.035, c2 = 0.0062,
c3 = 0.08, c4 = 0.02, d1 = 0.01, d2 = 0.02, d3 = 0.06, and d4 = 0.03. The Jacobian matrix (4.2) is

J0 =

⎛
⎜⎜⎝

−0.09 − F11 −0.03 0.012 0
−0.412 0.08 − F22 0.8 −0.03
−0.035 −0.0062 −0.08 − F33 −0.02

0 0.01 −0.02 −0.06 − F44

⎞
⎟⎟⎠. (4.3)
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Figure 1: A four-dimensional energy-saving and emission-reduction chaotic attractor.

Let F11 = F33 = 0; it has the characteristic equation

f(λ) = (λ + 0.0489)
[
λ3 + (F22 + F44 + 0.0511)λ2 + (F22F44 + 0.1311F22 − 0.0089F44 − 0.0073)λ

+ 0.0711F22F44 + 0.0044F22 − 0.0014F44 + 0.00049796
]
= 0.

(4.4)

According to Routh-Hurwitz criteria, if

F22 + F44 + 0.0511 > 0,

0.0711F22F44 + 0.0044F22 − 0.0014F44 + 0.00049796 > 0,

(F22 + F44 + 0.0511)(F22F44 + 0.1311F22 − 0.0089F44 − 0.0073)

> 0.0711F22F44 + 0.0044F22 − 0.0014F44 + 0.00049796,

(4.5)

then we know that the Jacobian matrix J0 has four negative real part eigenvalues. When F22

and F44 satisfy (4.5), the controlled system (4.1) is asymptotically stable at the equilibrium
O(0, 0, 0, 0).
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Figure 2: A limit cycle.
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Figure 3: Lyapunov exponent spectrum.

Numerical experiments are carried out to integrate the controlled system (3.7) by the
MATLAB. The parameters are chosen as a1 = 0.09, a2 = 0.003, a3 = 0.012, b1 = 0.0412, b2 =
0.08, b3 = 0.8, c1 = 0.035, c2 = 0.006, c3 = 0.08, c4 = 0.02, d1 = 0.01, d2 = 0.02, d3 = 0.06,
d4 = 0.03,M = 0.9,C = 1.6, E = 2.8,N = 0.35,K = 2, and L = 2 to ensure the existence of chaos
in the absence of control. Let initial states be (0.015, 0.785, 1.83, 0.01); when F11 = F33 = 0,
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Figure 4: The stable equilibrium point O(0, 0, 0, 0) of the controlled system (4.1).

F22 = F44 = 0.07, the equilibrium point O(0, 0, 0, 0) of system (2.1) is stabilized as shown
Figure 4.

Similarly, we can prove that another three equilibrium points S1, S2, and S3 of the
system (2.1) can be stabilized. We fix parameters as above, let initial states be (1.5, 0.785,
1.5, 0.5). When F11 = F33 = 0, F22 = F44 = 0, the equilibrium point S1(1.3748, 0.7691,
1.6915, 0.0412) of system (2.1) is stabilized as shown Figure 5.

5. Conclusion

We have established a four-dimensional nonlinear dynamics model for the energy-saving
and emission-reduction system and have analyzed the dynamics behavior of the system.
When some parameters are adjusted, the dynamic behavior of energy-saving and emission-
reduction, carbon emissions, economic growth, and new energy development displays some
regulated phenomena. By observing these phenomena, we can figure out the affecting factors
for energy intensity and grasp the statistical results which meet the real situation. This
four-dimensional energy-saving and emission-reduction system will be more satisfactory
for actual energy saving and emission reduction and instructive for the energy saving
and emission reduction of China. The research results provide a key to energy saving
and emission reduction, that is, to develop energy-saving and emission reduction as soon
as possible with proper strategies rather than simply increasing investment. The theoretical
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Figure 5: The stable equilibrium point S1 of the controlled system (4.1).

proof and the empirical study ensure the necessity and significance to carry out comprehen-
sive energy saving and emission reduction.
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