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A generalized (G'/G)-expansion method is proposed to seek the exact solutions of nonlinear
evolution equations. Being concise and straightforward, this method is applied to the Zakharov
equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are
obtained. This method can also be applied to other nonlinear evolution equations in mathematical
physics.

1. Introduction

In recent years, with the development of symbolic computation packages like Maple and
Mathematica, searching for solutions of nonlinear differential equations directly has become
more and more attractive [1-7]. This is because of the availability of computers symbolic
system, which allows us to perform some complicated and tedious algebraic calculation and
help us find new exact solutions of nonlinear differential equations.

In 2008, Wang et al. [8] introduced a new direct method called the (G'/G)-expansion
method to look for travelling wave solutions of nonlinear evolution equations (NLEEs). The
method is based on the homogeneous balance principle and linear ordinary differential equa-
tion (LODE) theory. It is assumed that the traveling wave solutions can be expressed by a
polynomial in (G'/G), and that G = G(¢) satisfies a second-order LODE G” + AG' + uG = 0.
The degree of the polynomial can be determined by the homogeneous balance between the
highest order derivative and nonlinear terms appearing in the given NPDEs. The coefficients
of the polynomial can be obtained by solving a set of algebraic equations. Many literatures
have shown that the (G'/G)-expansion method is very effective, and many nonlinear
equations have been successfully solved. Later, the further developed methods named the
generalized (G'/G)-expansion method [9], the modified (G'/G)-expansion method [10],
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the extended (G'/G)-expansion method [11], the improved (G'/G)-expansion method [12],
and the (G'/G, 1/G)-expansion method [13] have been proposed.

As we know, when using the direct method, the choice of an appropriate auxiliary
LODE is of great importance. In this paper, by introducing a new auxiliary LODE of different
literature [8], we propose the generalized (G'/G)-expansion method, which can be used to
obtain travelling wave solutions of NLEEs.

In our contribution, we will seek exact solutions of the Zakharov equations [14]:

Myt = Coy = ﬂ(IEIZ) , (1.1)

xXx

iE; + aEyy = 6nE, (1.2)

which are one of the classical models on governing the dynamics of nonlinear waves and
describing the interactions between high- and low-frequency waves, where n is the perturbed
number density of the ion (in the low-frequency response), E is the slow variation amplitude
of the electric field intensity, c; is the thermal transportation velocity of the electron ion, and
a#0,p+#0,6#0 and ¢, are constants.

Recently, many exact solutions of (1.1)-(1.2) have been successfully obtained by using
the extended tanh-expansion method, the extended hyperbolic function method, the F-
expansion method, the (G'/G, 1/G)-expansion method [13-19], and so on.

In this paper, we construct the exact solutions to (1.1)-(1.2) by using the generalized
(G'/G)-expansion method. Furthermore, we show that the exact solutions are expressed by
the Jacobi elliptic function.

2. The Generalized (G'/G)-Expansion Method

Suppose that we have a nonlinear partial differential equation (PDE) for u(x,t) in the form

N(ul Up, Ux, Utt, Uxt, Uxx, - - ) = 0/ (21)

where N is a polynomial in its arguments.

Step 1. By taking u(x,t) = u(¢), ¢ = x — ct, we look for traveling wave solutions of (2.1) and
transform it to the ordinary differential equation (ODE)

n
N(u, —cu', ', *u ,—cu",u", .. > =0. (2.2)

Step 2. Suppose the solution u of (2.2) can be expressed as a finite series in the form

u= a0+gai<§>i, (2.3)
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where ay, a; (i=1,2,...,m) are constants to be determined later; f = f(¢) is a solution of the
auxiliary LODE

fP=Pf+Qf*+R, (2.4)

where P, Q, and R are constants.

Step 3. Determine the parameter m by balancing the highest order nonlinear term and the
highest order partial derivative of u in (2.2).

Step 4. Substituting (2.3) and (2.4) into (2.2), setting all the coefficients of all terms with the
same powers of (f'/ f )* (k=1,2,...) to zero, we obtain a system of nonlinear algebraic equa-
tions (NAEs) with respect to the parameters c, ag, a; (i = 1,2,...,m). By solving the NAEs if
available, we can determine those parameters explicitly.

Step 5. Assuming that the constants c, ag, a; (i = 1,2,...,m) can be obtained by solving the
algebraic equations in Step 4, then substituting these constants and the known general solu-
tions into (2.3), we can obtain the explicit solutions of (2.1) immediately.

3. Exact Solutions of the Zakharov Equations

In this section, we mainly apply the method proposed in Section 2 to seek the exact solutions
of the Zakharov equations.

Since E(x,t) in (1.2) is a complex function and we are looking for the traveling wave
solutions, thus we introduce a gauge transformation:

E(x,t) = p(&)elibxetl = (@), g=x—-cgt+g, (3.1)

where ¢(x,t) is a real-valued function, cg, k, and w are constants to be determined later, and
& and ¢; are constants. Substituting (3.1) into (1.1)-(1.2), we have

<c§ - cﬁ)n” = [3((,02)”, (3.2)

ag’ +i(2ak - cg)g + (w - ak2>(p - 6ny = 0. (3.3)

Integrating (3.2) twice with respect to ¢, we have

p
n= m¢2+cl§+c2’ Cé—Cﬁ#O, (34)

where C; and C; are integration constants. Substituting (3.4) into (3.3), we have

atp"+i(2ak—cg)(p'+(w—zxk2>(p—6< 2'6 (p2+C1§+C2><p:O. (3.5)

2
Cg — Cs
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In (3.5), we assume that

p
cg = 2ak, ki = cﬁ. —Z (3.6)
Then (3.5) becomes the nonlinear ODE
" 2 3 —
ap” + (w—ak )(p—6k1(p +6(C1g+Cr)p =0. (3.7)

According to the homogeneous balance between ¢” and ¢° in (3.7), we obtain m = 1.
So we assume that ¢ can be expressed as

9(¢) = ao+am (?) (3.8)

where f = f(¢) satisfies (2.4). By using (2.4) and (3.8), it is easily derived that

soa(5)((4) -2) o)

Substituting (3.8) and (3.9) into (3.7), the left-hand side of (3.7) becomes a polynomial
in (f'/ f) and ¢. Setting their coefficients to zero yields a system of algebraic equations in ay,
ai, k, k1, and w. Solving the overdetermined algebraic equations by Maple, we can obtain the
following results:

2a

el - 2 - 3.10
e @ a(2Q+k)+5c2, C, = 0. (3.10)

ap = 0, a =
Substituting (3.10) into (3.8), we obtain

"’=\/k21:’:5<f7l>' (3.11)

Substituting (3.11) into (3.1) and (3.4), we have the following formal solution of (1.1)-

(1.2):
]2 LN ikt
k= ‘Vz?s(?)e '

n= 2§[<§)2+Cz,

(3.12)

where ¢ = x - 2akt + &1, w = a(2Q + k?) + 6C,, and k; = B/ (4ak? - c2).
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With the aid of the appendix [20] and from the formal solution (3.12), we get the fol-
lowing set of exact solutions of (1.1)-(1.2).

Case 1. Choosing P = m?, Q = —(1 + m?), R = 1, and f(¢) = sn(¢) and inserting them into
(3.12), we obtain the Jacobi elliptic function solution of (1.1)-(1.2)

E = \/%cs(g)dn(g)e“<kx—wf+€°>1,
! (3.13)

2a

gcsz(é)dn2 (&) +Co,

n =
where ¢ = x — 2akt + ¢1, w = a(-2(1 + m?) + k?) + 6Cy, and k; = f/ (4a’k? — c2).
Case 2. Choosing P = m?, Q = —(1+m?), R = 1, and f(¢) = cd(¢) and inserting them into

(3.12), we obtain the Jacobi elliptic function solution of (1.1)-(1.2)

2a

E=Ais (1-m?) sd(§)ne(g)elitxero,
(3.14)
_m2)?
1y = Msdz(g)ncz(g) +Cy,

6

where ¢ = x — 2akt + &1, w = a(-2(1 + m?) + k?) + 6C,, and k; = f/ (4a’k? - c2).

Case 3. Choosing P = -m?, Q =2m* -1, R=1-m?, and f(¢) = cn(¢), we obtain

E3=— /kz;'(;dC(é)sn(g)e[i(kx—wﬁéo)]’
! (3.15)

2a

5 dc?(§)sn’(§) + Ca,

ns =

where ¢ = x - 2akt + &1, w = a(2(2m? - 1) + k?) + 6Cy, and ky = B/ (4a’k? - c2).

Case 4. Choosing P =-1,Q =2-m?, R=m? -1, and f(§) = dn(¢), we obtain

E,=- Z_amZCd(é)sn(g)e[i(kx—wt+§o)],
k.6
(3.16)

Ny = ZD‘T”14cc12 (&)sn? (&) + Cy,

where ¢ = x - 2akt + &1, w = a(2(2 — m?) + k?) + 6C,, and k; = f/ (4a’k> - c2).
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Case 5. Choosing P =1, Q = —(1 +m?), R = m?, and f(¢) = ns(¢), we obtain
Es = - pcs(@)dn(@eliterrbl,
! (3.17)
s = e (@dnd (@) +

where ¢ = x — 2akt + &1, w = a(-2(1 + m?) + k?) + 6C,, and k; = B/ (4a’k? - c2).

Case 6. Choosing P =1, Q = —(1+m?), R=m?,and f(¢) = dc(¢), we obtain

2a i(kx—wt+¢y
Eo =/ g (1= ) sc@nd(@elit=-ors, .
_n2)?
Nng = MSCZ (§)nd2(§) + Cy,

where ¢ = x — 2akt + ¢1, w = a(-2(1 + m?) + k?) + 6Cy, and k; = f/ (4a’k? — c2).

Case 7. Choosing P =1-m?, Q =2m? -1, R=-m? and f(¢) = nc(¢), we obtain
20 [i(kx—wt+éo)]
E; = ﬁdc(g)sn(g)e o,
1 (3.19)
ny = %”‘olc2 (&)sn?(¢) + Ca,

where ¢ = x - 2akt + &1, w = a(2(2m? - 1) + k?) + 6Cy, and ky = f/ (4a’k? - c2).

Case 8. Choosing P=m?-1,Q =2-m? R=-1,and f(§) =nd(¢), we obtain

Ey = || g mied(@sn(@eli e,
! (3.20)
2(1”’14 2 2
ng = cd”(&)sn“ (&) + Cy,

6

where ¢ = x - 2akt + &, w = a(2(2 — m?) + k?) + 6C,, and ky = p/ (4a’k?> — c?).

Case 9. Choosing P=1-m?, Q=2-m? R=1,and f(¢) = sc(¢), we obtain

By = [ 2 de(@ms(@)elitrs,
! (3.21)

ng = 2gadc2 (g)ns2 (&) + Cy,

where ¢ = x - 2akt + &1, w = a(2(2 — m?) + k?) + 6C,, and k; = B/ (4a’k> - c2).



Journal of Applied Mathematics 7

Case 10. Choosing P = -m?*(1 -m?), Q =2m? -1, R=1, and f(¢) = sd(¢), we obtain

Eio = |/ pscd(@ns(@)elieersa,
! (3.22)

2R + C,

ny =
where ¢ = x - 2akt + &, w = a(2(2m? - 1) + k?) + 6Cy, and ky = B/ (4a’k? - c2).

Case 11. Choosing P =1,Q =2-m?, R=1-m?,and f({) = cs(¢), we obtain

Eir = |/ g ds(@ne(@el e,
! (3.23)

= AN + Co,

where ¢ = x - 2akt + &1, w = a(2(2 — m?) + k2) + 6C,, and k; = f/ (4a*k> - c?).

Case 12. Choosing P =1, Q =2m? -1, R = -m?(1 — m?), and f(¢) = ds(¢), we obtain

Eiz = -] pcs@nd (el
! (3.24)

m = e Ond(Q) + O,

where ¢ = x - 2akt + ¢, w = a(22m? — 1) + k?) + 6Cy, and k; = B/ (4a’k? - c2).

Case 13. Choosing P =1/4,Q = (1 -2m?)/2, R=1/4,and f () = ns(¢) + cs(¢), we obtain

E; = 7| /%ds(g)e[i(k"’“’”%”,
! (3.25)

2
ni3 = Fadsz(é) +Cy,

where ¢ = x — 2akt + &, w = a(1 — 2m* + k?) + 6C,, and k; = B/ (4a’k?> - c2).

Case 14. Choosing P = (1 -m?)/4,Q = (1+m?)/2, R = (1 - m?)/4,and f(§) = nc(Z) £sc(2),

we obtain
2a (kx-ot+49)]
Euu=+ ﬁcjlc(g)e[z( x-wit)]
! (3.26)

Ny = %Xdcz(ﬁ) +Cy,

where ¢ = x - 2akt + &1, w = a(l + m? + k?) + 6Cy, and ki = B/ (4a’k? - c2).
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Case 15. Choosing P =1/4,Q = (m*>-2)/2, R=m?/4,and f(¢) = ns(¢) + ds(¢), we obtain

Eis = + lz_acs(é)e[i(kx—wﬂéo)],
k16 (3.27)

2a
nis = —C52(§) +Cy,

)

where ¢ = x - 2akt + ¢, w = a(m? — 2 + k?) + 6C,, and ki = f/ (4a*k* - c2).

Case 16. Choosing P = m?/4,Q = (m* -2)/2, R=m?/4,and f(¢) = sn(¢) +icn(g), we obtain

o[22 dn@ (en@ isn@)elit-wib)
7 Vkio sn(@) £ icn () /

_ 2adn’(¢)(en(@) F isn(¢))?
6(sn(¢) + icr1(§))2

(3.28)

2/

where ¢ = x - 2akt + &, w = a(m? =2 + k?) + 6Cy, and ki = B/ (4a’k? - c2).

Case 17. Choosing P = m?/4,Q = (m?>-2)/2, R =m?/4,and f (&) = vVm? — 1sd(¢) £cd(Z), we
obtain

o <\/ m2 — len(é) £ m?sn(é) F sn(§)>e[i(kx’“’t+‘§0)]
k16 dn(¢) (Vm? = Tsn(¢) £ en(g) )

Ey; =

X (3.29)
2a(/m? = Ten(¢) + mPsn(§) Fsn(g) )

niy = +Cy,

an () (Vi ~Tsn(@) £ en(@))

where ¢ = x - 2akt + ¢, w = a(m? — 2 + k?) + 6C,, and ki = B/ (4a’k* - c2).

Case 18. Choosing P =1/4,Q = (1 - 2m?)/2, R = 1/4, and f(¢) = med(¢) £iv1—-m?nd(¢),
we obtain

\/Emsn(g) <:tm2 F1+ im@cm(é))e[i(k"‘w”gﬂ)]
* VKo dn(¢) <im:|: mcn(§)>

. (3.30)
2am?sn? (&) (:I:m2 Fl+imv1- m2cn(§)>
g = +Cy,

5dn2(¢) (im + mcn(§)>2

where ¢ = x — 2akt + &, w = a(1 — 2m* + k?) + 6C,, and k; = B/ (4a’k> - ).
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Case 19. Choosing P =1/4,Q = (1 -2m?)/2, R=1/4,and f(§) = msn(¢) +idn(¢), we obtain

Fio = 2a men(Z)(dn () F imsn(g))elikx-wté)]
YTV ks msn(¢) +idn(&) ¢

(3.31)
_ 2am’en’(§)(dn(g) F imsn(§))*

6(msn (@) +idn(¢))*

where ¢ = x — 2akt + &1, w = a(1 — 2m? + k?) + 6C,, and k; = B/ (4a’k> - ).
Case 20. Choosing P =1/4,Q = (1-2m?)/2, R =1/4,and f(¢) = Vm? = 1sc(é) + ide(é), we
obtain

2a (V2 =1dn() FimPsn() +isn(g) )elitex-i+i]
ki6 cn(g)( m2 — 1sn(g) + idn(§)>

4

(3.32)
2a<\/ m? — 1dn(g) Fim?sn(Z) + isr1(§)>2
Ny = +C,

Scn2 (@) <msn(§) + idn(é))z

where ¢ = x - 2akt + &, w = a(1 — 2m* + k?) + 6C,, and k; = B/ (4a’k> - ).

Case 21. Choosing P = (m?>-1)/4,Q = (m*+1)/2, R= (m*-1) /4, and f(¢) = msd(§) +nd(¢),

we obtain
2a [i(kx—wt+éo)]
Ex =+ ﬁmcd(g)e o1,
! (3.33)

2am?

5 cd?(¢) + Ca,

N1 =

where ¢ = x — 2akt + &, w = a(m?® + 1 + k?) + 6Cy, and ki = B/ (4a’k? - c2).

Case 22. Choosing P = m?/4, Q = (m*> —2)/2, R = 1/4, and f(¢) = sn(¢)/(1 £ dn(g)), we

obtain
2a i(kx—wt+)]
Exp=4+ ﬁCS(é)eh( rrwel,
! (3.34)

2
Ny = gaCSz(é) +Cy,

where ¢ = x - 2akt + &1, w = a(m? =2 + k?) + 6Cy, and ki = B/ (4a’k? - c2).
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Case 23. Choosing P = —1/4,Q = (m?+1)/2, R = (1- m?)/4, and f(&) = men(&) +dn(Z), we

obtain
2a i(kx—wt+&o)]
Ex=% ﬁmsn(g)e[’( xwh)])
! (3.35)

2am?
N3 = 5 Snz(é) +Cy,

where ¢ = x - 2akt + &, w = a(m? + 1 + k?) + 6C, and ki = B/ (4a’k? - c2).

Case 24. Choosing P = (1 —m?)*/4,Q = (m2 +1)/2, R = 1/4, and f(¢) = ds(Z) + cs(¢), we

obtain
Ep = F / %ns(g)e[i(kx_“’”‘jo)],
! (3.36)

2a

5 ns?(&) + Cy,

N4 =

where ¢ = x — 2akt + ¢1, w = a(m? + 1 + k%) + 6C,, and ki = B/ (4a’k?* - c2).

Case 25. Choosing P = 1/4,Q = (m* -=2)/2, R = m*/4, and f() = dc(§) + V1 - m?nc(¢), we
obtain

2 sn(¢) <=Fm2 +1+ mdn(§)>e[i(kx—wt+go)]
25 = k1_6

en(@) (VI—m? +dn(g))
i (3.37)
2asr?(§) (Fm? 1+ V1= m2dn Q) )

Ny5 = +Cy,

Gen? (@) (VI - m? + dn(§)>2

where ¢ = x - 2akt + &, w = a(m? =2 + k?) + 6C, and ki = B/ (4a’k? - c2).

Case 26. Choosing R = m2Q?/(m? + 1)’P, Q < 0, P > 0, and f(¢) = \/-m2Q/(m?+1)P

sn(y/(-Q/(m? + 1))¢), we obtain

_af2a,] Q -Q 1 | -Q [i(kx—cwot+&0)]
Eg = k16\/m2+1cs<\/m2+1§>dn< m2+l§>e ’
___ 220 o —Q 2[4/ =2
26 = 6(7712+1)Cs < m2+1§>dn < m2+1§>+C2'

where ¢ = x — 2akt + &1, w = a(2Q + k?) + 6C,, and k; = B/ (4ak? - ).

(3.38)
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Case 27. Choosing R = (1 — m*)Q?/(m? - 2)*P, Q > 0, P < 0, and f(¢&) = /-Q/(2 - m2)P
dn(+/(Q/ (2 - m?))¢), we obtain
§>sn< $§>e[i(kﬁf—wt+§o)],

1/2 1/ Q Q
Eyy = — KO; 2_mzmzcd< oy
2aQm*
o (T ()

where ¢ = x - 2akt + &, w = a(2Q + k?) + 6C,, and k; = B/ (4a’k?> - c2).

(3.39)

Case 28. Choosing R = m?(m? - 1)Q*/(2m*> — 1)*’P, Q > 0, P < 0, and f(¢) =
\/-(m2Q/(2m? - 1)P)en(+/(Q/ (2m? - 1))¢), we obtain
§> [i(kx—wt+&o)]

_qf2a,_Q
Eas = k15\/2m2—1dc<\/2m2 > <

(3.40)
_ 2aQ Q Q
s = 6(2m2—1)dcz< 2m2—1§>sn2< 2m2—1§> +C
where ¢ = x — 2akt + &1, w = a(2Q + k?) + 6C,, and k; = B/ (4ak> - c2).
Case 29. Choosing P=1,Q =2-4m? R=1,and f(¢) = sn(§)dn(¢)/cn(), we obtain
Eo o 2a (1-2m2sn?(¢) + m?sn*(¢))elikx—wtra]
¥V k6 en(¢)sn(¢)dn(¢) ’
(3.41)

sz(l - 2m?sn?(&) + m2sn4(§)2>2

S @e@dr2E) T

Np9 =

where ¢ = x - 2akt + &1, w = a(2(2 — 4m?) + k?) + 6C,, and ky = B/ (4a’k? - c2).

Case 30. Choosing P = m* Q =2m? -4, R=1,and f(¢) = sn(¢)cn(g)/dn(¢), we obtain

. 2 (1 _ 25n2(§) + mzsn4(§))e[i(kx—wt+§o)]
¥V ki6 dn(¢)sn(§)en(§) ’
2a(1-2sn%(¢) + m25n4(§))2
6dn2(&)sn2(¢)cn? ()

(3.42)
+ Cz,

nzo =

where ¢ = x - 2akt + &1, w = a(2(2m? - 4) + k?) + 6Cy, and ky = B/ (4a’k? - c2).
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Case 31. Choosing P = 1, Q = 2m? +2, R = 1 - 2m? + m*, and f(§) = en(§)dn(¢)/sn(g), we
obtain

P (m2sn (g) — 1) elitkx-witéo)]
TV 6 sn@en(@)dn()
~ 2a(mPsn(¢) - 1)

T S @en2(@)dn2(@) ¥

(3.43)

nsp

where ¢ = x - 2akt + &1, w = a(2(2m? + 2) + k?) + 6Cy, and ky = B/ (4a’k? - c2).

Case 32. Choosing P = A%2(m —1)*/4,Q = (m?> +1)/2 +3m, R = (m - 1)*/4A2, and f(Z) =
dn(¢)en(¢)/A(1 +sn(¢)) (1 + msn(¢)), we obtain

E 2a (m2sn?(g) + msn?(¢) — 1 — m)elikx-wttio)]
32 = —

ki6 dn(é)en(é)

(3.44)
_ 2a(m?sn*(§) + msn*(¢) 1 - m)2

ez = 5 (B)er(}) e

where ¢ = x - 2akt + ¢, w = a(m? + 1 + k%) + 6C,, and ki = f/ (4a’k* - c2).

Case 33. Choosing P = A2(m+1)*/4,Q = (m2+1)/2-3m, R = (m+1)*/4A2?, and f(¢) =dn(¢)
cen(é)/A(1 +sn(¢)) (1 —msn(¢)), we obtain

Eue < 2a (m?sn?(g) — msn?(¢) + m — 1)elikx-wi+)]
PV ke dn()en(?)

(3.45)
_ 2a(m?sn*(§) — msn*(¢) + m — 1)?
s G (&)er? ()

+ C2,

where ¢ = x - 2akt + &1, w = a(m? + 1 + k?) + 6Cy, and ki = B/ (4a’k? - c2).

Case 34. Choosing P = -4/m, Q = 6m-m? -1, R = -2m* + m* + m?, and f(¢) = men(¢)dn(¢)/
(msn?(¢) + 1), we obtain

Ee o 2a sn(g) (msn?(g) — 1+ 2m?sn?(¢) + m3sn?(¢) — m? — 2m)elikx—wt+a]
* " Vo (msn2(g) + D)en(Z)dn(€) ’
| 2asn?(¢) (msn?(2) — 1+ 2mPsn? (&) + mPsn®(¢) — m® - 2m)’

6(msn?(¢) +1)’en?(§)dn? ()

(3.46)
+ Cz,

N34

where ¢ = x — 2akt + &1, w = a(2(6m — m? — 1) + k?) + 6C,, and k; = p/ (4a’k> - c2).
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Case 35. Choosing P =4/m, Q = -6m - m? -1, R =2m3 + m* + m?, and f(¢) = men(¢)dn(g)/
(msn?(&) — 1), we obtain

B 4] 20 SNQ) (s (@) +1 - 2msn%(¢) + mOsn*(¢) + m® — 2m)e i)
5=1/%5 (msn?(€) ~ en(2)dn(d) '

(3.47)

; 2asn?(¢) (msn?(¢) + 1 — 2m*sn?(§) + m®sn?(¢) + m* — Zm)2
- =

+ C2,
§(msn2(¢) - 1)%cn?(&)dn?(2)

where ¢ = x - 2akt + &1, w = a(-2(6m + m* + 1) + k?) + 6Cy, and ki = B/ (4a’k? - c2).

Case 36. Choosing P = —(m? +2m + 1)B?, Q = 2m* +2, R = 2m —m? - 1)/B?, and f(¢) =
(msn?(¢) —1)/B(msn?(¢) + 1), we obtain

= 41 25, S2O)NE)ANE) figka-wrgo)
Esxs =4 k16m m2snt () — 1 € e

_ 32am?sn?(¢)cn?(¢)dn?(2)
6(m2sn*(g) - 1)2

(3.48)

N36 +Cy,

where ¢ = x - 2akt + &1, w = a(2(2m? + 2) + k?) + 6Cy, and ky = B/ (4a’k? - c2).

Case 37. Choosing P = —(m? —-2m + 1)B?, Q = 2m*> +2, R = -(2m + m* + 1)/B?, and f(¢) =
(msn?(&) +1)/B(msn?(¢) — 1), we obtain

_ 2_“ sn(g)cn(&)dn(¢) [i(kx—wt+éo)]
Es7 = -4 \/ k15m m2sn4 (&) — 1 ¢ ’

_ 32am?sn?(&)cn?(&)dn? (&)
&(msn(¢) - 1)°

(3.49)

where ¢ = x - 2akt + &, w = a(2(2m* + 2) + k?) + 6Cy, and ky = B/ (4a’k? - c2).

4. Conclusions

In this paper, by using the generalized (G'/G)-expansion method, we have successfully
obtained some exact solutions of Jacobi elliptic function form of the Zakharov equations.
When the modulus of the Jacobi elliptic function m — 0 or 1, the corresponding solitary wave
solutions and trigonometric function solutions are also obtained. This work shows that the
generalized (G'/G)-expansion method provides a very effective and powerful tool for solving
nonlinear equations in mathematical physics.



Journal of Applied Mathematics

14

(1 - 3gusu)g /(1 + 2 usu) 4/ (1 + i +ug)- T+ 4T 41 +wg— w)- L€ 95D
(1 +3pusu)g /(1 — 3 usut) <A/ (1~ gt~ wig) T+ g A (1 +wg + )~ 9¢ aseD
(1 - $pusw) /gupguows JM + UL+ T T — i — w9 u/¥ Gg ase)

(1 + $,usur) /upguoiu JUL+ U+ T T— -9 u/H— $¢ 9seD
(Fusw — 1) (3us + 1)y /FudFup V¥/ (1 +u) wg -/ (1 + ) v/ (1 +u)y €€ aseD
(Fusw + 1) (3us + 1)y /Fudgup W/ (1 —u) e +7/(1+ ;i) v/ (1— )y z€IseD
Jus /upsud g+ T~ T+ T 1 1€ 9seD)
Jup/judgus 13 ¥ - it w 0g aseD
Fu/Fupgus 13 My =T I 6C 35D

(F((1 = 2) /O) M)W (T = (i) / Dttt—/N d (1 = T) /O(T — ) 0<0 0>d gz aseD
(F((zut - 2)/O)/Mupd (4t - 7) / O-/N d (T =)/ O~ 1) 0<0 0>d LT 9%eD
(BT + ) /O-) N)usd (T + gt) / Dth—/N d (1 + ) /Ot 0>0 0<d 9z ase)
U — TN F PP B/ T/ (T— ) 7/1 gz ased

750 F 3sp 7/1 T/ (L + ) 7/ (1) ¥ 9seD

Fup F Fuow v/ (- 1) T/ (1 + ) v/1- grase)
(FupF1)/3us v/1 T/ (T - ) ¥/ 7T aseD

FpuF Fpsw 7/ (1 - ) T/ (1 + ) 7/ (1— ) g 9seD

FOPIF S — N v/1 ¢/ (g - 1) ¥/1 0z 9seD

Fup: F jusu v/1 T/ (g - 1) ¥/1 61 9seD

Fpu U — [ NLF JpOuL v/1 T/ (g - 1) ¥/1 gL ase)
FPOFIPST — N v/ T/ (T— ) ¥/ L1 9seD

oL F us v/ T/ (T— ) v/ 91 9seD

Fsp F 9su 7/ T/ (T— ) 7/1 grased

05 F Pou v/ (g —-1) T/ (e +1) v/ (4 —-1) ¥19seD

50 F Psu v/1 T/ (g - 1) v/1 €19seD

sp (gt — 1)~ [ I TLase)

750 -1 -1 I L19seD

7ps 13 [ - g (gt = 1) g~ 01 9seD

95 1 M= =T 6 3seD

Fpu - =T L - g aseD

ou L= | =1 £,95€D

p M (gt +1)= I 9 ase)

Isu i (s +1)- 1 G ase)

Jup I— g -1 - ¥ oseD

o =T I - g L= ¢ ase)

7po 13 (g +1)= i 7 9seD

Jus 1 (g + 1)~ L 1 9seD)

&S A 0 d ase)

A+ SO+ d = ,f ut (3)f Burpuodsariod pue (3f pue ‘Q ‘) SIUSDIA0D 31} UsdMID] SUOHE[Y [ I[QEL



Journal of Applied Mathematics 15
Appendix

For more details see Table 1 and [20].
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