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Symmetries of the fundamental first integrals for scalar second-order ordinary differential
equations (ODEs) which are linear or linearizable by point transformations have already been
obtained. Firstly we show how one can determine the relationship between the symmetries and the
first integrals of linear or linearizable scalar ODEs of order two. Secondly, a complete classification
of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we provide
a counting theorem for the point symmetries of first integrals of scalar linearizable second-order
ODEs. We show that there exists the 0-, 1-, 2-, or 3-point symmetry cases. It is shown that the
maximal algebra case is unique.

1. Introduction

First integrals or constants of the motion of ordinary differential equations (ODEs) are quite
an active and interesting area of research at the present time. Whenever one is dealing
with differential equations and especially with their solutions, you have to deal with first
integrals. In fact, first integrals are the first primary steps towards finding the solutions of
differential equations. First integrals have great importance in mechanics as it deals with
second-order systems of equations and constants of the motion. The maximum number of
symmetries for scalar nth-order ODEs was investigated by Lie [1] (see Mahomed [2]). Lie
showed that scalar first-order ODEs have infinite number of point symmetries. In the case
of scalar second-order ODEs Lie proved that the maximum is eight, and this is achieved by
the free particle and indeed linearizable by point transformation equations. In recent work
by Mahomed and Leach [3], they discovered the symmetries of the maximal cases of scalar
linear nth-order ODEs, n ≥ 3. These cases are n + 1, n + 2, and n + 4. There is yet another
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contribution by Leach and Mahomed [4], in which they have found that the Lie algebra
of the fundamental first integrals and their quotient of scalar linear second-order ODEs are
three-dimensional and have very interesting properties. This also applies to linearizable by
invertible transformations second-order ODEs which are given as examples in their paper.
In the case of scalar third-order linear ODEs, Govinder and Leach [5] provided the algebraic
structure of the basic first integrals. They showed that in the three equivalence classes each
has certain first integrals with a specific number of point symmetries. So far, none of these
authors consider the classification of the symmetries of first integrals of scalar linear nth-
order ODEs, n ≥ 1, nor even investigate what could be the maximal numbers of symmetries
for the first integrals of these linear or linearizable equations. They do give insights into the
algebraic structure of the fundamental first integrals and in some cases their quotients.

In this paper we give the complete classification of point symmetries for the first
integrals of scalar linear second-order ODEs and the relationship between the symmetries
and first integrals. For this purpose we use the projective transformations to find the different
cases of symmetries for the first integrals of scalar second-order ODEs which are linear or
linearizable by point transformations. Since all scalar second-order ODEs which are linear
or linearizable by point transformations are transformable to the free particle equation, we
utilize this as our base ODE. We find that there are the no-symmetry, one-symmetry, two-
symmetry, and unique three-symmetry cases.

It is well known that the second-order ODE

E
(
x, y, y′, y′′) = 0 (1.1)

is invariant under the infinitesimal generator

X = ξ
(
x, y

) ∂

∂x
+ η

(
x, y

) ∂

∂y
(1.2)

if and only if

X[2]E|E=0 = 0, (1.3)

where

X[2] = X + ζ1
∂

∂y′ + ζ2
∂

∂y′′ , (1.4)

with

ζ1 = Dx

(
η
) − y′Dx(ξ),

ζ2 = Dx(ζ1) − y′′Dx(ξ)
(1.5)

in which Dx is the total differentiation operator, is called the second prolongation of the
generator X.
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Now we can say that (1.2) is the point symmetry of (1.1), whereas, in the case of first
integrals, the first integral

I = f
(
x, y, y′), (1.6)

of the ODE (1.1), is annihilated by X, that is, (1.2) is the symmetry generator of (1.6) if and
only if

X[1]I = 0. (1.7)

HereX annihilates I and does not leave it invariant as in the case of symmetries of equations.
Note that the procedure for finding symmetries of ODEs is different to that of finding sym-
metries of first integrals. In fact the symmetries of the first integrals are a subalgebra of the
symmetries of the equation itself (see Kara and Mahomed [6]).

It is essential to point out that (1.1) is linearizable by point transformation to the free
particle equation if and only if it is cubic in the first derivatives as

y′′ = A
(
x, y

)
y′3 + B

(
x, y

)
y′2 + C

(
x, y

)
y′ +D

(
x, y

)
, (1.8)

where the functions from A to D satisfy the invariant conditions (see Tresse [7] and also [8])

3Axx + 3AxC − 3AyD + 3ACx + Cyy − 6ADy + BCy − 2BBx − 2Bxy = 0,

6AxD − 3ByD + 3ADx + Bxx − 2Cxy − 3BDy + 3Dyy + 2CCy − CBx = 0.
(1.9)

As an example we revisit the well-known modified Emden equation which has eight point
symmetries [9]

y′′ + 3yy′ + y3 = 0. (1.10)

This ODE satisfies (1.8) and (1.9) and is reducible to the free particle equation y′′ = 0 via the
map (see [9])

x = x − 1
y
, y =

1
2
x2 − x

y
. (1.11)

Therefore in the sequel we consider the free particle equation as representative of all lineariza-
ble by point transformations scalar second-order ODEs.

In the next section we give the classifying relation for the symmetries of the first inte-
grals of the free particle equation.
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2. Symmetries of the Fundamental First Integrals

We consider the free particle equation

y′′ = 0 (2.1)

which has the maximum number of symmetries, namely, eight given by (we list them here as
we use these in what follows)

X1 =
∂

∂x

X2 =
∂

∂y

X3 = x
∂

∂x

X4 = y
∂

∂y

X5 = x
∂

∂y

X6 = y
∂

∂x

X7 = x2 ∂

∂x
+ xy

∂

∂y

X8 = xy
∂

∂x
+ y2 ∂

∂y
.

(2.2)

It is clear that the free particle equation (2.1) has two functionally independent first integrals

I1 = y′, (2.3a)

I2 = xy′ − y. (2.3b)

The first integral (2.3a) has three symmetries [4]

X1 =
∂

∂x

X2 =
∂

∂y

X3 = x
∂

∂x
+ y

∂

∂y
,

(2.4)
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and (2.3b) also has three symmetries [4]

G1 = x
∂

∂x

G2 = x
∂

∂y

G3 = x2 ∂

∂x
+ xy

∂

∂y
.

(2.5)

We observe that the symmetries of the first integral of (2.3a) are the same as that of (2.3b) if
we multiply the symmetries of (2.3a) by x which is the multiplier or characteristic of the free
particle equation that results in the integral I2.

Let us see what happens if we find the symmetries of the quotient of the first integrals
((2.3a) and (2.3b)), namely,

I2
I1

= x − y

y′ . (2.6)

As shown in [4], (2.6) possesses three symmetries as well. These are

Y1 = y
∂

∂x
,

Y2 = y
∂

∂y
,

Y3 = xy
∂

∂x
+ y2 ∂

∂y
,

(2.7)

which are the same as the symmetries (2.4) if we multiply the symmetries of (2.3a) by y.
However, this is not a multiplier of our equation.

It was demonstrated, in the seminal paper [4], that the Lie algebras of the symmetries
of the first integrals I1, I2 and their quotient I2/I1 are isomorphic. Also each triplet (2.4), (2.5),
and (2.7) can be mapped into the other by a projective transformation. Furthermore, it was
noted in [4] that the three triplets together generate the Lie algebra sl(3, R) of the free particle
equation.

3. Classifying Relation for the Symmetries

We know (see [4]) the symmetries of the functionally independent first integrals I1 and
I2 or their quotient of the free particle equations. These are what we briefly reviewed
and commented on in the previous section. Now the question arises if we want to know
the symmetry properties of say the product I1I2. We then need to compute them from
first principles by using the symmetry condition. Instead of doing this each time from
the beginning principles, can one obtain the relationship between the symmetries and first
integrals? This is what we do here. The benefit of having such a relation enables us to also
classify the first integrals of the free particle equation in terms of their point symmetries.
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Let then F be an arbitrary function of I1 and I2, namely, F = F(I1, I2). The symmetry of
this general function of the first integrals is

X[1]F = X[1]I1
∂F

∂I1
+X[1]I2

∂F

∂I2
= 0, (3.1)

where

X[1]I1 =
[
ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′

]
y′ = ζx

X[1]I2 =
[
ξ
∂

∂x
+ η

∂

∂y
+ ζx

∂

∂y′

]
(
xy′ − y

)
= ξy′ + xζx − η.

(3.2)

Now ξ, η, and ζx are

ξ = a1 + xa3 + ya6 + x2a7 + xya8

η = a2 + ya4 + xa5 + xya7 + y2a8

ζx = −y′a3 + y′a4 + a5 − y′2a6 +
(
y − xy′)a7 +

(
yy′ − xy′2

)
a8.

(3.3)

These are the coefficients of X[1] which are obtained by setting

X[1] =
8∑

i=1

aiX
[1]
i , (3.4)

where Xis are the free particle symmetries as given in (2.2), and the ais are constants. The
reason for this is that the symmetries of the first integrals are always the symmetries of the
free particle equation (see [6]).

After substituting the values of X[1]I1, X[1]I2 as in (3.2), with ξ, η, and ζx as in (3.3), in
(3.1), we get after some calculations

[
−y′a3 + y′a4 + a5 − y′2a6 +

(
y − xy′)a7 +

(
yy′ − xy′2

)
a8

] ∂F
∂I1

+
[(

a1 + xa3 + ya6 + x2a7 + xya8

)
y′

+
(
−y′a3 + y′a4 + a5 − y′2a6 +

(
y − xy′)a7 +

(
yy′ − xy′2

)
a8

)
x

−
(
a2 + ya4 + xa5 + xya7 + y2a8

)] ∂F
∂I2

= 0.

(3.5)
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Then by using the relations I1 = y′ and I2 = xy′ − y from ((2.3a) and (2.3b)), we finally arrive
at the classifying relation

(
−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8

) ∂F

∂I1

+
(
I1a1 − a2 + I2a4 − I1I2a6 − I22a8

) ∂F

∂I2
= 0.

(3.6)

The relation (3.6) provides the relationship between the symmetries and first integrals of the
free particle equation. We remind the reader that any symmetry of a first integral of the free
particle equation is contained in the condition (3.6). We use this to classify the first integrals
according to their symmetries.

4. Symmetry Structure of First Integrals

We invoke the classifying relation (3.6) to establish the number of symmetries possessed by
the first integrals of the free particle equation.

There arise four cases.

Case 1 (no symmetry). If F is any arbitrary function of I1 and I2, then FI1 and FI2 are not relat-
ed to each other. In this case we have from (3.6) that

−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8 = 0,

I1a1 − a2 + I2a4 − I1I2a6 − I22a8 = 0.
(4.1)

It is easy to see from (4.1) that all the as are zero. Therefore there exists no symmetry for this
case.

As an illustrative example, if we take F = I1 ln I2, then (3.6) yields

(
−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8

)
I2 ln I2

+
(
I1a1 − a2 + I2a4 − I1I2a6 − I22a8

)
I1 = 0.

(4.2)

This straightforwardly results in all the as being zero.
The results here are quite unexpected and surprising. One will not have imagined a

zero symmetry case for a first integral of the simplest equation! The consequence of this is as
follows.

If we set the first integral to be a constant as in the example, we have

y′ ln
(
xy′ − y

)
= C. (4.3)

To integrate this kind of messy integral (4.3) and find the solution of the free particle equation
from it is not easy. But this difficulty is avoidable. One does not usually obtain complicated
first integral such as (4.3) in ones computation in the first place by using the approaches such
as the direct method, Noether’s theorem, and multiplier approach.
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Case 2 (one Symmetry). Firstly we notice that if F satisfies the classifying relation (3.6),
then X, which is a linear combination of the free particle generators, is a symmetry of this
classifying relation. We also observe from (3.6) that if one has any of the free symmetry
generators Xi as a symmetry of a first integral of the equation, then one ends up with three
symmetries! That is one can have more than one symmetry.

Say if we take a2 arbitrary, that is, X = ∂/∂y, then (3.6) yields (since ∂F/∂I2 = 0 and
∂F/∂I1 /= 0)

−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8 = 0, (4.4)

which in turn implies that a1 is arbitrary and a3 = a4 as well. Thus we get more than one
symmetry.

We in fact arrive at the three symmetries given in (2.4). The same applies for the other
symmetries taken one at a time.

However, we do have several cases when exactly one symmetry occurs.
If we take F = I1I2 or any function of the product, then the relation (3.6) gives rise to

exactly the symmetry

X = 2x
∂

∂x
+ y

∂

∂y
. (4.5)

If we let F = exp(I21I2), then (3.6) results in only

X = 3x
∂

∂x
+ 2y

∂

∂y
. (4.6)

As another simple example, if we set F = I1 exp(−I2), then (3.6) implies the one symmetry

X = x
∂

∂x
+

∂

∂y
. (4.7)

As a matter of interest there are infinitely many one-symmetry cases.
To see this we consider the first integral

F =
1
2
I21 − aI2, a /= 0. (4.8)

The relation (3.6) then yields

(
−I1a3 + I1a4 + a5 − I21a6 − I2a7 − I1I2a8

)
I1

+
(
I1a1 − a2 + I2a4 − I1I2a6 − I22a8

)
(−a) = 0.

(4.9)
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Separation with respect to powers of I1 and I2 gives rise to aa1 = a5. Therefore we have the
parameter-dependent symmetry

X = X1 + aX5. (4.10)

Yet a more complicated one is

X = X1 + aX5 + aX6, a /= 0. (4.11)

This symmetry is associated with the first integral

F =
(I2a − 1)2

I21a − a
(4.12)

which can be constructed just as before. Similarly, there are many possibilities for one
symmetry.

Therefore the one symmetry case is not unique. Next we discuss the two symmetry
case.

Case 3 (two symmetries). We have already seen from Case 2 that the translations in x
and y symmetries further imply the uniform scaling symmetry. Thus one cannot have two
symmetries of translations alone that are associated with a first integral of the free particle
equation. Likewise the same applies for the translations in y and the uniform scaling
symmetries.

Further if we have the symmetries

X =
∂

∂y
, Y = x

∂

∂y
(4.13)

which forms the two-dimensional Abelian algebra, then a2 and a5 are arbitrary in (3.6). This
directly gives

∂F

∂I1
=

∂F

∂I2
= 0, (4.14)

and hence no integral. This means that one does not have these types of symmetries admitted
by any first integral of the free particle equation.

The same argument applies if we consider

X =
∂

∂y
, Y = y

∂

∂y
(4.15)

which forms a two-dimensional non-Abelian algebra. Here again this two-dimensional
algebra is not admitted by any integral of the equation.
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So when do two symmetries occur for a first integral of the free particle equation?
From the above it is clear that the simple type of symmetry combinations does not form two
symmetries of an integral. Thus there have to be combinations of the symmetries. One such
combination is

X =
∂

∂x
− x

∂

∂x
,

Y =
∂

∂y
− x

∂

∂y
.

(4.16)

The Lie algebra formed by (4.16) is two dimensional with commutator [X,Y ] = −Y . Here the
combination of symmetries means that a3 = −a1 and a5 = −a2. The use of these in the relation
(3.6) forces F to satisfy the one condition

∂F

∂I1
+

∂F

∂I2
= 0, (4.17)

which gives the independent integral

F = I2 − I1. (4.18)

Hence this F admits two symmetries.
We now look at a case in which at least one of the symmetries has a parameter in it.

This is provided by the operators

X = X1 + aX6, a /= 0

Y = X2 + aX4.
(4.19)

The symmetries (4.19) span a two-dimensional algebra with

[X,Y ] = −aX. (4.20)

Here F is given by

F = a
I2
I1

− 1
I1
. (4.21)

We conclude by saying that the two symmetry case is not unique.

Case 4 (three symmetry). We now present a detailed study of possible three-dimensional
algebra of symmetries admitted by first integrals of the free particle equation. Two essential
deductions come out of our analysis. Firstly we show that the three-dimensional algebra
admitted by a first integral is unique. Secondly we prove that three is the maximal dimension
admitted by any integral.

We utilize the realizations of three-dimensional Lie algebras in the real plane given by
Mahomed and Leach [10]. However, we use the notation given in Ibragimov and Mahomed
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Table 1: Realizations of three-dimensional algebras in the real plane.

p = ∂/∂x and q = ∂/∂y

Algebra Realizations in (x, y) plane
L3; 1 X1 = q, X2 = xq, X3 = h(x)q
L3; 2 X1 = q, X2 = p, X3 = xq

LI
3; 3 X1 = q, X2 = p, X3 = xp + (x + y)q

LII
3; 3 X1 = q, X2 = xq, X3 = p + yq

LI
3; 4 X1 = p, X2 = q, X3 = xp

LII
3; 4 X1 = q, X2 = xq, X3 = xp + yq

LI
3; 5 X1 = p, X2 = q, X3 = xp + yq

LII
3; 5 X1 = q, X2 = xq, X3 = yq

LI
3; 6 X1 = p, X2 = q, X3 = xp + ayq, a /= 0, 1

LII
3; 6 X1 = q, X2 = xq, X3 = (1 − a)xp + yq, a /= 0, 1

LI
3; 7 X1 = p, X2 = q, X3 = (bx + y)p + (by − x)q

LII
3; 7 X1 = xq, X2 = q, X3 = (1 + x2)p + (x + b)yq

LI
3; 8 X1 = q, X2 = xp + yq, X3 = 2xyp + y2q

LII
3; 8 X1 = q, X2 = xp + yq, X3 = 2xyp + (y2 − x2)q

LIII
3; 8 X1 = q, X2 = xp + yq, X3 = 2xyp + (y2 + x2)q

LIV
3; 8 X1 = q, X2 = yq, X3 = y2q

L3; 9
X1 = (1 + x2)p + xyq, X2 = xyp + (1 + y2)q,
X3 = yp − xq

[11] (see also Mahomed [2]), that is, Lα
3;i, where 3 refers to the dimension of the algebra, i to

the number of the algebra in some given ordering and α is the realization as an algebra may
have more than one realization. For example, LII

3;4 denotes the second realization of the fourth
Lie algebra of dimension 3.

All canonical forms of three-dimensional real Lie algebras in the plane is given in
Table 1. This is taken from [2].

Remark 4.1. We point out that the Lie algebras L3;1 and LIV
3;8 are not admitted by any scalar

second-order ODE. Hence we do not consider these hereafter (see [10]).

Instead of using the realizations LI
3;8, L

II
3;8, and LIII

3;8 given in Table 1, we use the free par-
ticle generators (see [12])

X1 = p, X2 = xp +
1
2
yq, X3 = x2p + xyq, (4.22)

X1 = p + xq, X2 = xp + 2yq, X3 = 2
(
x2 − y

)
p + 2xyq, (4.23)

X1 = p − xq, X2 = −xp + 2yq, X3 = 2
(
x2 + y

)
p + 2xyq. (4.24)

Therefore the realizations of three-dimensional algebras given in Table 1 by replacement of
LI
3;8, L

II
3;8, and LIII

3;8 by their free particle operators (4.22), (4.23), and (4.24) above, except L3;1

and LIV
3;8, are free particle symmetry generators. We utilize these in our analysis below.
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As L3;1 is not admitted by the free particle equation, we begin with L3;2. We want this
algebra to be admitted by a first integral of the free particle equation.We utilize the classifying
relation (3.6). Therefore a1, a2, and a5 are arbitrary which imply that F is constant. Hence this
algebra is not admitted by any first integral.

The same applies to the algebras LI
3;3, L

II
3;3, L

I
3;4, L

II
3;4, L

II
3;5, L

I
3;6, L

II
3;6, L

I
3;7, L

II
3;7 and LI

3;8.

We separately consider the algebra LII
3;8. We show that this algebra is not admitted by

an integral as well. For what follows we utilize the free particle representation (4.23). We find
that these operators correspond to a1 = a5, 2a3 = a4, and a6 = −a7. The substitution of the
latter in the relation (3.6) results in the three conditions on F, namely,

I1
∂F

∂I1
+ 2I2

∂F

∂I2
= 0,

∂F

∂I1
+ I1

∂F

∂I2
= 0,

(
I21 − I2

) ∂F

∂I1
+ I1I2

∂F

∂I2
= 0.

(4.25)

The first two imply that F is constant which satisfy the third. Thus there is no algebra of this
type admitted by a first integral of the free particle equation. The analysis for LIII

3;8 is similar
and this algebra too is not admitted.

For L3;9, the operators imply that a6 = −a5, a7 = a1, and a8 = a2, the insertion of which
into the relation (3.6) gives a condition on F with a1, a2, and a5 arbitrary. Then the result that
F must be constant arises. Thus this algebra is not admitted as well.

In the case of LI
3;5 we have that I1 has this algebra. This is precisely the algebra of the

symmetries given in (2.4). We mention that the symmetries given in (2.5) and (2.7) also form
the algebra LI

3;5 as a projective transformation (see [4]) maps each of the representations to
the one given in (2.4).

In conclusion, we have that the only three-dimensional algebra admitted by a first
integral of the free particle equation is LI

3;5.
We can state the following theorems.

Theorem 4.2. A first integral of the free particle or any scalar linearizable, by point transformation,
second-order ODE admits a three-dimensional algebra if and only if the algebra is LI

3;5.

The proof follows from the preceding discussion. Also we note that this algebra LI
3;5 is

admitted by the integrals I1, I2 or I2/I1.

Theorem 4.3. The maximum dimension of the algebra admitted by any first integral of the free particle
or any scalar linearizable, by point transformation, second-order ODE is three, and the algebra is LI

3;5.

Proof. A first integral of the free particle or scalar second-order ODE, which is linearizable by
point transformation, cannot admit a maximal algebra of dimensionmore than three since the
functionally independent integrals or their quotient has the unique three-dimensional algebra
which corresponds to LI

3;5. The other integrals possess lower-dimensional algebras.
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5. Concluding Remarks

In this work we have provided the algebraic structure of first integrals of the free particle or
any scalar linearizable, via point transformation, ODE. Firstly, we derived the relationship
between the symmetries and the first integrals of the free particle equation. By analyzing
this classifying relation (3.6), we were able to establish the number of symmetries possessed
by any first integral of the free particle equation. We obtained the important result that the
symmetries admitted by a first integral can be 0, 1, 2, or 3. It was observed that the zero
symmetry case was rather surprising or unexpected as one does not have a route to the
integration of the equation due to the lack of any symmetry and this too for the simplest
equation. The one- and two-symmetry cases were not unique; there were many first integrals
with differing one- and two-symmetry structures. These were carefully discussed. Finally,
we studied completely the situation when a first integral has three symmetries. We used the
classification of realizations in the plane adapted as free particle symmetries. We showed that
the only three-dimensional algebra admitted by a first integral of the free particle equation is
LI
3;5 which is admitted by the functionally independent integrals I1 and I2 as well as their

quotient I2/I1. Although this triplet of symmetries was discovered before in the seminal
work of Leach and Mahomed [4], these authors did not prove that it was unique nor the
maximum algebra. However, they did emphasize the important result that the algebras of the
triplets of symmetries were isomorphic and that the three triplets of symmetries generate the
sl(3, R) symmetry of the equation. We showed that the maximum algebra is indeed the three-
dimensional algebra LI

3;5 by completely analyzing all representations of the three-dimensional
algebras.
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