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This paper mainly focuses on multivariate extension of the extension principle of IFSs. Based
on the Cartesian product over IFSs, the multivariate extension principle of IFSs is established.
Furthermore, three kinds of representation of this principle are provided. Finally, a general
framework of the algebraic operation between IFSs is given by using the multivariate extension
principle.

1. Introduction

The concept of intuitionistic fuzzy sets was first proposed by Atanassov and Stoeva in 1983
[1]. However, this concept had not been widely concerned by many scholars, because it was
only presented in the symposium proceedings with regard to interval and fuzzy mathematics
in Poland. Until 1986, the notion of intuitionistic fuzzy sets was formally introduced by
Atanassov [2]. Immediately, some new operators on intuitionistic fuzzy sets are defined and
the corresponding properties are studied in 1989 [3].

The intuitionistic fuzzy sets can be viewed as an extension for fuzzy sets, which
is more objective and comprehensive to describe the uncertainty of the problem. In 1986,
Atanassov [2] established several different ways to change an intuitionistic fuzzy set into
a fuzzy set and defined an operator called Atanassov’s operator. Furthermore, the study
of the properties on this operator is carried out in [2, 4]. Later, Burillo and Bustince [5]
presented the Atanassov’s point operator and studied the construction of intuitionistic fuzzy
sets by using this type of operator. Meantime, they pointed out that it is possible to recover
a fuzzy set from an intuitionistic fuzzy set constructed by means of different operators.
Similarly, the intuitionistic fuzzy relations can also be seen as an extension for fuzzy
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relations, which were proposed by Bustince and Burillo in [6]. Afterwards, Bustince studied
the construction of intuitionistic fuzzy relations with predetermined properties, which can
allow us to build reflexive, symmetric, antisymmetric, perfect antisymmetric, and transitive
intuitionistic fuzzy relations from fuzzy relations with the same properties on the basis of
the Atanassov’ operator in [7]. As mentioned above, one can see that it is an important and
interesting research direction to extend some conclusions of fuzzy sets to intuitionistic fuzzy
environment. For this issue, in recent years, further studies have been completed by different
authors [6, 8–16].

In the theory of fuzzy sets, representation theorem, decomposition theorem, and
extension principle are regarded as three important basic theorems, which provide an
important theoretical basic for dealing with the fuzzy problems by the methods of classical
mathematics. Especially, the multivariate extension principle, which can be viewed as a
generalization of the extension principle of fuzzy sets, will provide a theoretical basic for
the operations between fuzzy sets. In addition, it should be pointed out that the Cartesian
product over fuzzy sets is an important tool to establish this principle. In 2007, Atanassova
[17] constructed the extension principle of intuitionistic fuzzy sets. Meantime, several
types of Cartesian products over intuitionistic fuzzy sets were also introduced in [18]. In
2008, Andonov [19] also introduced a Cartesian product over intuitionistic fuzzy sets and
explored some of properties. Based on these existing results, in this paper, the multivariate
extension principle of intuitionistic fuzzy sets will be considered.Meanwhile, some important
operations between intuitionistic fuzzy sets can be obtained by using this principle.

The rest of the paper is organized into five parts. In Section 2, some related concepts
and important conclusions on intuitionistic fuzzy sets are recalled. In Section 3, the Cartesian
product over intuitionistic fuzzy sets is reviewed and some related properties are discussed.
These results will establish a basis for the analysis and proof of the multivariate extension
principle of intuitionistic fuzzy sets. Section 4 establishes a multivariate extension principle
of intuitionistic fuzzy sets and provides three types of forms of this principle. In Section 5,
a general framework of the algebraic operation between intuitionistic fuzzy sets is proposed
by using the multivariate extension principle. Finally, a summarized conclusion is given in
Section 6.

2. Preliminaries

For completeness and clarity, some basic notions and necessary conclusions on intuitionistic
fuzzy sets are reviewed in this section.

2.1. Intuitionistic Fuzzy Sets

Let X be the universe of discourse, an intuitionistic fuzzy set on X is an expression E given
by

E =
{〈
x, μE(x), νE(x)

〉
: x ∈ X

}
(2.1)

with

μE : X −→ [0, 1], νE : X −→ [0, 1] (2.2)

such that 0 ≤ μE(x) + νE(x) ≤ 1 for all x ∈ X.
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Generally, μE(x) and νE(x) are called the degree of membership and the degree of
nonmembership of the element x in the set E, respectively. The complementary of E is denoted
by Ec = {〈x, νE(x), μE(x)〉 : x ∈ X}. The symbol IFSs(X) denotes the set of all intuitionistic
fuzzy sets on X. Especially, if νE(x) = 1 − μE(x), the set E reduces to a fuzzy set. Meantime,
FSs(X) denotes the set of all fuzzy sets on X. In addition, intuitionistic fuzzy sets are
abbreviated as IFSs.

2.2. Cut Sets of IFSs and Its Properties

In this part, some concepts and conclusions associated with the cut sets of IFSs are summa-
rized below.

Definition 2.1 (see [18]). Let E ∈ IFSs(X), the parameters α, β satisfy the condition α + β ≤ 1
for all α, β ∈ [0, 1], the following four sets:

E〈α,β〉 =
{
x ∈ X : μE(x) ≥ α, νE(x) ≤ β

}
,

E〈α
·
,β
·
〉 =
{
x ∈ X : μE(x) > α, νE(x) < β

}
,

E〈α
·
,β〉 =

{
x ∈ X : μE(x) > α, νE(x) ≤ β

}
,

E〈α,β
·
〉 =
{
x ∈ X : μE(x) ≥ α, νE(x) < β

}
,

(2.3)

are called the 〈α, β〉-cut set, strong 〈α, β〉-cut set, 〈α
·
, β〉-cut set, and 〈α, β

·
〉-cut set, respectively.

For convenience, the symbol I2 is given to denote the set I2 = {〈α, β〉 : α + β ≤ 1, α, β ∈
[0, 1]}. For all 〈α1, β1〉, 〈α2, β2〉 ∈ I2, the relations between them are defined as

(a) 〈α1, β1〉 = 〈α2, β2〉 ⇔ α1 = α2 and β1 = β2;

(b) 〈α1, β1〉 ≤ 〈α2, β2〉 ⇔ α1 ≤ α2 and β1 ≥ β2;

(c) 〈α1, β1〉 < 〈α2, β2〉 ⇔ 〈α1, β1〉 ≤ 〈α2, β2〉 and 〈α1, β1〉/= 〈α2, β2〉.
Additionally, for the need of the following narrative, a particular operation between

the set I2 and the IFSs(X) is quoted.

Definition 2.2 (see [18]). Let E ∈ IFSs(X), 〈α, β〉 ∈ I2, the set 〈α, β〉E ∈ IFSs(X) is defined as
follows

〈
α, β
〉
E

def=
{〈
x, α ∧ μE(x), β ∨ νE(x)

〉
: x ∈ X

}
. (2.4)

Next, some properties of the cut set of IFSs are summarized.

Lemma 2.3 (see [18]). Let E ∈ IFSs(X), 〈α, β〉 ∈ I2, then

(i) E〈α
·
,β
·
〉 ⊆ E〈α

·
,β〉 ⊆ E〈α,β〉;

(ii) E〈α
·
,β
·
〉 ⊆ E〈α,β

·
〉 ⊆ E〈α,β〉;

(iii) E〈0,1〉 = X, E〈1
·
,0〉 = E〈1,0

·
〉 = E〈1

·
,0
·
〉 = ∅.
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Lemma 2.4 (see [18]). Let E ∈ IFSs(X), 〈α1, β1〉, 〈α2, β2〉 ∈ I2, and 〈α1, β1〉 ≤ 〈α2, β2〉, then

(i) E〈α2,β2〉 ⊆ E〈α1,β1〉;

(ii) E〈α2
·
,β2
·
〉 ⊂ E〈α1

·
,β1
·
〉;

(iii) E〈α2
·
,β2〉 ⊆ E〈α1

·
,β1〉;

(iv) E〈α2,β2
·
〉 ⊆ E〈α1,β1

·
〉.

Based on the cut sets of IFSs and their properties, the basic theorems of IFSs are
developed by Atanassov [18] and Liu [14]. In the following, some related theorems are
recalled for the needs of the proofs in Sections 3 and 4.

Lemma 2.5 (decomposition theorem [18]). Let E ∈ IFSs(X), then

E =
⋃

〈α,β〉∈I2
〈
α, β
〉
E〈α,β〉. (2.5)

Notice that the set E can also be decomposed by the rest of cut sets of E. This case is
similar with Lemma 2.5.

The concept of the binary nested set is introduced to give the representation theorem
of IFSs. The symbol P(X) denotes the power set of X.

Definition 2.6. Let f : I2 → P(X) be a mapping, that is, 〈α, β〉 �→ H(α, β), for all
〈α1, β1〉, 〈α2, β2〉 ∈ I2, if 〈α1, β1〉 < 〈α2, β2〉, there always has H(α2, β2) ⊂ H(α1, β1), then the
set H is called the binary nested set on X.

Lemma 2.7 (representation theorem [14]). Let f be a mapping from BN(X) to IFSs(X), that is,
f : BN(X) → IFSs(X), and

H �−→ f(H) �
⋃

〈α,β〉∈I2
〈
α, β
〉
H
(
α, β
)
,

(2.6)

then

(i) f is a surjection from (BN(X),∪,∩, c) to (IFSs(X),∪,∩, c);

(ii) (f(H))〈α
·
,β
·
〉 ⊆ H(α, β) ⊆ (f(H))〈α,β〉,

where the notation BN(X) denotes the set of all the binary nested sets on X.

Lemma 2.7 shows that there exists a unique f(H) such that f(H) =⋃
〈α,β〉∈I2〈α, β〉H(α, β) for all H ∈ BN(X).
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Lemma 2.8 (extension principle [14]). Suppose f : X → Y is a mapping from the ordinary
set X to the ordinary set Y , that is, x �→ f(x), then the mapping f can induce into two mappings
f : IFSs(X) → IFSs(Y ) and f−1 : IFSs(Y ) → IFSs(X)

f :IFSs(X) −→ IFSs(Y ), A �−→ f(A) =
⋃

〈α,β〉∈I2
〈
α, β
〉
f
(
A〈α,β〉

)
,

f−1:IFSs(Y ) −→ IFSs(X), B �−→ f−1(B) =
⋃

〈α,β〉∈I2
〈
α, β
〉
f−1(B〈α,β〉

)
.

(2.7)

The membership and nonmembership functions of f, f−1 are defined, respectively, as follows

μf(A)
(
y
)
=
∨

f(x)=y

μA(x), νf(A)
(
y
)
=
∧

f(x)=y

νA(x),

μf−1(B)(x) = μB

(
f(x)

)
, νf−1(B)(x) = νB

(
f(x)

)
,

(2.8)

whereA = {〈x, μA(x), νA(x)〉 : x ∈ X} ∈ IFSs(X), f(A) = {〈y = f(x), μf(A)(y), νf(A)(y)〉 : x ∈
X, f(x) ⊆ Y} ∈ IFSs(Y ). B and f−1(B) can be given in a similar manner.

3. Cartesian Product over IFSs

The concept of Cartesian product over IFSs is introduced by Atanassov [18]. Here we will
review this concept in detail and extend it to n arguments. It should be noted that the main
purpose of this section is to make a preparation for developing the multivariate extension
principle of IFSs.

As we all know, the ordinary Cartesian product is defined as

A1 ×A2 × · · · ×An
def= {(x1, x2, · · · , xn) : xi ∈ Ai, i = 1, 2, . . . , n}, (3.1)

the characteristic function is

χA1×A2×···×An(x1, x2, . . . , xn) =
n∧

k=1

Ak(xk). (3.2)

The Cartesian product over FSs is obtained by extending the ordinary sets to fuzzy
sets.

Let A(k) ∈ FSs(Xk) (k = 1, 2, . . . , n). Based on the decomposition and representation
theorems of FSs, the Cartesian product can be obtained as follows:

A(1) ×A(2) × · · · ×A(n) =
⋃

λ∈[0,1]
λ
(
A

(1)
λ

×A
(2)
λ

× · · · ×A
(n)
λ

)
. (3.3)
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In fact, it has been proved that the membership function of Cartesian product over FSs
is

μA(1)×A(2)×···×A(n) (x1, x2, . . . , xn) =
n∧

k=1

μA(k) (xk). (3.4)

Similarly, the Cartesian product over IFSs can also be obtained.

Definition 3.1. Let E(k) ∈ IFSs(Xk) (k = 1, 2, . . . , n), 〈α, β〉 ∈ I2, the following expression

E(1) × E(2) × · · · × E(n) def=
⋃

〈α,β〉∈I2
〈
α, β
〉
(
E
(1)

〈α,β〉 × E
(2)

〈α,β〉 × · · · × E
(n)

〈α,β〉
)

(3.5)

be called the Cartesian product over IFSs.

According to Lemma 2.4, we have

〈
α1, β1

〉
<
〈
α2, β2

〉
=⇒ E

(k)

〈α1,β1〉 ⊇ E
(k)

〈α2,β2〉 (k = 1, 2, . . . , n)

=⇒ E
(1)

〈α1,β1〉 × E
(2)

〈α1,β1〉 × · · · × E
(n)

〈α1,β1〉 ⊇ E
(1)

〈α2,β2〉 × E
(2)

〈α2,β2〉 × · · · × E
(n)

〈α2,β2〉.

(3.6)

Hence, it is easy to see that the set

{
E
(1)

〈α,β〉 × E
(2)

〈α,β〉 × · · · × E
(n)

〈α,β〉 :
〈
α, β
〉 ∈ I2

}
(3.7)

is a binary nested set on X = X1 ×X2 × · · · ×Xn.
According to Lemma 2.7, we know that the above binary nested set can uniquely

identify an intuitionistic fuzzy set contained in IFSs(X1 ×X2 × · · · ×Xn). Therefore, we have

⋃

〈α,β〉∈I2
〈
α, β
〉
(
E
(1)

〈α,β〉 × E
(2)

〈α,β〉 × · · · × E
(n)

〈α,β〉
)

∈ IFSs(X1 ×X2 × · · · ×Xn), (3.8)

and it satisfies

(
E(1) × E(2) × · · · × E(n)

)

〈α
·
,β
·
〉
⊆ E

(1)

〈α,β〉 × E
(2)

〈α,β〉 × . . . × E
(n)

〈α,β〉

⊆
(
E(1) × E(2) × · · · × E(n)

)

〈α,β〉
.

(3.9)

For the membership function and nonmembership function of the Cartesian product
over IFSs, we have the following theorem.
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Theorem 3.2. Let E(k) ∈ IFSs(Xk) (k = 1, 2, . . . , n), then

μE(1)×E(2)×···×E(n) (x1, x2, . . . , xn) =
n∧

k=1

μE(k) (xk), (3.10)

νE(1)×E(2)×···×E(n) (x1, x2, . . . , xn) =
n∨

k=1

νE(k) (xk). (3.11)

Proof. First of all, we prove the membership function of Cartesian product over IFSs. For all
(x1, x2, . . . , xn) ∈ X = X1 ×X2 × · · · ×Xn, according to Definitions 2.2 and 3.1, we can obtain

μE(1)×E(2)×···×E(n) (x1, x2, . . . , xn)

=
∨

〈α,β〉∈I2

(
α ∧
(
μ
E
(1)
〈α,β〉×E

(2)
〈α,β〉×···×E

(n)
〈α,β〉

)
(x1, x2, . . . , xn)

)

=
∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

.

(3.12)

Now, we will prove that

∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

=
n∧

k=1

⎛

⎝
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
⎞

⎠. (3.13)

Since

∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

≤
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
,

=⇒
∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

≤
n∧

k=1

⎛

⎝
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
⎞

⎠.

(3.14)

Assume that
∨

〈α,β〉∈I2(α∧(
∧n

k=1(μE
(k)
〈α,β〉

(xk)))) <
∧n

k=1(
∨

〈α,β〉∈I2(α∧μE
(k)
〈α,β〉

(xk))), then there exists

a constant λ such that

∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

< λ <
n∧

k=1

⎛

⎝
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
⎞

⎠. (3.15)
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Since
∧n

k=1μE
(k)
〈λ,β〉

(xk) = {0, 1}, if ∧n
k=1μE

(k)
〈λ,β〉

(xk) = 1, then

λ >
∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

≥ λ ∧
(

n∧

k=1

(
μ
E
(k)
〈λ,β〉

(xk)
))

= λ. (3.16)

In addition, if
∧n

k=1μE
(k)
〈λ,β〉

(xk) = 0, then there exists a constant k0 (1 ≤ k0 ≤ n) such that

μ
E
(k0)
〈λ,β〉

(xk0) = 0. By Definition 2.1, we know that μE(k0) (xk0) < λ or νE(k0) (xk0) > β, and then for

all α > λ, we have μ
E
(k0)
〈α,β〉

(xk0) = 0.

Hence,

λ <
n∧

k=1

⎛

⎝
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
⎞

⎠ ≤
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k0)
〈α,β〉

(xk0)
)

≤ λ. (3.17)

Obviously, the expressions (3.16) and (3.17) are contradictory. Consequently, the previous
hypothesis does not hold and the expression (3.13) holds.

By the expression (3.13), we can obtain

μE(1)×E(2)×···×E(n) (x1, x2, . . . , xn)

=
∨

〈α,β〉∈I2

(

α ∧
(

n∧

k=1

(
μ
E
(k)
〈α,β〉

(xk)
)))

=
n∧

k=1

⎛

⎝
∨

〈α,β〉∈I2

(
α ∧ μ

E
(k)
〈α,β〉

(xk)
)
⎞

⎠

=
n∧

k=1

μE(k) (xk).

(3.18)

Now we start to prove the expression (3.11). Analogously, we have

νE(1)×E(2)×···×E(n) (x1, x2, . . . , xn)

=
∧

〈α,β〉∈I2

(
β ∨
(
ν
E
(1)
〈α,β〉×E

(2)
〈α,β〉×···×E

(n)
〈α,β〉

)
(x1, x2, . . . , xn)

)

=
∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

.

(3.19)
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Next, we will prove that

∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

=
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠. (3.20)

Since

∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

≥
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)

=⇒
∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

≥
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠.

(3.21)

Similarly, we assume that

∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

>
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠, (3.22)

then there exists a constant γ such that

∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

> γ >
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠. (3.23)

Since
∨n

k=1νE(k)
〈α,γ〉

(xk) = {0, 1}, if ∨n
k=1νE(k)

〈α,γ〉
(xk) = 0, then

γ <
∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

≤ γ ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
))

= γ. (3.24)

On the other hand, if
∨n

k=1νE(k)
〈α,γ〉

(xk) = 1, then there exists a constant k1 (1 ≤ k1 ≤ n) such

that ν
E
(k1)
〈α,γ〉

(xk1) = 1, that is, μE(k1) (xk1) > α and νE(k1) (xk1) < γ . Therefore, for all β > γ , we have

ν
E
(k1)
〈α,β〉

(xk1) = 1.

So we can obtain

γ >
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠ ≥
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k1)
〈α,β〉

(xk1)
)

≥ γ. (3.25)
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Notice that the expressions (3.24) and (3.25) are also contradictory. So we can see that the
expression (3.20) holds, and then we can obtain

νE(1)×E(2)×···×E(n) (x1, x2, . . . , xn)

=
∧

〈α,β〉∈I2

(

β ∨
(

n∨

k=1

(
ν
E
(k)
〈α,β〉

(xk)
)))

=
n∨

k=1

⎛

⎝
∧

〈α,β〉∈I2

(
β ∨ ν

E
(k)
〈α,β〉

(xk)
)
⎞

⎠

=
n∨

k=1

νE(k) (xk).

(3.26)

Remark 3.3. According to the poof, one can see that the notations
∨

〈α,β〉 and
∧n

k=1,
∧

〈α,β〉
and

∨n
k=1 are commutative, respectively. The reason is that

∧n
k=1μE

(k)
〈α,β〉

(xk) and
∨n

k=1νE(k)
〈α,β〉

(xk)

are equal to {0, 1}. Notice that these relations are not necessarily satisfied under general
conditions.

Based on Theorem 3.2, we can obtain some properties of cut sets of the Cartesian
product over IFSs.

Theorem 3.4. Let E(k) ∈ IFSs(Xk) (k = 1, 2, . . . , n), 〈α, β〉 ∈ I2, then

(i) (E(1) × E(2) × · · · × E(n))〈α,β〉 = E
(1)
〈α,β〉 × E

(2)
〈α,β〉 × · · · × E

(n)
〈α,β〉;

(ii) (E(1) × E(2) × · · · × E(n))〈α
·
,β
·
〉 = E

(1)
〈α
·
,β
·
〉 × E

(2)
〈α
·
,β
·
〉 × · · · × E

(n)
〈α
·
,β
·
〉;

(iii) (E(1) × E(2) × · · · × E(n))〈α
·
,β〉 = E

(1)
〈α
·
,β〉 × E

(2)
〈α
·
,β〉 × · · · × E

(n)
〈α
·
,β〉;

(iv) (E(1) × E(2) × · · · × E(n))〈α,β
·
〉 = E

(1)
〈α,β

·
〉 × E

(2)
〈α,β

·
〉 × · · · × E

(n)
〈α,β

·
〉.

Proof. We only prove the first equality, the remaining equalities can be proved in a similar
way.

According to Definition 2.1 and Theorem 3.2, for all

(x1, x2, . . . , xn) ∈
(
E(1) × E(2) × · · · × E(n)

)

〈α,β〉

⇐⇒
n∧

k=1

μE(k) (xk) ≥ α,
n∨

k=1

νE(k) (xk) ≤ β

⇐⇒ μE(k) (xk) ≥ α, νE(k) (xk) ≤ β (k = 1, 2, . . . , n)

⇐⇒ xk ∈ E
(k)

〈α,β〉 (k = 1, 2, . . . , n)

(x1, x2, . . . , xn) ∈ E
(1)

〈α,β〉 × E
(2)

〈α,β〉 × · · · × E
(n)

〈α,β〉.

(3.27)
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Hence, the equality holds, namely,

(
E(1) × E(2) × · · · × E(n)

)

〈α,β〉
= E

(1)

〈α,β〉 × E
(2)

〈α,β〉 × · · · × E
(n)

〈α,β〉. (3.28)

4. Multivariate Extension Principle of IFSs

Based on the Cartesian product over IFSs, wewill discuss themultivariate extension principle
of IFSs.

Let E(k) ∈ IFSs(Xk) (k = 1, 2, . . . , n), then the operation of Cartesian product may be
viewed as a mapping, which is defined as follows

× : IFSs(X1) × IFSs(X2) × · · · × IFSs(Xn) −→ IFSs(X1 ×X2 × · · · ×Xn),
(
E(1), E(2), . . . , E(n)

)
�−→ E(1) × E(2) × · · · × E(n).

(4.1)

Now we will define the multivariate extension principle. It is assumed that f is a
mapping from X to Y , namely,

f : X = X1 ×X2 × · · · ×Xn −→ Y = Y1 × Y2 × · · · × Ym,

(x1, x2, . . . , xn) �−→
(
f(x1, x2, . . . , xn)

)
= y =

(
y1, y2, . . . , ym

)
.

(4.2)

By the extension principle of IFSs (Lemma 2.8), the mapping f can be induced to the
following two mappings.

f :IFSs(X) −→ IFSs(Y ), A �−→ f(A) =
⋃

〈α,β〉∈I2
〈
α, β
〉
f
(
A〈α,β〉

)
,

f−1:IFSs(Y ) −→ IFSs(X), B �−→ f−1(B) =
⋃

〈α,β〉∈I2
〈
α, β
〉
f−1(B〈α,β〉

)
.

(4.3)

Next, we use the two mappings f, f−1 to make compound operations with the
following two Cartesian products of IFSs, respectively.

×1:IFSs(X1) × IFSs(X2) × · · · × IFSs(Xn) −→ IFSs(X),
(
A(1), A(2), . . . , A(n)

)
�−→ A(1) ×A(2) × · · · ×A(n),

×2:IFSs(Y1) × IFSs(Y2) × · · · × IFSs(Ym) −→ IFSs(Y ),
(
B(1), B(2), . . . , B(m)

)
�−→ B(1) × B(2) × · · · × B(m).

(4.4)

Based on the above compound operations, we will get the following definition about
multivariate extension principle of IFSs.
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Definition 4.1. Let A(k) ∈ IFSs(Xk) (k = 1, 2, . . . , n), B(l) ∈ IFSs(Yl) (l = 1, 2, . . . , m), and f be
a mapping from X to Y , that is,

f :X = X1 ×X2 × · · · ×Xn −→ Y = Y1 × Y2 × · · · × Ym,

(x1, x2, . . . , xn) �−→ f(x1, x2, . . . , xn) = y =
(
y1, y2, . . . , ym

)
.

(4.5)

The two induced mappings of f can be defined as follows:

f :IFSs(X1) × IFSs(X2) × · · · × IFSs(Xn) −→ IFSs(Y ),

(
A(1), A(2), . . . , A(n)

)
�−→ f

(
A(1), A(2), . . . , A(n)

)
def= f

(
A(1) ×A(2) × · · · ×A(n)

)
,

f−1:IFSs(Y1) × IFSs(Y2) × · · · × IFSs(Ym) −→ IFSs(X),

(
B(1), B(2), . . . , B(m)

)
�−→ f−1

(
B(1), B(2), . . . , B(m)

)

def= f−1
(
B(1) × B(2) × · · · × B(m)

)
.

(4.6)

It is obvious that the above result is an extension of Lemma 2.8 of the Cartesian product
over IFSs. Hence, it is said to be the multivariate extension principle of IFSs.

According to Lemma 2.8 and Theorem 3.2, we can obtain the membership function
and nonmembership function of f and f−1. The corresponding conclusions are given by the
following theorem.

Theorem 4.2. Let f and f−1 be two induced mappings, which are given by Definition 4.1, then the
membership function and nonmembership function of f and f−1 are given by

μf(A(1),A(2),...,A(n))
(
y
)
=

∨

f(x1,x2,...,xn)=y

(
n∧

k=1

μA(k) (xk)

)

,

νf(A(1),A(2),...,A(n))
(
y
)
=

∧

f(x1,x2,...,xn)=y

(
n∨

k=1

νA(k) (xk)

)

,

μf−1(B(1),B(2),...,B(m))(x) =
m∧

l=1

μB(l)
(
yl

)
,

νf−1(B(1),B(2),...,B(m))(x) =
m∨

l=1

νB(l)
(
yl

)
,

(4.7)

where (y1, y2, . . . , ym) = f(x).
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Belowwewill discuss some other forms of the multivariate extension principle of IFSs.

Theorem 4.3 (multivariate extension principle I).

f
(
A(1), A(2), . . . , A(n)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)
,

f−1
(
B(1), B(2), . . . , B(m)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f−1
(
B
(1)

〈α,β〉, B
(2)

〈α,β〉, . . . , B
(m)

〈α,β〉
)
.

(4.8)

Proof. By Lemma 2.8 and Definition 4.1, we have

f
(
A(1), A(2), . . . , A(n)

)
= f
(
A(1) ×A(2) × · · · ×A(n)

)

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f

((
A(1) ×A(2) × · · · ×A(n)

)

〈α,β〉

)

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f

(
A

(1)

〈α,β〉 ×A
(2)

〈α,β〉 × · · · ×A
(n)

〈α,β〉
)
.

(4.9)

Since

f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)

=
{
y : ∃xk ∈ A

(k)

〈α,β〉 (k = 1, 2, . . . , n), f(x1, x2, . . . , xn) = y

}

=
{
y : ∃(x1, x2, . . . , xn) ∈ A

(1)

〈α,β〉 ×A
(2)

〈α,β〉 × · · · ×A
(n)

〈α,β〉, f(x1, x2, . . . , xn) = y

}

= f

(
A

(1)

〈α,β〉 ×A
(2)

〈α,β〉 × · · · ×A
(n)

〈α,β〉
)
,

(4.10)

we know that

f
(
A(1), A(2), . . . , A(n)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)
. (4.11)

Similarly, we can prove the second equality.
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Theorem 4.4 (multivariate extension principle II).

f
(
A(1), A(2), . . . , A(n)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f

⎛

⎝A
(1)
〈
α
·
,β
·

〉, A
(2)
〈
α
·
,β
·

〉, . . . , A
(n)
〈
α
·
,β
·

〉

⎞

⎠

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f

⎛

⎝A
(1)
〈
α
·
,β

〉, A
(2)
〈
α
·
,β

〉, . . . , A
(n)
〈
α
·
,β

〉

⎞

⎠

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f

⎛

⎝A
(1)
〈
α,β

·

〉, A
(2)
〈
α,β

·

〉, . . . , A
(n)
〈
α,β

·

〉

⎞

⎠,

f−1
(
B(1), B(2), . . . , B(m)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f−1

⎛

⎝B
(1)
〈
α
·
,β
·

〉, B
(2)
〈
α
·
,β
·

〉, . . . , B
(m)
〈
α
·
,β
·

〉

⎞

⎠

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f−1

⎛

⎝B
(1)
〈
α
·
,β

〉, B
(2)
〈
α
·
,β

〉, . . . , B
(m)
〈
α
·
,β

〉

⎞

⎠

=
⋃

〈α,β〉∈I2
〈
α, β
〉
f−1

⎛

⎝B
(1)
〈
α,β

·

〉, B
(2)
〈
α,β

·

〉, . . . , B
(m)
〈
α,β

·

〉

⎞

⎠.

(4.12)

Proof. The proof method is similar to that of Theorem 4.3. Thus, we omit it here.

Theorem 4.5 (multivariate extension principle III).

f
(
A(1), A(2), . . . , A(n)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f
(
H

(1)
A

(
α, β
)
,H

(2)
A

(
α, β
)
, . . . ,H

(n)
A

(
α, β
))

, (4.13)

where A(k)
〈α
·
,β
·
〉 ⊆ H

(k)
A (α, β) ⊆ A

(k)
〈α,β〉 (k = 1, 2, . . . , n).

f−1
(
B(1), B(2), . . . , B(m)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f−1
(
H

(1)
B

(
α, β
)
,H

(2)
B

(
α, β
)
, . . . ,H

(m)
B

(
α, β
))

, (4.14)

where B(l)
〈α
·
,β
·
〉 ⊆ H

(l)
B (α, β) ⊆ B

(l)
〈α,β〉 (l = 1, 2, . . . , m).
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Proof. Since

A
(k)
〈
α
·
,β
·

〉 ⊆ H
(k)
A

(
α, β
) ⊆ A

(k)

〈α,β〉 (k = 1, 2, . . . , n)

=⇒ A
(1)
〈
α
·
,β
·

〉 ×A
(2)
〈
α
·
,β
·

〉 × · · · ×A
(n)
〈
α
·
,β
·

〉 ⊆ H
(1)
A

(
α, β
) ×H

(2)
A

(
α, β
) × · · · ×H

(n)
A

(
α, β
)

⊆ A
(1)

〈α,β〉 ×A
(2)

〈α,β〉 × · · · ×A
(n)

〈α,β〉

=⇒ f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)

⊆ f
(
H

(1)
A

(
α, β
)
,H

(2)
A

(
α, β
)
, . . . ,H

(n)
A

(
α, β
))

⊆ f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)

=⇒ f
(
A(1), A(2), . . . , A(n)

)
=

⋃

〈α,β〉∈I2
〈
α, β
〉
f

⎛

⎝A
(1)
〈
α
·
,β
·

〉, A
(2)
〈
α
·
,β
·

〉, . . . , A
(n)
〈
α
·
,β
·

〉

⎞

⎠

⊆
⋃

〈α,β〉∈I2
〈
α, β
〉
f
(
H

(1)
A

(
α, β
)
,H

(2)
A

(
α, β
)
, . . . ,H

(n)
A

(
α, β
))

⊆
⋃

〈α,β〉∈I2
〈
α, β
〉
f

(
A

(1)

〈α,β〉, A
(2)

〈α,β〉, . . . , A
(n)

〈α,β〉
)

= f
(
A(1), A(2), . . . 0, A(n)

)
.

(4.15)

Similarly, the second equality can be proved by the above method.

5. Algebraic Operations of the IFSs(R)

In this section, we will define several algebraic operations between IFSs on real number field
R using the multivariate extension principle, such as the arithmetic operations (+,−, ·,÷),
conjunction and disjunction operations (∧,∨), and so forth. In general, we denote the set
of all intuitionistic fuzzy sets on real number field R by the symbol IFSs(R).

Let ∗ be an algebraic operation on R, that is,

∗ : R × R −→ R,
(
x, y
) �−→ z = x ∗ y. (5.1)

According to the multivariate extension principle of IFSs, we can define several
algebraic operations on IFSs(R).
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Definition 5.1. Let ∗ be an algebraic operation on R, then the corresponding algebraic
operation on IFSs(R) is defined as

∗ : IFSs(R) × IFSs(R) −→ IFSs(R),

(A,B) �−→ A ∗ B def=
⋃

〈α,β〉∈I2
〈
α, β
〉(
A〈α,β〉 ∗ B〈α,β〉

)
,

A〈α,β〉 ∗ B〈α,β〉 =
{
z : ∃(x, y) ∈ A〈α,β〉 × B〈α,β〉, x ∗ y = z

}
,

(5.2)

the membership function and nonmembership function of the operational result are given,
respectively, by

∗:

⎧
⎪⎨

⎪⎩

μA∗B(z) =
∨

x∗y=z

(
μA(x) ∧ μB

(
y
))
,

νA∗B(z) =
∧

x∗y=z

(
νA(x) ∨ νB

(
y
))
.

(5.3)

By Definition 5.1, we can obtain the following some algebraic operations between IFSs
on R.

(a) Arithmetic operation

+:

⎧
⎪⎨

⎪⎩

μA+B(z) =
∨

x+y=z

(
μA(x) ∧ μB

(
y
))

=
∨

x∈R

(
μA(x) ∧ μB(z − x)

)
,

νA+B(z) =
∧

x+y=z

(
νA(x) ∨ νB

(
y
))

=
∧

x∈R
(νA(x) ∨ νB(z − x)),

−:

⎧
⎪⎨

⎪⎩

μA−B(z) =
∨

x−y=z

(
μA(x) ∧ μB

(
y
))

=
∨

x∈R

(
μA(x) ∧ μB(x − z)

)
,

νA−B(z) =
∧

x−y=z

(
νA(x) ∨ νB

(
y
))

=
∧

x∈R
(νA(x) ∨ νB(x − z)),

·:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μA·B(z) =
∨

x·y=z

(
μA(x) ∧ μB

(
y
))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∨

x∈R

(
μA(x) ∧ μB

(z
x

))
(z/= 0),

⎛

⎝μA(0) ∧
⎛

⎝
∨

y∈R
μB

(
y
)
⎞

⎠

⎞

⎠ ∨
(

μB(0) ∧
(
∨

x∈R
μA(x)

) )

(z = 0),

νA·B(z) =
∧

x·y=z

(
νA(x) ∨ νB

(
y
))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∧

x∈R

(
νA(x) ∨ νB

(z
x

))
(z/= 0),

⎛

⎝νA(0) ∨
⎛

⎝
∧

y∈R
νB
(
y
)
⎞

⎠

⎞

⎠ ∧
(

μB(0) ∨
(
∧

x∈R
νA(x)

))

(z = 0).
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÷:

⎧
⎪⎪⎨

⎪⎪⎩

μA÷B(z) =
∨

x÷y=z

(
μA(x) ∧ μB

(
y
))

=
∨

y /= 0

(
μA

(
y · z) ∧ μB

(
y
))
,

νA÷B(z) =
∧

x÷y=z

(
νA(x) ∨ νB

(
y
))

=
∧

y /= 0

(
νA
(
y · z) ∨ νB

(
y
))
.

(5.4)

(b) Conjunction and disjunction operations

∧:

⎧
⎪⎨

⎪⎩

μA∧B(z) =
∨

x∧y=z

(
μA(x) ∧ μB

(
y
))
,

νA∧B(z) =
∧

x∧y=z

(
νA(x) ∨ νB

(
y
))
,

∨:

⎧
⎪⎨

⎪⎩

μA∨B(z) =
∨

x∨y=z

(
μA(x) ∧ μB

(
y
))
,

νA∨B(z) =
∧

x∨y=z

(
νA(x) ∨ νB

(
y
))
.

(5.5)

6. Conclusion

In this paper, we presented the multivariate extension principle of IFSs. First of all, we
reviewed the notion of Cartesian product over IFSs proposed by Atanassov [18] and defined
the membership function and nonmembership function of Cartesian product in intuitionistic
fuzzy environment. In addition, some relevant properties were discussed. Afterwards, the
multivariate extension principle of IFSs was presented. Finally, we provided a general
framework of the algebraic operation between IFSs and gave several common operations. In
short, this paper not only provides a theoretical foundation for algebraic operations between
IFSs, but also enriches the theory of IFSs.
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