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We characterize the orthogonal frames and orthogonal multiwavelet frames in L2(Rd)with matrix
dilations of the form (Df)(x) =

√
|detA|f(Ax), where A is an arbitrary expanding d × d

matrix with integer coefficients. Firstly, through two arbitrarily multiwavelet frames, we give
a simple construction of a pair of orthogonal multiwavelet frames. Then, by using the unitary
extension principle, we present an algorithm for the construction of arbitrarily many orthogonal
multiwavelet tight frames. Finally, we give a general construction algorithm for orthogonal
multiwavelet tight frames from a scaling function.

1. Introduction

Wavelets are mathematical functions that take account into the resolutions and the frequen-
cies simultaneously [1–4]. Moreover, wavelets could cut up data into different frequency
components such that people can study each component with a resolution matched to its
scale.

The classical MRA scaler wavelets are probably the most important class of orthonor-
mal wavelets. However, the scalar wavelets cannot have the orthogonality, compact support,
and symmetry at the same time (except the Haar wavelet). It is a disadvantage for signal
processing. Multiwavelets have attracted much attention in the research community, since
multiwavelets have more desired properties than any scalar wavelet function, such as
orthogonality, short compact support, symmetry, and high approximation order [5–7]. It is
natural, therefore, to develop themultiwavelets theory that can produce systems having these
properties.

Although many compression applications of wavelets use wavelet or multiwavelet
bases, the redundant representation offered by wavelet frames has already been put to good
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use for signal denoising and image compression. In fact, the concept of frame was introduced
a long time ago [8] and has received much attention recently due to the development and
study of wavelet theory [9, 10]. In particular, inspired by these and other applications, many
people are interested in some types of frames, such as tight wavelet frames, dual wavelet
frames, and orthogonal frames [11–19].

In [16], Weber proposed orthogonal wavelet frames, which are useful in multiple
access communication systems and superframes. Later in [17], authors discussed a pair of
orthogonal frames to be orthogonal in a shift-invariant space. In [18], authors presented
sufficient conditions for the construction of orthogonal MRA wavelet frames in L2(R).
This led them to a vector-valued discrete wavelet transform. But all these results just base
on 2 dilation wavelet transform. In this paper, we present the construction of orthogonal
multiwavelet frames in L2(Rd) with matrix dilation, where the basic ingredients consists of
two fixed multiwavelet basis and a paraunitary matrix of an appropriate size. Furthermore,
by using the unitary extension principle, we present an algorithm for the construction of
orthogonal multiwavelet tight frames from two suitable functions and give a general
construction algorithm for orthogonal multiwavelet tight frames from a scaling function.
These constructions lead to filter banks in l2(Zd) with similar orthogonality relations.

Let us now describe the organization of the material that follows. Section 2 contains
some definitions in this paper. Also, we review some relative notations. In Section 3, we
describe the construction of orthogonal multiwavelet frames and present different algorithms
for the construction of orthogonal multiwavelet tight frames in L2(Rd) with matrix dilation.

2. Preliminaries

Let us now establish some basic notations.
We denote by Td the d-dimensional torus. By L2(Td), we denote the space of all Zd-

periodic functions f (i.e., f is 1-periodic in each variable) such that
∫
Td |f(x)|2dx < +∞. The

subsets of Rd invariant under Zd translations and the subsets of Td are often identified.
We use the Fourier transform in the form

f̂(ω) =
∫

Rd
f(x)e−2πi〈x,ω〉dx, (2.1)

where 〈·, ·〉 denotes the standard inner product in Rd. The Fourier inverse transform is de-
fined by

f(x) = ˇf̂(ω) =
∫

Rd
f̂(ω)e2πi〈x,ω〉dω. (2.2)

Let Ed denote the set of all expanding d × d matrices A with integer coefficients. The
expanding matrices mean that all eigenvalues have magnitude greater than 1. ForA ∈ Ed, we
denote by B the transpose of A. It is obvious that B ∈ Ed.

A collection of elements {φj : j ∈ J} in a Hilbert spaceH is called a frame if there exist
constants a and b, 0 < a ≤ b <∞, such that

a
∥∥f
∥∥2 ≤

∑

j∈J

∣∣〈f, φj
〉∣∣2 ≤ b∥∥f∥∥2, for all f ∈ H. (2.3)
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If {φj : j ∈ J} satisfies the second inequality, then {φj : j ∈ J} is called a Bessel sequence. Let
a0 the supremum of all such numbers a and b0 the infimum of all such numbers b, then a0
and b0 are called the frame bounds of the frame {φj : j ∈ J}. When a0 = b0, we say that the
frame is tight. When a0 = b0 = 1, we say the frame is a Parseval frame.

In this paper, we will work with two families of unitary operators on L2(Rd). The
first one consists of all translation operators Tk : L2(Rd) → L2(Rd), k ∈ Zd, defined by
(Tkf)(x) = f(x − k). The second one consists of all integer powers of the dilation operator
DA : L2(Rd) → L2(Rd) defined by (Df)(x) =

√
|A|f(Ax)with A ∈ Ed.

Let us now fix an arbitrary matrix A ∈ Ed. For Ψ = {ψ1, . . . , ψr} ⊂ L2(Rd), we will
consider the affine system X(Ψ) defined by

X(Ψ) =
{
ψlj, k(x) | ψlj,k(x) = |detA|j/2ψl

(
Ajx − k

)
: j ∈ Z; k ∈ Zd; l = 1, . . . , r

}
. (2.4)

Then, we define the multiwavelet frame, the multiwavelet tight frame, the multi-
wavelet tight frame, and the filter.

Definition 2.1. We say thatX(Ψ) ⊂ L2(Rd) is amultiwavelet frame if the system (2.4) is a frame
for L2(Rd).

Definition 2.2. We say thatX(Ψ) ⊂ L2(Rd) is a multiwavelet tight frame if the system (2.4) is a
tight frame for L2(Rd).

Definition 2.3. We say thatX(Ψ) ⊂ L2(Rd) is a multiwavelet tight frame if the system (2.4) is a
Parseval frame for L2(Rd).

We turn to the concept of multiresolution analysis (MRA) in L2(Rd) which is a useful
tool in our study.

Definition 2.4. Let {Vm}m∈Z be a sequence of closed subspaces of L2(Rd) satisfying:

(1) Vj ⊂ Vj+1,
(2)
⋃
j∈ZVj = L

2(Rd),

(3)
⋂
j∈Z Vj = {0},

(4) f(x) ∈ Vj ⇔ f(Ax) ∈ Vj+1, j ∈ Z, where A ∈ Ed,
(5) There exists a function φ(x) ∈ V0 such that {φ(x − k)}k∈Zd is a frame of V0.

Then, {Vj}j∈Z is called an MRA and the function φ in (5) a scaling function.

There is a standard procedure for constructing multiwavelets from a given MRA(Vj).
Firstly, one definesWj = Vj+1 
 Vj for all j ∈ Z. As an easy consequence of conditions (1)–(4)
from Definition 2.4, one obtains L2(Rd) = ⊕j∈ZWj and Wj+1 = DWj , for all j ∈ Z. Suppose
now that there exist functions Ψ ⊂W0 such that the system E(Ψ) := {ψ(· − k) : k ∈ Zd, ψ ∈ Ψ}
is a frame for W0. Then, {DjTkψ : k ∈ Zd, ψ ∈ Ψ} is a frame for Wj , for all j ∈ Z, and,
consequently, {DjTkψ : j ∈ Z, k ∈ Zd, ψ ∈ Ψ} is a frame for L2(Rd).

In the following, we will borrow some notations from [17, 18] which will be used in
this paper.

LetX be a (countable) Bessel system for a separable Hilbert spaceH over the complex
field C. The synthesis operator TX : l2(X) → H, which is well known to be bounded, is
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defined by TXa :=
∑

h∈Xahh for a = {ah}h∈X . The adjoint operator T ∗
X of TX , called the analysis

operator, is T ∗
X : H → l2(X); T ∗

Xf := {〈f, h〉}h∈X . Recall that X is a frame for H if and only
SX := TXT

∗
X : H → H, the frame operator or dual Gramian, is bounded and has a bounded

inverse [20, 21], and it is a tight frame (with frame bound 1) if and only if SX is the identity
operator. The system X is a Riesz system (for spanX) if and only its Gramian GX := T ∗

XTX is
bounded and has a bounded inverse; it is an orthonormal system ofH if and only if GX is the
identity operator.

Definition 2.5. Let X and Y = RX, where R : h → Rh is a bijection between X and Y , be two
frame for H. We call X and Y a dual frames for H if TYT ∗

X = I, that is,
∑

h∈X〈f, h〉Rh = f for
all f ∈ H.

Definition 2.6. Let X and Y = RX, where R : h → Rh is a bijection between X and Y , be
two frames for H. We call X and Y a pair of orthogonal frames for H if TYT ∗

X = 0, that is,∑
h∈X〈f, h〉Rh = 0 for all f ∈ H.

Definition 2.7. A closed subspace V ⊂ L2(Rd) is shift invariant if for all f ∈ V implies Tkf ∈ V
for any k ∈ Zd.

We consider orthogonal frames in a shift-invariant subspace of L2(Rd). Let Φ be a
countable subset of L2(Rd), and E(Φ) := {φ(· − k) : k ∈ Zd, φ ∈ Φ}. Define S(Φ) := spanE(Φ),
the smallest closed subspace that contains E(Φ). Throughout the rest of this paper, we assume
that E(Φ) is a Bessel sequence for S(Φ). This assumption settles most of the convergence
issues. The space S(Φ) is called the shift-invariant space generated by Φ and Φ a generating
set for S(Φ). Shift-invariant spaces have been studied extensively in the literature, for
example, [22, 23].

For ω ∈ Rd, we define the pre-Gramian by

JΦ(ω) =
(
φ̂(ω + α)

)

α∈Zd, φ∈Φ
, (2.5)

where φ̂ is the Fourier transform of φ. Note that the domain of the pre-Gramian matrix as
an operator is l2(Φ) and its codomain is l2(Zd). The pre-Gramian can be regarded as the
synthesis operator represented in Fourier domain as it was extensively studied in [22].

Let Φ and Ψ = RΦ, where R is a bijection satisfying R(φ(· − k)) = (Rφ)(· − k), be
countable subsets of L2(Rd). Suppose that S(Φ) = S(Ψ) and that both E(Φ) and E(Ψ) are
frames for S(Φ). Then, by definition, E(Φ) and E(Ψ) are a pair of orthogonal frames for S(Φ)
if and only if for all f ∈ S(Φ),

Sf := TE(Ψ)T
∗
E(Φ) = 0. (2.6)

We define the mixed dual Gramian as G̃(ω) = JΨ(ω)J∗Φ(ω) and Gramians as

GΦ(ω) = J∗Φ(ω)JΦ(ω), GΨ(ω) = J∗Ψ(ω)JΨ(ω). (2.7)
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Then, it is proven in [24] that, for any f ∈ L2(Rd),
(
Ŝf
)

|ω+α
= G̃(ω)f̂|ω+α, (2.8)

where f̂|ω+α is the column vector (f̂(ω + α))Tα∈Zd . By (2.8), one can prove easily that Sf = 0 for
all f ∈ L2(Rd) if and only if G̃(ω) = 0 for a.e. ω ∈ Rd.

3. Orthogonal Multiwavelet Frames

In this section, we present a simple construction of a pair of orthogonal multiwavelet frames
from two arbitrarily multiwavelet frames and get some interesting properties about the
orthogonal multiwavelet frames. We also show different algorithms for the construction of
arbitrarily many orthogonal multiwavelet tight frames.

Firstly, we give a lemma, which has been obtained by Weber in [16].

Lemma 3.1. LetΨ1 := {ψ1
1 , ψ

1
2 , . . . , ψ

1
r } andΨ2 := {ψ2

1 , ψ
2
2 , . . . , ψ

2
r }. Suppose thatX(Ψ1) andX(Ψ2)

are multiwavelet frames for L2(Rd). X(Ψ1) and X(Ψ2) are a pair of orthogonal frames for L2(Rd) if
and only if the following two equations are satisfied a.e.:

r∑

i=1

∑

j∈Z
ψ̂1
i

(
Bjω
)
ψ̂2
i

(
Bjω
)
= 0, a.e.,

r∑

i=1

+∞∑

j=0

ψ̂1
i

(
Bjω
)
ψ̂2
i

(
Bj
(
ω + q

))
= 0, a.e., ∀k ∈ Zd, q ∈ Zd \ BZd.

(3.1)

From Lemma 3.1, by Theorem 2.3 [17], we can construct a pair of orthogonal multi-
wavelet frames easily.

Theorem 3.2. Let Ψ1 := {ψ1
1 , ψ

1
2 , . . . , ψ

1
r } and Ψ2 := {ψ2

1 , ψ
2
2 , . . . , ψ

2
r } ∈ L2(Rd) for some positive

integer r. Suppose that X(Ψ1) and X(Ψ2) are multiwavelet frames for L2(Rd). Let V := (V1;V2) be a
2r ×2r constant unitary matrix, where V1 is the submatrix of the first r columns and V2 the remaining
r columns. Then, X(Ψ11) and X(Ψ22) are a pair of orthogonal multiwavelet frames for L2(Rd), where
Ψ11 := V1Ψ1 and Ψ22 := V2Ψ2.

Proof. Assume that V is a constant matrix such that Ψ̂11 := V1Ψ̂1 and Ψ̂22 := V2Ψ̂2. Then, one
can directly calculate the dual Gramians of Xq(Ψ11) and Xq(Ψ22). It follows from the fact that
the double sums in (3.1) are the entries of the dual Gramian of the affine systems [24].

Let V = (vlm)1≤l,m≤2r . For a fixed q ∈ Zd \ BZd, i ∈ 1, 2, we have

2r∑

l=1

∑

m≥0
ψ̂iil (B

mω)ψ̂iil
(
Bm
(
ω + q

))
=

2r∑

l=1

∑

m≥0

r∑

n=1

vl,nψ̂
i
n(Bmω)

r∑

n′=1

vl,n′ ψ̂
i
n′
(
Bm
(
ω + q

))

=
∑

m≥0

r∑

n=1

ψ̂in(Bmω)
r∑

n′=1

ψ̂in′
(
Bm
(
ω + q

)) 2r∑

l=1

vl,nvl,n′

=
∑

m≥0

r∑

n=1

ψ̂in(Bmω)ψ̂in
(
Bm
(
ω + q

))
,

(3.2)
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where we used the fact that the double sums converge absolutely a.e., V ∗V = I2r , and that
X(Ψ1) and X(Ψ2) are frames for L2(Rd). Moreover,

2r∑

l=1

∑

m∈Z
ψ̂iil (B

mω)ψ̂iil (B
mω) =

2r∑

l=1

∑

m∈Z

r∑

n=1

vl,nψ̂
i
n(Bmω)

r∑

n′=1

vl,n′ ψ̂
i
n′(B

mω)

=
∑

m∈Z

r∑

n=1

ψ̂in(Bmω)
r∑

n′=1

ψ̂in′(B
mω)

2r∑

l=1

vl,nvl,n′

=
∑

m∈Z

r∑

n=1

ψ̂in(Bmω)ψ̂in(Bmω).

(3.3)

From the above results, by using the dual Gramian characterization of frames in [25,
Corollary 5.7], then X(Ψ11) and X(Ψ22) are frames for L2(Rd).

We now show that the multiwavelet systems generated by Ψ11 and Ψ22 are a pair of
orthogonal frames for L2(Rd). We apply Lemma 3.1 to Ψ11 := {ψ11

1 , ψ
11
2 , . . . , ψ

11
2r } and Ψ22 :=

{ψ22
1 , ψ

22
2 , . . . , ψ

22
2r }. Let V = (vlm)1≤l,m≤2r . For all q ∈ Zd \ BZd, we have

2r∑

l=1

∑

m≥0
ψ̂11
l (Bmω)ψ̂22

l

(
Bm
(
ω + q

))
=

2r∑

l=1

∑

m≥0

r∑

n=1

vl,nψ̂
1
n(Bmω)

r∑

n′=1

vl,r+n′ ψ̂
2
n′
(
Bm
(
ω + q

))

=
∑

m≥0

r∑

n=1

ψ̂1
n(Bmω)

r∑

n′=1

ψ̂2
n′
(
Bm
(
ω + q

)) 2r∑

l=1

vl,nvl,r+n′

=
∑

m≥0

r∑

n=1

ψ̂1
n(Bmω)

r∑

n′=1

ψ̂2
n′
(
Bm
(
ω + q

)) × 0

= 0,

(3.4)

where we used the orthogonality of the columns of V .
Moreover,

2r∑

l=1

∑

m∈Z
ψ̂11
l (Bmω)ψ̂22

l (Bm(ω)) =
2r∑

l=1

∑

m∈Z

r∑

n=1

vl,nψ̂
1
n(Bmω)

r∑

n′=1

vl,r+n′ ψ̂
2
n′(B

m(ω))

=
∑

m∈Z

r∑

n=1

ψ̂1
n(Bmω)

r∑

n′=1

ψ̂2
n′(B

m(ω))
2r∑

l=1

vl,mvl,r+n′

=
∑

m∈Z

r∑

n=1

ψ̂1
n(Bmω)

r∑

n′=1

ψ̂2
n′(B

m(ω)) × 0

= 0,

(3.5)

by Lemma 3.1, Ψ11 and Ψ22 generate a pair of orthogonalframes.
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The following results give some properties of the orthogonal frames.

Proposition 3.3. Suppose that E(ψi) and E(ψj) are a pair of orthogonal affine Bessel sequences in
L2(Rd). If α ∈ L2(Rd) is a Zd-periodic function, then E(ψi) and E(αψj) are a pair of orthogonal affine
Bessel sequences.

Proof. Suppose that E(ψi) and E(ψj) are a pair of orthogonal affine Bessel sequences in L2(Rd).
Then, for all f ∈ L2(Rd), we have

Sf(x) =
∑

m∈Zd

〈
f(x), ψi(x +m)

〉
ψj(x +m) = 0. (3.6)

Let ψ ′
j := αψj . Since α is a Zd-periodic function, then E(ψ ′

j) is an affine Bessel sequence for
L2(Rd) from the fact that, for all f ∈ L2(Rd),

∑

k∈Zd

∣∣〈f(x), α(x − k)ψj(x − k)〉∣∣2 =
∑

k∈Zd

∣∣∣
〈
α(x)f(x), ψj(x − k)

〉∣∣∣
2

≤ B∥∥αf∥∥2

≤ B‖α‖2∥∥f∥∥2

= B′∥∥f
∥∥2.

(3.7)

Again by α being a Zd-periodic function, we have the following equation:

Sf(x) =
∑

m∈Zd

〈
f(x), ψi(x +m)

〉
ψj(x +m)′

=
∑

m∈Zd

〈
f(x), ψi(x +m)

〉
ψj(x +m)α(x +m)

= α(x)
∑

m∈Zd

〈
f(x), ψi(x +m)

〉
ψj(x +m)

= 0.

(3.8)

Hence, E(ψi) and E(αψj) are a pair of orthogonal affine Bessel sequences in L2(Rd).

Proposition 3.4. Suppose that E(ψi) and E(ψj) are a pair of orthogonal frames forH ⊂ L2(Rd). Let
α ∈ L2(Rd) be a Zd-periodic function. If E(αψj) is a frame for H, then E(ψi) and E(αψj) are a pair
of orthogonal frames forH.

Proof. Similar to the proof in Proposition 3.3, we have the desired result.

Then, we recall a result from [26] that characterizes unitary extension principle (UEP)
associated with more general matrix dilations in L2(Rd).
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Lemma 3.5. Suppose Φ = (φj)j∈J is a refinable vector with a mask Γ such that

∑

j∈J

∥
∥ϕj
∥
∥2 =

∫

Rd

∥
∥
∥Φ̂(ξ)

∥
∥
∥
2

l2(J)
dξ <∞,

lim
j→∞

∥
∥
∥Φ̂
(
B−j ξ

)∥∥
∥ = 1, for a.e. ξ ∈ Rd.

(3.9)

Suppose also that Ψ = (ψj)j∈J̃ , where J̃ = {1, . . . ,N} is finite, is given by

Ψ̂(Bξ) = H(ξ)Φ̂(ξ), (3.10)

whereH = (hi,j)i∈J̃ , i∈J is a Z
d-periodic, measurable matrix function satisfying

Γ∗(ξ)Γ(ξ + d) +H∗(ξ)H(ξ + d) = Ω(ξ)δ0,d, for a.e. ξ, (3.11)

and for any d ∈ Υ, where Υ consists of representatives of distinct cosets of B−1Zd/Zd, then Ψ ⊂
L2(Rd) is a multiwavelet tight frame.

We call m a filter if m ∈ L∞([0, 1)d). We shall call m a low-pass filter if m(0) = 1, and
we shall callm a high-pass filter ifm(0) = 0. Though not necessary, we will assume that every
filter is continuous on a neighborhood of 0, so there will be no ambiguity in these definitions.
Given a collection of filter M′ = {m0, m1, . . . , mr} ⊂ L∞([0, 1)d), let M′(ξ) and M̃′(ξ) be the
matrices

M′(ξ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

m0(ξ) m0
(
ξ + β

)

m1(ξ) m1
(
ξ + β

)

...
...

mr(ξ) mr

(
ξ + β

)

⎞

⎟⎟⎟⎟⎟⎟
⎠

, M̃′(ξ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

m1(ξ) m1
(
ξ + β

)

m2(ξ) m2
(
ξ + β

)

...
...

mr(ξ) mr

(
ξ + β

)

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (3.12)

where β ∈ Υ. In the remainder of the paper, the filter banks will be composed of a single
low-pass filter (with index 0) and a number of high-pass filters.

With the above definitions, we present an algorithm for the construction of arbitrarily
many orthogonal multiwavelet tight frames.

Theorem 3.6. Suppose that φ1, φ2 ∈ L2(Rd) are refinable functions which satisfy the conditions
of the unitary extension principe, and let m1(ξ), m2(ξ) be the associated low-pass filter. Let
M = {m0(ξ), m1(ξ), . . . , mr(ξ)} and N = {n0(ξ), n1(ξ), . . . , nr(ξ)} be filter banks with m0(ξ) =
m1(ξ), n0(ξ) = m2(ξ). For all β ∈ Υ, suppose that the following matrix equations hold:

(a) M∗(ξ)M(ξ) = I2 for almost every ξ,

(b) N∗(ξ)N(ξ) = I2 for almost every ξ,

(c) M̃∗(ξ)Ñ(ξ) = 0 for almost every ξ.
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Let η̂k(Bξ) = nk(ξ)φ̂2(ξ) and ψ̂k(Bξ) = mk(ξ)φ̂1(ξ), 1 ≤ k ≤ r. Then, {ψ1, . . . , ψr} and {η1, . . . , ηr}
generate orthogonal multiwavelet tight frames.

Proof. For Items (a) and (b), by Lemma 3.5, then {ψ1, . . . , ψr} and {η1, . . . , ηr} generate
multiwavelet tight frames. We use the characterization equations of Lemma 3.1 to prove
orthogonality.

Let us focus on
∑r

k=1
∑

j∈Zψ̂k(B
jξ)η̂k(Bjξ). For each k, by Hölder’s inequality and virtue

of the fact that ψk and ηk generate Bessel sequences [4, Theorem 8.3.2], we have

∑

j∈Z

∣
∣
∣ψ̂k
(
Bjξ
)
η̂k
(
Bjξ
)∣∣
∣ ≤
∑

j∈Z

∣
∣
∣ψ̂k
(
Bjξ
)∣∣
∣
2∑

j∈Z

∣
∣
∣η̂k
(
Bjξ
)∣∣
∣
2
<∞, (3.13)

then the order of summation can be reversed. With this, by Item (c),

r∑

k=1

∑

j∈Z
ψ̂k
(
Bjξ
)
η̂k
(
Bjξ
)
=

r∑

k=1

∑

j∈Z
mk

(
Bjξ
)
φ̂1

(
Bjξ
)
nk
(
Bjξ
)
φ̂2
(
Bjξ
)

=
∑

j∈Z
φ̂1

(
Bjξ
)
φ̂2
(
Bjξ
) r∑

k=1

mk

(
Bjξ
)
nk
(
Bjξ
)

= 0

(3.14)

holds for almost every ξ.
Likewise, for q ∈ Zd \ BZd, by item (c),

r∑

k=1

∞∑

j=0

ψ̂k
(
Bjξ
)
η̂k
(
Bj
(
ξ + q

))
=

r∑

k=1

∞∑

j=0

mk

(
Bj−1ξ

)
φ̂1

(
Bj−1ξ

)
nk
(
Bj−1
(
ξ + q

))
φ̂2
(
Bj−1
(
ξ + q

))

=
∞∑

j=0

φ̂1

(
Bjω
)
φ̂2
(
Bj
(
ω + B−1q

)) r∑

k=1

mk

(
Bjω
)
nk
(
Bjω + Bj−1q

))

= 0,
(3.15)

where ω = B−1ξ.

The following results show the relationship between a pair of orthogonal MRA multi-
wavelet frames.

Theorem 3.7. Suppose that X(Ψi) and X(Ψj) are a pair of orthogonal MRA multiwavelet frames,

where Ψi := {ψi1, ψi2, . . . , ψir}, Ψj := {ψj1, ψ
j

2, . . . , ψ
j
r}. If S(Ψi) = S(Ψj) and there exist functions

p,w ∈ L2(Rd) such that ΨP
i := {ψip1 , ψ

ip

2 , . . . , ψ
ip
r } and ΨP

j := {ψjw1 , ψ
jw

2 , . . . , ψ
jw
r } are multiwavelet

frames, where ψpl and ψwl defined by ̂

ψ
ip

l (ω) = ψ̂il (ω)p̂(ω),
̂

ψ
jw

l (ω) = ψ̂
j

l (ω)ŵ(ω), 1 ≤ l ≤ r

respectively, then X(Ψp

i ) and X(Ψw
j ) are a pair of orthogonal multiwavelet frames for L2(Rd).
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Proof. Suppose that X(Ψi), X(Ψj) are a pair of orthogonal MRA multiwavelet frames and
S(Ψi) = S(Ψj), then, by the property of MRA multiwavelet frames, for any n/=m ∈ Z, we
have S(AmΨi) ⊥ S(AnΨi). Hence, for all f1 ∈ S(Ψi)

0 = Sf1(x)

=
r∑

l=1

∑

k∈Zd

∑

s∈Z

〈
f1(x), ψil (A

sx − k)
〉
ψ
j

l (A
sx − k)

=
r∑

l=1

∑

k∈Zd

〈
f1(x), ψil (x − k)

〉
ψ
j

l (x − k).

(3.16)

For any f ∈ L2(Rd), define f = f1 + f2, where f1 ∈ S(Ψi), f2 ∈ (L2(Rd) \ S(Ψi)), then,
〈f1, f2〉 = 0. With this, we get

Sf2(x) =
r∑

l=1

∑

k∈Zd

〈
f2(x), ψil (x − k)

〉
ψ
j

l (x − k) = 0. (3.17)

Hence, for all f ∈ L2(Rd), the following equation holds:

Sf(x) =
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉
ψ
j

l (x − k)

=
r∑

l=1

∑

k∈Zd

〈
f1(x), ψil (x − k)

〉
ψ
j

l (x − k) +
r∑

l=1

∑

k∈Zd

〈
f2(x), ψil (x − k)

〉
ψ
j

l (x − k)

= 0.

(3.18)

Notice that Ψj := {ψj1, . . . , ψ
j
r}, since ̂

ψ
jw

l (ξ) = ψ̂j(ξ)ŵ(ξ), 1 ≤ l ≤ r, by Sf(x) = 0, then

0 = ̂Sf(x)

=
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉̂
ψ
j

l (ω)e
−2πikω

=
r∑

l=1

∑

k∈Zd

〈
f1(x), ψil (x − k)

〉̂
ψ
j

l (ω)e
−2πikω +

r∑

l=1

∑

k∈Zd

〈
f2(x), ψil (x − k)

〉̂
ψ
j

l (ω)e
−2πikω

= w(ω)

(
r∑

l=1

∑

k∈Zd

〈
f1(x), ψil (x − k)

〉̂
ψ
j

l (ω)e
−2πikω +

r∑

l=1

∑

k∈Zd

〈
f2(x), ψil (x − k)

〉̂
ψ
j

l (ω)e
−2πikω

)
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=
r∑

l=1

∑

k∈Zd

〈
f1(x), ψil (x − k)

〉̂
ψ
jw

l (ω)e−2πikω +
r∑

l=1

∑

k∈Zd

〈
f2(x), ψil (x − k)

〉̂
ψ
jw

l (ω)e−2πikω

=
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉̂
ψ
jw

l (ω)e−2πikω.

(3.19)

Applying Fourier inverse transform on (3.19), we have

0 = ˇ̂
Sf(x)

=
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉 ˇ̂
ψ
jw

l (ω)e−2πikω

=
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉
ψ
jw

l (x − k).

(3.20)

From the above result, we get the following equation:

r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉〈
f(x), ψjwl (x − k)

〉
=

〈

f(x),
r∑

l=1

∑

k∈Zd

〈
f(x), ψil (x − k)

〉
ψ
jw

l (x − k)
〉

=
〈
f(x), 0

〉

=

〈

f(x),
r∑

l=1

∑

k∈Zd

〈
f(x), ψjwl (x − k)

〉
ψil (x − k)

〉

,

(3.21)

hence,

r∑

l=1

∑

k∈Zd

〈
f(x), ψjwl (x − k)

〉
ψil (x − k) = 0. (3.22)

Similar to the calculation of (3.19), clearly

r∑

l=1

∑

k∈Zd

〈
f(x), ψjwl (x − k)

〉
ψ
ip

l (x − k) = 0. (3.23)

For any s ∈ Z,

r∑

l=1

∑

k∈Zd

〈
f(x), ψjwl (Asx − k)

〉
ψ
ip

l (A
sx − k) = A−s

r∑

l=1

∑

k∈Zd

〈
f
(
A−sx′), ψjw

l

(
x′ − k)

〉
ψ
ip

l

(
x′ − k).

(3.24)
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Let g(x) := f(A−sx). Define operator T : L2(Rd) → L2(Rd); Tf(x) = g(x), obviously T is a
surjection operator. If s is fixed, for all g ∈ L2(Rd), we get

r∑

l=1

∑

k∈Zd

〈
f(x), ψjwl (Asx − k)

〉
ψ
ip

l (A
sx − k)= A−s

(
r∑

l=1

∑

k∈Zd

〈
g
(
x′), ψjw

l

(
x′ − k)

〉
ψ
ip

l

(
x′ − k)

)

=0.

(3.25)

Putting everything together, we have

r∑

l=1

∑

s∈Z

∑

k∈Zd

〈
f(x), ψjwl (Asx − k)

〉
ψ
ip

l (A
sx − k) = 0, (3.26)

then, X(Ψp

i ) and X(Ψw
j ) are a pair of orthogonal multiwavelet frames.

The following theorem describes a general construction algorithm for orthogonal mul-
tiwavelet tight frames.

Theorem 3.8. Suppose K(ξ) is an r × r paraunitary matrix with B−1Zd-periodic entries ak,s(ξ);
let Kj(ξ) denote the jth column. For all β ∈ Υ, suppose M = {m0(ξ), m1(ξ), . . . , mr(ξ)} and
M∗(ξ)M(ξ) = I2 hold for almost every ξ, where m0 and {m1, . . . , ml} are low- and high-pass filters,
respectively, for a multiwavelet tight frame with scaling function φ. For j = 1, . . . , r, define new filters
via

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n
j

1,1(ξ)

...

n
j

1,r(ξ)

...

n
j

l,1(ξ)

...

n
j

l,r(ξ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

Kj(ξ)m1(ξ)

...

Kj(ξ)ml(ξ)

⎞

⎟⎟⎟
⎠
. (3.27)

Then, for j = 1, . . . , r, the affine systems generated by Ψj = {ψji,t : i = 1, . . . , l, t = 1, . . . , r} obtained
via

ψ̂
j

i,t(Bξ) = n
j

i,t(ξ)φ̂(ξ) (3.28)

are multiwavelet tight frames and are pairwise orthogonal.
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Proof. Firstly, we prove that X(Ψj), 1 ≤ j ≤ r, are multiwavelet tight frames. Assume Mj =
{m0(ξ), n

j

1,1(ξ), . . . , n
j

1,r(ξ), . . . , n
j

l,1(ξ), . . . , n
j

l,r(ξ)}. DefineMj(ξ) according to (3.12):

Mj(ξ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

m0(ξ) m0
(
ξ + β

)

n
j

1,1(ξ) n
j

1,1

(
ξ + β

)

...
...

n
j

1,r(ξ) n
j

1,r

(
ξ + β

)

...
...

n
j

l,1(ξ) n
j

l,1

(
ξ + β

)

...
...

n
j

l,r(ξ) n
j

l,r

(
ξ + β

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

, (3.29)

where β ∈ Υ. Then, M∗
j (ξ)Mj(ξ) is a 2 × 2 matrix. Next, we examine the entries of

M∗
j (ξ)Mj(ξ) individually. Note that the columns ofK(ξ) have length 1, byM∗(ξ)M(ξ) = I2, it

follows that

[
M∗

j (ξ)Mj(ξ)
]

1,1
= |m0(ξ)|2 +

r∑

k=1

l∑

t=1

∣∣ak,j(ξ)mt(ξ)
∣∣2

= |m0(ξ)|2 +
r∑

k=1

∣∣ak,j(ξ)
∣∣2

l∑

t=1

|mt(ξ)|2

= |m0(ξ)|2 +
l∑

t=1

|mt(ξ)|2

= 1,

(3.30)

where [M∗
j (ξ)Mj(ξ)]1,1 means the (1,1) entry of the matrixM∗

j (ξ)Mj(ξ).
Similarly,

[
M∗

j (ξ)Mj(ξ)
]

2,2
=
∣∣m0
(
ξ + β

)∣∣2 +
r∑

k=1

l∑

t=1

∣∣ak,j
(
ξ + β

)
mt

(
ξ + β

)∣∣2

=
∣∣m0
(
ξ + β

)∣∣2 +
r∑

k=1

∣∣ak,j
(
ξ + β

)∣∣2
l∑

t=1

∣∣mt

(
ξ + β

)∣∣2

=
∣∣m0
(
ξ + β

)∣∣2 +
l∑

t=1

∣∣mt

(
ξ + β

)∣∣2

= 1.

(3.31)
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Now, since the entries of K(ξ) are B−1Zd-periodic, again byM∗(ξ)M(ξ) = I2,

[
M∗

j (ξ)Mj(ξ)
]

1,2
= m0

(
ξ + β

)
m0(ξ) +

r∑

k=1

l∑

t=1

ak,j(ξ)mt(ξ)ak,j
(
ξ + β

)
mt

(
ξ + β

)

= m0
(
ξ + β

)
m0(ξ) +

r∑

k=1

∣
∣ak,j(ξ)

∣
∣2

l∑

t=1

mt(ξ)mt

(
ξ + β

)

= m0
(
ξ + β

)
m0(ξ) +

l∑

t=1

mt(ξ)mt

(
ξ + β

)

= 0.

(3.32)

Finally, the (2,1)-entry must be zero by conjugate symmetry ofM∗
j (ξ)Mj(ξ). Hence,

M∗
j (ξ)Mj(ξ) = I2, 1 ≤ j ≤ r. (3.33)

Putting everything together, from Theorem 3.6, the affine systems generated by {ψji,t : i =
1, . . . , l, t = 1, . . . , r} obtained via

ψ̂
j

i,t(Bξ) = n
j

i,t(ξ)φ̂(ξ) (3.34)

are multiwavelet tight frames.
For orthogonality, according to (3.12), for j = 1, . . . , r, we have

M̃j(ξ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n
j

1,1(ξ) n
j

1,1

(
ξ + β

)

...
...

n
j

1,r(ξ) n
j

1,r

(
ξ + β

)

...
...

n
j

l,1(ξ) n
j

l,1

(
ξ + β

)

...
...

n
j

l,r(ξ) n
j

l,r

(
ξ + β

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

Kj(ξ)m1(ξ) Kj

(
ξ + β

)
m1
(
ξ + β

)

...
...

Kj(ξ)ml(ξ) Kj

(
ξ + β

)
ml

(
ξ + β

)

⎞

⎟⎟⎟
⎠
. (3.35)

If 1 ≤ j /= j ′ ≤ r, then

M̃∗
j (ξ)M̃j ′(ξ)

=

⎛

⎜⎜⎜
⎝

Kj(ξ)m1(ξ) Kj

(
ξ + β

)
m1
(
ξ + β

)

...
...

Kj(ξ)ml(ξ) Kj

(
ξ + β

)
ml

(
ξ + β

)

⎞

⎟⎟⎟
⎠

∗⎛

⎜⎜⎜
⎝

Kj ′(ξ)m1(ξ) Kj ′
(
ξ + β

)
m1
(
ξ + β

)

...
...

Kj ′(ξ)ml(ξ) Kj ′
(
ξ + β

)
ml

(
ξ + β

)

⎞

⎟⎟⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎝

K∗
j (ξ)Kj ′(ξ)

l∑

t=1

|mt(ξ)|2 K∗
j (ξ)Kj ′

(
ξ + β

) l∑

t=1

mt(ξ)mt

(
ξ + β

)

K∗
j

(
ξ + β

)
Kj ′(ξ)

l∑

t=1

mt

(
ξ + β

)
mt(ξ) K∗

j

(
ξ + β

)
Kj ′
(
ξ + β

) l∑

t=1

mt

(
ξ + β

)
mt

(
ξ + β

)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

K∗
j (ξ)Kj ′(ξ)

l∑

t=1

|mt(ξ)|2 K∗
j (ξ)Kj ′(ξ)

l∑

t=1

mt(ξ)mt

(
ξ + β

)

K∗
j (ξ)Kj ′(ξ)

l∑

t=1

mt

(
ξ + β

)
mt(ξ) K∗

j (ξ)Kj ′(ξ)
l∑

t=1

mt

(
ξ + β

)
mt

(
ξ + β

)

⎞

⎟
⎟
⎟
⎟
⎠

= 0,

(3.36)

where we use the fact that the product of the two matrices K∗
j (ξ)Kj ′(ξ) is 0 by the

orthogonality of the columns of K(ξ). By Theorem 3.6, we have the desired result.

The following proposition is directly related to the construction algorithm in
Theorem 3.8.

Proposition 3.9. If φ is compactly supported, the paraunitary matrix K in Theorem 3.8 must have
entries which are B−1Zd-periodic.

Proof. The proof will follow the notation of Theorem 3.8. For 1 ≤ j ≤ r, for all ξ ∈ B−1Zd/Zd,
the matrix

Mj(ξ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m0(ξ) m0
(
ξ + β

)

a1,j(ξ)m1(ξ) a1,j
(
ξ + β

)
m1
(
ξ + β

)

...
...

ar,j(ξ)m1(ξ) ar,j
(
ξ + β

)
m1
(
ξ + β

)

...
...

a1,j(ξ)ml(ξ) a1,j
(
ξ + β

)
ml

(
ξ + β

)

...
...

ar,j(ξ)ml(ξ) ar,j
(
ξ + β

)
ml

(
ξ + β

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(3.37)

satisfies the equation

M∗
j (ξ)Mj(ξ) = I2 a.e.ξ. (3.38)
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Then, for almost every ξ, the following equation

m0
(
ξ + β

)
m0(ξ) +

r∑

k=1

ak,j(ξ)ak,j
(
ξ + β

) l∑

t=1

mt(ξ)mt

(
ξ + β

)
= 0 (3.39)

must hold. Notice thatm0 and {m1, . . . , ml} are low- and high-pass filters, respectively, which
meet Theorem 3.8. Then,

m0
(
ξ + β

)
m0(ξ) +

l∑

t=1

mt(ξ)mt

(
ξ + β

)
= 0. (3.40)

Thus, we have

m0
(
ξ + β

)
m0(ξ) = −

l∑

t=1

mt(ξ)mt

(
ξ + β

)
. (3.41)

From the above results, we get the following equation:

0 = m0
(
ξ + β

)
m0(ξ) +

r∑

k=1

ak,j(ξ)ak,j
(
ξ + β

) l∑

t=1

mt(ξ)mt

(
ξ + β

)

= −
l∑

t=1

mt(ξ)mt

(
ξ + β

)
+

r∑

k=1

ak,j(ξ)ak,j
(
ξ + β

) l∑

t=1

mt(ξ)mt

(
ξ + β

)

=

(
r∑

k=1

ak,j(ξ)ak,j
(
ξ + β

) − 1

)
l∑

t=1

mt(ξ)mt

(
ξ + β

)
.

(3.42)

Hence,
∑l

t=1mt(ξ)mt(ξ + β) = 0 or
∑r

k=1ak,j(ξ)ak,j(ξ+β) = 1. If φ is compactly supported,
then the first possibility is eliminated except possibly on a set of measure 0, whence the
second must hold almost everywhere. Now, the sum is precisely the inner product of the
two vectors ak,j(ξ) and ak,j(ξ + β), each of which has length 1. Applying Cauchy-Schwarz
inequation yields that the two vectors must be identical for almost every ξ.

4. Conclusion

In this paper, motivated by the notion of orthogonal frames, we present the construction of
orthogonal multiwavelet frames in L2(Rd) with matrix dilation, where the basic ingredients
consist of two fixed multiwavelet basis and a paraunitary matrix of an appropriate size.
The number of orthogonal multiwavelet frames that can be constructed is arbitrary, and is
determined by the size of the paraunitary matrix. Moreover, by using the unitary extension
principle, we present an algorithm for the construction of orthogonal multiwavelet tight
frames and give a general construction algorithm for orthogonal multiwavelet tight frames
from a scaling function.
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[19] D. Bakić, I. Krishtal, and E. N. Wilson, “Parseval frame wavelets with E

(2)
n -dilations,” Applied and

Computational Harmonic Analysis, vol. 19, no. 3, pp. 386–431, 2005.
[20] O. Christensen, “Frames and pseudo-inverses,” Journal of Mathematical Analysis and Applications, vol.

195, no. 2, pp. 401–414, 1995.
[21] J. R. Holub, “Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces,”

Proceedings of the American Mathematical Society, vol. 122, no. 3, pp. 779–785, 1994.
[22] A. Ron and Z. Shen, “Frames and stable bases for shift-invariant subspaces of L2(Rd),” Canadian

Journal of Mathematics. Journal Canadien de Mathématiques, vol. 47, no. 5, pp. 1051–1094, 1995.
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