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We propose a metapopulation model for malaria with two control variables, treatment and
prevention, distributed between n different patches (localities). Malaria spreads between these
localities through human travel. We used the theory of optimal control and applied a mathematical
model for three connected patches. From previous studies with the same data, two patches were
identified as reservoirs of malaria infection, namely, the patches that sustain malaria epidemic
in the other patches. We argue that to reduce the number of infections and semi-immunes (i.e.,
asymptomatic carriers of parasites) in overall population, two considerations are needed, (a) For
the reservoir patches, we need to apply both treatment and prevention to reduce the number of
infections and to reduce the number of semi-immunes; neither the treatment nor prevention were
specified at the beginning of the control application, except prevention that seems to be effective
at the end. (b) For unreservoir patches, we should apply the treatment to reduce the number of
infections, and the same strategy should be applied to semi-immune as in (a).

1. Introduction

Malaria is a mosquito-borne infection caused by protozoa of the genus plasmodium. Parasites
are transmitted indirectly from humans to humans by the bite of infected female mosquitoes
of the genus Anopheles. Malaria is a public health problem for tropical countries, which
has negative impacts on development. The fight against mosquitoes passes through the
draining of marshes or conversion to running water and elimination of stagnant water
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especially around houses. These measures are difficult to apply where health facilities are
inadequate [1].

Mathematical models coupled to microeconomic concepts can be applied to malaria
control using the theory of optimal control [2–5]. The latter has already been used to discuss
strategies to reduce or eradicate other diseases such as chronic myeloid leukemia [6], AIDS
[7, 8], tuberculosis [9, 10], smoking [11], West Nile virus [12], and Chikungunya disease [13].

Human movements play a key role in the spatiotemporal spread of malaria [14, 15].
Models have already been proposed to study malaria spread, but neither control variables
such as treatment and prevention nor human mobility were considered [16, 17]. In [18],
a model with control variables (synergy prevention and treatment) was developed for
malaria spread. Because human population was assumed to be motionless, their model
is only applicable within a small geographical region. A model that takes into account
human mobility was developed in [19] to analyze the impact of human migration within
n geographical patches (localities) on the malaria spread.

Our model is not an extension of the model developed in [18] but rather the one
developed in [19].

First, in [19], the authors have considered two infectious classes in the human
population: infectious and semi-immune individuals (i.e., asymptomatic carriers). This
consideration is very important because an experimental evidence showed that 60–90% of
humans in endemic area are semi-immune [1, 16, 17]. Introduction of semi-immunes in their
model presents the difficulty to introduce the control variable, mainly the treatment variable
because treated individuals may become either susceptible or semi-immune depending on
the type of the used drugs. In this paper, we will introduce a parameter which has a role of
regulation denoted by θ to derive a biological meaningful model (see Figure 1).

Second, the model developed in [19] is of the metapopulation type that considers the
explicit movement of humans between many patches. Because the mathematical analysis of
their model has provided a methodology to identify the spatial reservoirs of malaria infection
(i.e., the patches that sustain malaria epidemic in the other patches) based on the theory
of the type reproductive number, our main objective in this paper is to extend their results
by introducing control variables (treatment and prevention) within each patch. With these
innovations, the simulations identify the best strategy of control and answer the following
question: what control should be used when the patch is (or is not) a reservoir? This question
is not trivial because the infectious individuals can migrate in all the other patches.

The paper is structured as follows: in Section 2, we summarize the main points of
the metapopulation model from [19] by introducing prevention and treatment controls.
Furthermore, we show that it is mathematically well posed. Section 3 includes the
formulation of the objective function with the discount rate, and properties of optimal control
existence follow its characterization. In Section 4, we present the results of simulations and
discussion for three connected patches by migration according to the type of reservoir of
infections. The last section includes the conclusion and perspectives.

2. Mathematical Modelling

2.1. Model Description

In this section, a metapopulation model with control variables (prevention and treatment) is
developed. In the sequel, we use even and odd index to represent the human and mosquito
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Figure 1: A conceptual mathematical model for malaria transmission involving human hosts and vector
mosquitoes in each patch i, i = 1, . . . , n. The dotted arrow shows the direction of the transmission from
humans to mosquitoes (through infectious humans to susceptible mosquitoes) or from mosquitoes to
humans (through infectious mosquitoes to susceptible humans); u2i and v2i represent the prevention and
treatment control over time, respectively. Φ2i = (1 − u2i)Φ̂2i and Φ2i−1 = (1 − u2i)Φ̂2i−1 represent the force of
infection from mosquitoes to humans and from humans to mosquitoes, respectively, where Φ̂2i and Φ̂2i−1
are defined in (2.2). The other parameters are described in Table 1.

variables, respectively, as in [1]. Within each small patch, the human hosts are split into three
subclasses: susceptible S2i, infectious I2i, and semi-immune R2i. N2i(t) = S2i(t) + I2i(t) +R2i(t)
denotes the total size of the human population in the patch i at time t. The mosquito
population is split into two subclasses: susceptible S2i−1 and infectious I2i−1 in the patch i, i =
1, . . . , n. The total size of the mosquito population is denoted byN2i−1(t) = S2i−1(t) + I2i−1(t) at
time t. Nh(t) =

∑n
i=1 N2i(t) and Nv(t) =

∑n
i=1 N2i−1(t) denote the total size of the human and

mosquito population for the complete system, respectively, at any time t (See Figure 1). The
model with control reads as follows: for all i = 1, . . . , n,

dS2i

dt
= Λ2i + β2iR2i + ρ2iI2i −

(
μ2i + Φ2i

)
S2i + θλ2iv2iI2i +

n∑
j=1

(
mS

ijS2j −mS
jiS2i

)
, (2.1a)

dI2i
dt

= Φ2iS2i − ε2iI2i − λ2iv2iI2i +
n∑
j=1

(
mI

ijI2j −mI
jiI2i

)
, (2.1b)

dR2i

dt
= α2iI2i − δ2iR2i + (1 − θ)λ2iv2iI2i +

n∑
j=1

(
mR

ijR2j −mR
jiR2i

)
, (2.1c)

dS2i−1
dt

= Λ2i−1 − μ2i−1S2i−1 −Φ2i−1S2i−1, (2.1d)

dI2i−1
dt

= Φ2i−1S2i−1 − μ2i−1I2i−1, (2.1e)
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where ε2i = α2i + γ2i + ρ2i + μ2i and δ2i = β2i + μ2i. Initial conditions are assumed to satisfy
S2i(0) > 0, S2i−1(0) > 0, I2i(0) ≥ 0, R2i(0) ≥ 0, and I2i−1(0) ≥ 0 for i = 1, . . . , n.

In the above model, Φ2i and Φ2i−1 denote the force of infection from mosquitoes to
humans and from humans to mosquitoes, respectively. Therefore, infection only involves
vectors or hosts present in the patch; there is no between-patch infection. These forces
of infection are modeled to take into account the prevention as in [18] as follows: Φ2i =
(1 − u2i)Φ̂2i and Φ2i−1 = (1 − u2i)Φ̂2i−1 where

Φ̂2i =
ã2i−1ã2iN2i−1

ã2i−1N2i−1 + ã2iN2i
σ2i−1,2i

I2i−1
N2i−1

,

Φ̂2i−1 =
ã2i−1ã2iN2i

ã2i−1N2i−1 + ã2iN2i

(
σ2i,2i−1

I2i
N2i

+ σ̂2i,2i−1
R2i

N2i

) (2.2)

are defined in [17] for one patch, ã2i, ã2i−1, σ2i−1,2i, σ2i,2i−1 ∈ R+, σ̂2i,2i−1 ∈ R
∗
+. The infection

force Φ2i and Φ2i−1 depends on the individuals within patch i and not in another patch j /= i:
infection that only involves those individuals (vectors or hosts) present in the patch is no
between-patch infection.

u2i is the prevention effort for humans which reduces the infection rate with a failure
probability 1 − u2i if prevention controls are introduced. The control function u2i represents
time-dependent efforts of prevention on human and practiced on a time interval [0, T].
Prevention could come from surveillance, treating vector-breading ground, and reducing
vector-host contacts. Note that when u2i = 0, then Φ2i and Φ2i−1 correspond to those used
in [19].

λ2iv2i is the per capita recovery rate of humans. 0 ≤ λ2i ≤ 1 is the proportion of effective
treatment of humans. The control function v2i represents the measure of the rate at which
infected humans are cured by drugs or vaccination on a time interval [0, T].

The difference between the effects of drugs is related to the fact that they act at different
stages of the parasite-cell mutation in the human body. There are drugs that act against
preerythrocytic stages, against the asexual blood stages, and against antigens of sexual stages
that prevent fertilization in the stomach of the mosquito [20]. We thought that each drug has
its own effect on the mode of healing. Therefore, there are drugs that favor the individuals
who immunize quickly, while there are others that favor the total healing without being
immunized. We then introduced the model of parameter θ, which regulates the process. θ
is the probability that the treated infectious humans pass the sensitive compartment, and
1 − θ is the probability to pass the semi-immune compartment. When using treatments
that immunize the majority of patients, θ tends to 1, and these patients will go into the
compartment of the semi-immune. Otherwise, θ tends to 0, and the patients will move into
the susceptible compartment.

We also provide an insight into the major assumptions made in the original model in
[19] as follows: disease-induced death rate of semi-immune was assumed to be negligible
because this host acquires some immunity. Human mobility from one patch to another was
considered, while immigration of mosquitoes was neglected because they can explore only a
few kilometers during their lives. During the travel, humans do not change status. mπ

ij , π =
S, I, R denote the constant rate of travel of humans from an area j to an area i for all i /= j with
Mπ = [mπ

ij], and π = S, I, R denote the travel rate matrices. The matrices MS were assumed
to be irreducible and mπ

ii = 0, π = S, I, R; i = 1, . . . , n.
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Table 1: Parameters for the model described in any patch i, i = 1, . . . , n.

Parameters and biological description

Λ2i: recruitment into the susceptible human Λ2i > 0
α2i: rate of progression from the infectious human class to the semi-immune class α2i > 0
ρ2i: rate of progression from the infectious human class to the susceptible human class ρ2i > 0
β2i: rate of progression from the semi-immune class to the susceptible human class β2i > 0
γ2i: disease-induced death rate γ2i ≥ 0
μ2i: naturally induced death rate of the human population μ2i > 0
μ2i−1: naturally induced death rate of the mosquitoes μ2i−1 > 0
Λ2i−1: recruitment into susceptible mosquitoes class Λ2i−1 > 0
σ̂2i,2i−1: probability of transmission of the infection from a semi-immune human to

a susceptible mosquito σ̂2i,2i−1 > 0

σ2i−1,2i: probability of transmission of infection from an infectious mosquito to
a susceptible human σ2i−1,2i ∈ [0; 1]

σ2i,2i−1: probability of transmission of infection from an infectious human to
a susceptible mosquito σ2i,2i−1 ∈ [0; 1]

ã2i: maximum number of mosquito bites a human can receive per time unit ã2i ≥ 0
ã2i−1: number of time one mosquito would “want to” bite humans per time unit ã2i−1 ≥ 0

Table 1 summarizes the parameters and their biological description that will be used
in the metapopulation model.

By adding up (2.1a)–(2.1c) and (2.1d)-(2.1e), we obtain expressions for the total
human and mosquito populations, respectively, in patch i = 1, . . . , n:

dN2i

dt
= Λ2i − μ2iN2i − γ2iI2i +

∑
π=S,I,R

⎛⎝ n∑
j=1

mπ
ijπ2j −

n∑
j=1

mπ
jiπ2i

⎞⎠,

dN2i−1
dt

= Λ2i−1 − μ2i−1N2i−1.

(2.3)

Let Ω = (R+ \ {0})2n × R
3n
+ , and denote the points in Ω by (S, I)T , where S =

(S2, S1, . . . , S2n, S2n−1) and I = (I2, R2, I1, . . . , I2n, R2n, I2n−1). Thenwe rewrite the system (2.1a)–
(2.1e) in compact form

dS

dt
= Ψ1(S, I),

dI

dt
= Ψ2(S, I).

(2.4)

For any initial condition (S(0), I(0)) in Ω, system (2.1a)–(2.1e) has a unique globally defined
solution (S(t), I(t)) which remains in Ω. Moreover, the total human population, Nh(t), and
mosquitoes, Nv(t), are bounded for all t ≥ 0. This latter result was proved in [19].
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2.2. Formulation of the Objective Functional

In this section, we formulate the optimal control problem with the following functional
objective (cost):

J(u2, v2, . . . , u2n, v2n) =
n∑
i=1

[∫T

0
e−rt

(
I2i + R2i +

A2i

2
(u2i)2 +

B2i

2
(v2i)2

)
dt − Υi(S2i(T))

]
.

(2.5)

∑n
i=1 I2i and

∑n
i=1 R2i are the number of infected and semi-immune of n patches, respectively.

The term (A2i/2)(u2i)
2+(B2i/2)(v2i)

2 is the cost of prevention and treatment whereA2i, B2i > 0
are the weight factor in the cost of control. Υi(S2i(T)) is the fitness of the susceptibles at
the end of the process as a result of the treatment and prevention efforts for the patch
i = 1, . . . , n. We also take the same form of the Υi(S2i(T)) = WS

2iS2i(T), WS
2i ≥ 0 as in [18].

r is the discount rate. The discount rate is included to allow for long-term changes, thus
giving greater emphasis to control in the short rather than the long term [21]. In the above
formulation, one can note that the time t = 0 is the time when treatment and prevention are
initiated, and the time t = T is the time when treatment and prevention are stopped.

Additionally to the above assumptions, we assume that finance for treatment and
prevention is not transferable through time, so that money which is not spent immediately
cannot be saved for the future purchase of treatment and prevention.

Basically, we assume that the costs are proportional to the square of the corresponding
control function due to some mathematics properties (positivity, convexity. . .).

2.3. Existence of an Optimal Control

The basic framework of this section is to characterize the optimal control and to prove the
existence and uniqueness of the optimal control. We begin to simplify the writing by noting
(u2, . . . , u2n, v2, . . . , v2n) = (u, v) and (u∗

2, . . . , u
∗
2n, v

∗
2, . . . , v

∗
2n) = (u∗, v∗). Because the model is

linear with respect to the control variables and bounded by a linear system with respect to
the state variables, the conditions for the existence of an optimal control are satisfied. While
applying the Fleming and Rishel theorem [22], the existence of the 2n-upplet optimal control
can be obtained in our case.

Given

U = {(u, v), u, v, measurable 0 ≤ a2i ≤ u2i ≤ b2i ≤ 1, 0 ≤ c2i ≤ v2i ≤ d2i ≤ 1}, (2.6)

therefore, one can state the following theorem.

Theorem 2.1. Given the objective functional J(u, v) defined by

J(u, v) :=
n∑
i=1

[∫T

0
e−rt

(
I2i + R2i +

A2i

2
(u2i)2 +

B2i

2
(v2i)2

)
dt − Υi(S2i(T))

]
, (2.7)
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for all t ∈ [0; T] subject to the equations of system (2.1a)–(2.1e) with S2i(0) > 0, S2i−1(0) >
0, R2i(0) ≥ 0, I2i(0) ≥ 0, and I2i−1(0) ≥ 0 for i = 1, . . . , n, then there exists 2n-upplet optimal
control (u∗, v∗) such that

J(u∗, v∗) = min
(u,v)∈U

J(u, v), (2.8)

when the following conditions are satisfied:

(i) the class of all initial conditions with the 2n-upplet optimal control in the admissible control
set and corresponding state variables is nonempty,

(ii) the admissible control set U is convex and closed,

(iii) the right-hand side of the state system is bounded by a linear function in the state and
control,

(iv) the integrand of the objective functional is convex on U and is bounded below by∑n
i=1(h2i(|u2i|2 + |v2i|2)�2i/2 − k2i), where h2i, k2i > 0, and �2i > 1,

(v) the function
∑n

i=1 Υ
i(S2i(T)) is continuous with respect to the variable S2i.

Proof.

(i) It is obtained by definition.

(ii) By definition, the admissible control set U is convex and closed.

(iii) The right-hand side of the state system (2.1a)–(2.1e) is bounded by a linear function
in the state (refer to Theorem 1 of [19]). Our state system is bilinear in the control
variable.

(iv) To show that the integrand of the objective functional is convex on U, we must
prove that

F2i

⎛⎝t, I2i, R2i,
2∑

j=1

η2jX2j

⎞⎠ ≤
2∑

j=1

η2jF2i
(
t, I2i, R2i, X2j

)
, (2.9)

where
∑2

j=1 η2j = 1, X2j = (u2j , v2j) and

J(u, v) +
n∑
i=1

S2i(T) =
n∑
i=1

∫T

0
e−rt

(
I2i + R2i +

A2i

2
(u2i)2 +

B2i

2
(v2i)2

)
dt

=
n∑
i=1

∫T

0
F2i(t, I2i, R2i, X2i),

(2.10)
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where

F2i(t, I2i, R2i, X2i) = e−rt
(
I2i + R2i +

Ai

2
(u2i)2 +

B2i

2
(v2i)2

)
, (2.11)

F2i

⎛⎝t, I2i, R2i,
2∑

j=1

η2jX2j

⎞⎠ = I2i + R2i +
A2i

2

⎛⎝ 2∑
j=1

η2ju2j

⎞⎠2

+
B2i

2

⎛⎝ 2∑
j=1

η2jv2j

⎞⎠2

≤ I2i + R2i +
A2i

2

2∑
j=1

η2j
(
u2j

)2 + B2i

2

2∑
j=1

η2j
(
v2j

)2

≤
2∑

j=1

η2j

(
I2i + R2i +

A2i

2
(
u2j

)2 + B2i

2
(
v2j

)2)

=
2∑

j=1

η2jF2i
(
t, I2i, R2i, X2j

)
.

(2.12)

Since the sum of convex functions in the domain convex is convex, then there exists
h2i, k2i, �2i > 1 satisfying

e−rt
(
I2i + R2i +

A2i

2
(u2i)2 +

B2i

2
(v2i)2

)
≥
(
h2i

(
|u2i|2 + |v2i|2

)�2i/2 − k2i

)
, (2.13)

because the state variable is bounded. So summingmember to member, one obtains
the result.

(v) The function Υi(S2i(T)) is continuous so that
∑n

i=1 Υ
i(S2i(T)) is also continuous.

2.4. Characterization of the 2n-Upplet Optimal Control

Since there exists 2n-upplet optimal control for minimizing the functional, (2.7), subject to
system (2.1a)–(2.1e), we derive the necessary conditions on the optimal control. We discuss
the theorem that relates to the characterization of the optimal control. In order to derive
the necessary conditions for this optimal control, we use Pontryagin’s maximum principle
[23]. The Lagrangian, sometimes called the Hamiltonian, augmented with penalty terms for
control constraints is defined as

L =
n∑
i=1

(
I2i + R2i +

A2i

2
(u2i)2 +

B2i

2
(v2i)2

)

+
n∑
i=1

λS2i

⎛⎝Λ2i + β2iR2i + ρ2iI2i −
(
μ2i + Φ2i

)
S2i + θλ2iv2iI2i +

n∑
j=1

(
mS

ijS2j −mS
jiS2i

)⎞⎠
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+
n∑
i=1

λI2i

⎛⎝Φ2iS2i − ε2iI2i − λ2iv2iI2i +
n∑
j=1

(
mI

ijI2j −mI
jiI2i

)⎞⎠
+

n∑
i=1

λR2i

⎛⎝α2iI2i − δ2iR2i + (1 − θ)λ2iv2iI2i +
n∑
j=1

(
mR

ijR2j −mR
jiR2i

)⎞⎠
+

n∑
i=1

λS2i−1
(
Λ2i−1 − μ2i−1S2i−1 −Φ2i−1S2i−1

)
+

n∑
i=1

λI2i−1
(
Φ2i−1S2i−1 − μ2i−1I2i−1

)
−

n∑
i=1

ω2i(u2i − a2i) −
n∑
i=1

�2i(b2i − u2i) −
n∑
i=1

ζ2i(v2i − c2i) −
n∑
i=1

ξ2i(d2i − v2i),

(2.14)

where λπ , π = S2i, I2i, R2i, S2i−1, I2i−1 is the costate variable to the state variable (S, I),
respectively, for patch i = 1, . . . , n. We can interpret λπ(t) as the marginal value or shadow
price of the last unit of S2i, S2i−1, I2i, I2i−1, and R2i was evaluated at time t [3]. For example,
λS2i is the increase in welfare if the number of susceptible is exogenously increased at time t.
λπ can be negative. The parametersω2i,�2i, ζ2i, ξ2i with i = 1, . . . , n are the penalty multipliers
satisfying these conditions:

ω2i ≥ 0, u2i − a2i ≥ 0, ω2i(u2i − a2i) = 0, i = 1, . . . , n,

�2i ≥ 0, b2i − u2i ≥ 0, �2i(b2i − u2i) = 0, i = 1, . . . , n,

ζ2i ≥ 0, v2i − c2i ≥ 0, ζ2i(v2i − c2i) = 0, i = 1, . . . , n,

ξ2i ≥ 0, di
j − vi

j ≥ 0, ξ2i(d2i − v2i) = 0, i = 1, . . . , n.

(2.15)

The supplementary condition at the first and second line of the system (2.15) realized at
optimal control u∗

2i and the last two lines of this system is realized at the optimal control v∗
2i.

Theorem 2.2. Given 2n-upplet optimal controls (u∗, v∗) and solutions (S, I) of the corresponding
state system (2.1a)–(2.1e), there exists adjoint variables λπ , with π = S2i, S2i−1, R2i, I2i, I2i−1 where
i = 1, . . . , n satisfying the following canonical equations:

dλS2i

dt
= rλS2i −

∂L

∂S2i
= rλS2i + λS2i

⎛⎝μ2i + Φ2i

(
1 − ã2iS2i

ã2i−1N2i−1 + ã2iN2i

)
+

n∑
j=1

mS
ji

⎞⎠
− λI2iΦ2i

(
1 − ã2iS2i

ã2i−1N2i−1 + ã2iN2i

)
+ (λI2i−1 − λS2i−1)

ã2iS2i−1Φ2i−1
ã2i−1N2i−1 + ã2iN2i

,

dλI2i
dt

= rλI2i −
∂L

∂I2i
= rλI2i − 1 − λS2i

(
ρ2i +

ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i
+ θλ2iv2i

)

+ λI2i

⎛⎝ ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i
+ ε2i + λ2iv2i +

n∑
j=1

mI
ji

⎞⎠ − λR2i(α2i + (1 − θ)α2iv2i)

+ (λS2i−1 − λI2i−1)
ã2i(ã2i−1(1 − u2i)σ2i,2i−1 −Φ2i−1)S2i−1

ã2i−1N2i−1 + ã2iN2i
,
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dλR2i

dt
= rλR2i −

∂L

∂R2i
= rλR2i − 1 − λS2i

(
β2i +

ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i

)
+ λI2i

ã2iS2iΦ2i

ã2i−1N2i−1 + ã2iN2i

+ λR2i

⎛⎝δ2i +
n∑
j=1

mR
ji

⎞⎠ + (λS2i−1 − λI2i−1)
ã2i(ã2i−1(1 − u2i)σ̂2i, 2i−1 −Φ2i−1)S2i−1

ã2i−1N2i−1 + ã2iN2i
,

dλS2i−1

dt
= rλS2i−1 −

∂L

∂S2i−1
= rλS2i−1 + (λI2i − λS2i)

ã2i−1S2iΦ2i

ã2i−1N2i−1 + ã2iN2i

+ λS2i−1μ2i−1 + (λI2i−1 − λS2i−1)Φ2i−1

(
ã2i−1S2i−1

ã2i−1N2i−1 + ã2iN2i
− 1

)
,

dλI2i−1
dt

= rλI2i−1 −
∂L

∂I2i−1
= rλI2i−1 + (λS2i − λI2i)

ã2i−1(ã2i(1 − u2i)σ2i−1,2i −Φ2i)S2i

ã2i−1N2i−1 + ã2iN2i

+ λI2i−1μ2i−1 − (λS2i−1 − λI2i−1)
ã2i−1S2i−1Φ2i−1

ã2i−1N2i−1 + ã2iN2i
,

(2.16)

with the transversality conditions (terminal conditions):

λS2i(T) =
∂Υi

∂S2i

∣∣∣∣∣
t=T

, λπ(T) = 0, i = 1, . . . , n for π = I2i, I2i−1, R2i, S2i−1. (2.17)

Furthermore, the following characterization of optimal control holds:

u∗
2i = max

(
a2i,min

(
b2i,

ã2i−1ã2i

A2i

[
λSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)S2i−1

ã2i−1N2i−1 + ã2iN2i

]))
,

v∗
2i = max

(
c2i,min

(
d2i,

−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i)
B2i

))
,

(2.18)

where λSj − λIj = −λSIj .

Proof. The adjoint equations and transversality conditions are standard results from
Pontryagin’smaximumprinciple. Also, solutions to the adjoint system exist and are bounded.
To determine the interior optimum of our Lagrangian, we take the partial derivatives of
Lagrangian L with respect to u∗

2i and v∗
2i and set it equal to zero:

∂L

∂u2i
= − ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
− ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

+�2i −ω2i +A2iu2i = 0,

∂L

∂v2i
= λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i) + ξ2i − ζ2i + B2iv2i = 0.

(2.19)
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Solving for optimal control, we have

u∗
2i =

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
−�2i +ω2i

]
,

v∗
2i =

1
B2i

[−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i) − ξ2i + ζ2i].

(2.20)

To determine an explicit expression for the optimal control without the penalty multipliers
ω2i, �2i, ζ2i, ξ2i, a standard optimality technique is used. We consider the following cases to
discuss the control: case of the prevention or case of the treatment.

(i) Case of prevention:

(1) on the set

{
ta2i < u∗

2i < b2i, i = 1, . . . , n
}
, (2.21)

we have ω2i = �2i = 0. Hence, the optimal control is

u∗
2i =

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]
, (2.22)

(2) on the set

{
tu∗

2i = b2i, i = 1, . . . , n
}
, (2.23)

we have ω2i(t) = 0. Hence,

b2i = u∗
2i =

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
−�2i

]
.

(2.24)

This implies that

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]
≥ b2i, (2.25)

since �2i(t) ≥ 0,

(3) on the set

{
tu∗

2i = a2i, i = 1, . . . , n
}
, (2.26)
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we have �2i(t) = 0. Hence,

u∗
2i =

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i
+ω2i

]
.

(2.27)

This implies that

1
A2i

[
ã2i−1ã2iλSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
ã2i−1ã2iS2i−1λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)

ã2i−1N2i−1 + ã2iN2i

]
≤ a2i. (2.28)

Combining these cases, the optimal control u∗
2i for i = 1, . . . , n is characterized

as

u∗
2i = max

(
a2i,min

(
b2i,

ã2i−1ã2i

A2i

[
λSI2iσ2i−1,2iI2i−1S2i

ã2i−1N2i−1 + ã2iN2i
+
λSI2i−1(σ2i,2i−1I2i + σ̂2i,2i−1R2i)S2i−1

ã2i−1N2i−1 + ã2iN2i

]))
.

(2.29)

(ii) Case of treatment:

using similar arguments as in the case of prevention, we also obtain the second
optimal v∗

2i with i = 1, . . . , n control function is characterized by

v∗
2i = max

(
c2i,min

(
d2i,

−λ2iI2i(θλS2i − λI2i + (1 − θ)λR2i)
B2i

))
. (2.30)

3. Numerical Results and Discussion

3.1. Parameters

We fix the probability for treatment of infectious humans for patches 2 and 3 at θ = 0.5. Also
we take λ2j = 0.5, the weights of prevention and treatment A2j = B2j = 50, and the bounds of
all control a2j = c2j = 0, b2j = d2j = 1 with j = 2, 3. We fix the coefficient of fitness WS

2i = 1.
We take a very small discount rate r = 0.0001 because the daily discounting of the cost

decreases very slowly. The other parameters of the model were obtained from [1] as well as
the following value of the migration matrix: data for migration matrix for the semi-immune,
MR,

MR =

⎡⎣ 0 0.7 × 10−1 0.8 × 10−1

0.1 × 10−1 0 0.1 × 10−4

0.2 × 10−1 0.1 × 10−4 0

⎤⎦, (3.1)
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MS, data for migration matrix for susceptible, and MI , data for migration matrix for the
infectious

MS = MI =

⎡⎣ 0 0.7 × 10−3 0.8 × 10−3

0.1 × 10−3 0 0.1 × 10−6

0.2 × 10−3 0.1 × 10−6 0

⎤⎦. (3.2)

3.2. Implementation

To solve our problem of optimal control, we used the program MATLAB dynamic
optimisation code (DYNOPT), which is a set of MATLAB functions for the determination
of optimal control trajectory by describing the process, the cost to be minimized, subject to
equality and inequality constraints, and using orthogonal collocation on the finite elements
method [24]. For more information about this algorithm, we can see the user’s guide in [24].

We implemented the model with the initial condition: S2(0) = 15000; S4(0) = 50;
S6(0) = 1000; I2(0) = 1000; I4(0) = 50; I6(0) = 100; R2(0) = 100; R4(0) = 250; R6(0) = 10;
S1(0) = 5000; S3(0) = 8000; S5(0) = 5000; I1(0) = 50; I3(0) = 6000; I5(0) = 4000.

The weight assigned to the controls is much higher than the weight assigned to the
state variables because the two functions are not expressed in the same scale. The controls
are expressed in terms of cost, while infections and semi-immune are expressed in term of
number of individuals. We chose the time at T = 300 days for our simulation.

3.3. Results and Discussions

3.3.1. Basic Reproductive Number and Reservoir of Infection

The basic reproduction number generally denoted byR0 is the expected number of secondary
cases produced by a typical infective individual introduced into a completely susceptible
population, in the absence of any control measure [25, 26]. Using the data on Table 2 which
were compiled in [1] without control variable, R0 was equal to 3.864. Therefore, there is a
persistence of the disease in the whole population (patches 1, 2, and 3). In [1], it was shown
that only patches 2 and 3 constitute a reservoir of infection. Indeed, a subgroup of patches is
said to be a reservoir when only targeting a control on the reservoir is sufficient to eliminate
the malaria in the whole population (all the three patches). As such the patch 1 cannot sustain
an epidemic by itself.

3.3.2. Evolution over Time of the Optimal Control in the Three Patches

We seek the optimal solution by minimizing the number of infectious hosts and semi-
immune, in all patches by considering four cases: the first case where we seek the optimal
solution when we consider simultaneously prevention and treatment in the two patches
(see Figure 2(a)), the second case where we seek the optimal solution only with prevention
without treatment in two patches (see Figure 2(b)), the third case where we seek the optimal
solution only with the treatment without prevention in two patches (see Figure 2(c)), and
finally the fourth case where no strategy of prevention and treatment is applied. Figure 2
shows a strong preventive action early in the process of elimination of the disease and a high
processing action at the end of the process. Between these two strategies, prevention and
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Table 2: Value compiled in [1]: patches 2 and 3 correspond to rural areas, while patch 1 corresponds to
urban area.

Patch 1 Patch 2 Patch 3 Dimension
β2 = 2.7 × 10−3 β4 = 5.5 × 10−4 β6 = 5.5 × 10−4 Days−1

γ2 = 0, 9.0 × 10−4 γ4 = 9.0 × 10−5 γ6 = 7.3 × 10−5 Days−1

μ2 = 4.5 × 10−5 μ4 = 6.08 × 10−5 μ6 = 6.08 × 10−5 Humans−1 × days−1

α2 = 0.0035 α4 = 0.0035 α6 = 0.0035 Days−1

ρ2 = 0.0083 ρ4 = 0.035 ρ6 = 0.0335 Days−1

Λ2 = 4.0 Λ4 = 0.5 Λ6 = 0.3 Humans × days−1

Λ1 = 700 Λ3 = 500 Λ5 = 600 Mosquitoes × days−1

μ1 = 0.04 μ3 = 0.04 μ5 = 0.04 Mosquitoes−1 × days−1

ã1 = 0.6 ã3 = 0.70 ã5 = 0.50 1
ã2 = 6.0 ã4 = 19.0 ã6 = 19.0 1
σ12 = 0.022 σ34 = 0.022 σ56 = 0.022 1
σ21 = 0.24 σ43 = 0.48 σ65 = 0.48 1
σ̂21 = 0.024 σ̂43 = 0.048 σ̂65 = 0.048 1

treatment are preferred to reduce the number of infections and semi-immunes in all patches.
Interestingly, these results show that the dynamic of controls depends on the bounds that we
choose for the controls.

3.3.3. Dynamics of Human Infection in the Three Patches

Figures 3 and 4 show that the increase of susceptible hosts involves a decrease of infectious
hosts. Figure 4(a) shows that no action should be taken during the half time interval in a
patch which is our urban area. The second half time should be considered the treatment
of infections from two other patches. This is because it takes time (T/2) for production of
sick people from the reservoir area of infection, and after this time (T/2), we realize that
all the patches contain enough sick people. However, we must now apply a treatment in
the area that is not a reservoir of infection initially. This treatment will be done by setting
up at the entrances to the urban area by the distribution of drugs to fight malaria infection
before accessing it. These measures of treatment become necessary to prevent the urban area,
constitutes a reservoir of infection.

Figure 4(b) shows that the treatment is effective for the infectious 50(T/6) first days
because patch 2 is a reservoir of infection. Between days 50(T/6) and 250(5T/6), we must
apply simultaneously prevention and treatment, and after 250(5T/6) days, only prevention
can be applied in this patch.

Figure 4(c) shows that during the first 200(2T/3) days we must apply simultaneously
the prevention and the treatment, and after this time, only treatment should be applied to
reduce the number of infections in patch 3.

3.3.4. Dynamics of Semi-Immune in the Three Patches

Figure 5(a) shows that no strategies must be applied during the T/4 first days for the semi-
immune in patch 1. Between T/4 and 3T/4 days, we must apply simultaneously prevention
and treatment, and during the remaining period, only prevention should be applied.
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Figure 2: Results of the simulations achieved using data from Table 2 showing the evolution over time of
the optimal control in the two reservoirs of infection. (a)Optimal control for prevention and treatment; (b)
Optimal control for prevention control with no treatment control; (c) optimal control for treatment control
with no prevention control.

Figures 5(b) and 5(c) show that the same strategies of control should be considered
during the same period in patch 1 to reduce, respectively, the number of semi-immunes in
patches 2 and 3.

To summarize, we used a recent technique of identification of the spatial infection
of connected patches, to design a strategy based on the status of infection of the reservoirs
of infection. We show that it is better to treat people only in areas that do not constitute a
reservoir of infection and use simultaneously the prevention and the treatment to reduce the
number of infections in all patches constituting a reservoir of infection. While reducing the
number of semi-immunes, no differences in control strategies is made based on the type of
infection reservoir. Whatever the level of infection of the reservoir of infection, the strategy
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Figure 3: Results of the simulations achieved using data from Table 2 showing the evolution over time
of susceptible hosts for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in the 2
patches; red line optimal solution solved with treatment control in the 2 patches; green line solution without
control. (a) Evolution of the susceptible hosts for patch 1; (b) evolution of the susceptible hosts for patch
2; (c) evolution of the susceptible hosts for patch 3.

to reduce the number of semi-immunes remains the same: no strategy is adopted in the early
stage of malaria control, then both treatment and prevention are implemented, and in the last
period, only prevention is implemented.

4. Conclusion

A mathematical model has been developed for malaria using the theory of optimal control.
The formulation of the optimal control includes n control variables for prevention and n
variables for treatment. The mathematical analysis proved the existence of an optimal control



Journal of Applied Mathematics 17

0 50 100 150 200 250 300
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

Days

In
fe

ct
io

us
 h

os
t f

or
 p

at
ch

 1

Optimal control
Prevention

Treatment
No control

(a)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Days

 In
fe

ct
io

us
 h

os
t f

or
 p

at
ch

 2

Optimal control
Prevention

Treatment
No control

(b)

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Days

 In
fe

ct
io

us
 h

os
t f

or
 p

at
ch

 3

Optimal control
Prevention

Treatment
No control

(c)

Figure 4: Results of the simulations achieved using data from Table 2 showing the evolution over time
of infectious host for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in
the 2 patches; red line optimal solution solved with treatment control in the 2 patches; green line solution
without control. (a) Evolution of the infectious hosts for patch 1; (b) evolution of the infectious hosts for
patch 2; (c) evolution of the infectious hosts for patch 3.

for n connected patches under suitable conditions using the Fleming and Rishel theorem.
Furthermore, using Pontryagin’s maximum principle, a characterization of the optimal
control was given. Numerical simulations were also performed showing the evolution over
time of the optimal control as well as the different health status of humans and mosquitoes
within each patch. These results underline the usefulness of a synergy control rather than
only the prevention or the treatment. The results of our simulation show that we must choose
a strategy based on the infectious status of the reservoir of infection. We show that it is
better to treat people only in areas that do not constitute a reservoir of infection and use
simultaneously the prevention and the treatment to reduce the number of infections in all
patches constituting a reservoir of infection. While reducing the number of semi-immunes,
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Figure 5: Results of the simulations achieved using data from Table 2 showing the evolution over time of
semi-immune host for the three patches. We show the four cases: black line optimal solution solved with
prevention and treatment in the 2 patches; blue line optimal solution solved with prevention control in the 2
patches; red line optimal solution solved with treatment control in the 2 patches; green line solution without
control. (a) Evolution of the semi-immune hosts for patch 1; (b) evolution of the semi-immune hosts for
patch 2; (c) evolution of the semi-immune hosts for patch 3.

no differences in control strategies is made based on the type of infection reservoir. Whatever
the level of infection of the reservoir of infection, the strategy to reduce the number of semi-
immunes remains the same: no strategy is adopted in the early stage of malaria control, then
both treatment and prevention are implemented, and in the last period, only prevention is
implemented.

To state our main perspectives, we will include a budget constraint in our optimal
problem. Before characterizing the optimal prevention and treatment, two cases may arise
under budget constraints: (i) when the budget allocation for the prevention and treatment is
sufficient; (ii) when the budget is insufficient. Moreover, it would be interesting to apply a
sensitivity analysis for some key parameters of the model.



Journal of Applied Mathematics 19

References
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[16] A. Ducrot, S. B. Sirima, B. Somé, and P. Zongo, “A mathematical model for malaria involving
differential susceptibility, exposedness and infectivity of human host,” Journal of Biological Dynamics,
vol. 3, no. 6, pp. 574–598, 2009.

[17] N. Chitnis, J. M. Cushing, and J. M. Hyman, “Bifurcation analysis of amathematical model for malaria
transmission,” SIAM Journal on Applied Mathematics, vol. 67, no. 1, pp. 24–45, 2006.

[18] K. Blayneh, Y. Cao, and H.-D. Kwon, “Optimal control of vector-borne diseases: treatment and
prevention,” Discrete and Continuous Dynamical Systems. Series B, vol. 11, no. 3, pp. 587–611, 2009.

[19] J. Arino, A. Ducrot, and P. Zongo, “A metapopulation model for malaria with transmission-blocking
partial immunity in hosts,” Journal of Mathematical Biology, vol. 64, no. 3, pp. 423–448, 2012.

[20] Life Cycle of theMalaria Parasite with vaccines, 2008, http://www.malariavaccine.org/malvac-lifecy
cle.php.

[21] G. A. Forster and C. A. Gilligan, “Optimizing the control of disease infestations at the landscape
scale,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp.
4984–4989, 2007.

[22] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, BerlinM
Germany, 1975.

[23] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory
of Optimal Processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, John
Wiley & Sons, New York, NY, USA, 1962.
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