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We introduce the notion of weaker (φ, ϕ)-contractive mapping in completemetric spaces and prove
the periodic points and fixed points for this type of contraction. Our results generalize or improve
many recent fixed point theorems in the literature.

1. Introduction and Preliminaries

Let (X, d) be a metric space,D a subset of X and f : D → X a map. We say f is contractive if
there exists α ∈ [0, 1) such that, for all x, y ∈ D,

d
(
fx, fy

) ≤ α · d(x, y). (1.1)

The well-known Banach’s fixed point theorem asserts that ifD = X, f is contractive and (X, d)
is complete, then f has a unique fixed point inX. It is well known that the Banach contraction
principle [1] is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong
[2] introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called
Φ-contraction if there exists an upper semicontinuous function Φ : [0,∞) → [0,∞) such
that

d
(
fx, fy

) ≤ Φ
(
d
(
x, y

)) ∀x, y ∈ X. (1.2)
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In 2000, Branciari [3] introduced the following notion of a generalized metric space
where the triangle inequality of a metric space had been replaced by an inequality involving
three terms instead of two. Later, many authors worked on this interesting space (e.g., [4–9]).

Let (X, d) be a generalized metric space. For γ > 0 and x ∈ X, we define

Bγ (x) :=
{
y ∈ X | d(x, y) < γ

}
. (1.3)

Branciari [3] also claimed that {Bγ(x) : γ > 0, x ∈ X} is a basis for a topology on X, d is
continuous in each of the coordinates and a generalized metric space is a Hausdorff space.
We recall some definitions of a generalized metric space, as follows.

Definition 1.1 (see [3]). LetX be a nonempty set and d : X ×X → [0,∞) a mapping such that
for all x, y ∈ X and for all distinct point u, v ∈ X each of them different from x and y, one has

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (rectangular inequality).

Then (X, d) is called a generalized metric space (or shortly g.m.s).

Definition 1.2 (see [3]). Let (X, d) be a g.m.s, {xn} a sequence in X, and x ∈ X. We say that
{xn} is g.m.s convergent to x if and only if d(xn, x) → 0 as n → ∞. We denote by xn → x as
n → ∞.

Definition 1.3 (see [3]). Let (X, d) be a g.m.s, {xn} a sequence in X, and x ∈ X. We say that
{xn} is g.m.s Cauchy sequence if and only if for each ε > 0, there exists n0 ∈ � such that
d(xm, xn) < ε for all n > m > n0.

Definition 1.4 (see [3]). Let (X, d) be a g.m.s. Then X is called complete g.m.s if every g.m.s
Cauchy sequence is g.m.s convergent in X.

In this paper, we also recall the notion of Meir-Keeler function (see [10]). A function
φ : [0,∞) → [0,∞) is said to be a Meir-Keeler function if for each η > 0, there exists δ > 0
such that for t ∈ [0,∞) with η ≤ t < η + δ, we have φ(t) < η. Generalization of the above
function has been a heavily investigated branch research. Particularly, in [11, 12], the authors
proved the existence and uniqueness of fixed points for various Meir-Keeler-type contractive
functions. We now introduce the notion of weaker Meir-Keeler function φ : [0,∞) → [0,∞),
as follows.

Definition 1.5. We call φ : [0,∞) → [0,∞) a weaker Meir-Keeler function if for each η > 0,
there exists δ > 0 such that for t ∈ [0,∞) with η ≤ t < η + δ, there exists n0 ∈ � such that
φn0(t) < η.

2. Main Results

In the paper, we denote by Φ the class of functions φ : [0,∞) → [0,∞) satisfying the follow-
ing conditions:

(φ1) φ : [0,∞) → [0,∞) is a weaker Meir-Keeler function;
(φ2) φ(t) > 0 for t > 0, φ(0) = 0;
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(φ3) for all t ∈ (0,∞), {φn(t)}n∈� is decreasing;
(φ4) if limn→∞tn = γ , then limn→∞φ(tn) ≤ γ .
Andwe denote byΘ the class of functions ϕ : [0,∞) → [0,∞) satisfying the following

conditions:
(ϕ1) ϕ is continuous;
(ϕ2) ϕ(t) > 0 for t > 0 and ϕ(0) = 0.
Our main result is the following.

Theorem 2.1. Let (X, d) be a Hausdorff and complete g.m.s, and let f : X → X be a function
satisfying

d
(
fx, fy

) ≤ φ
(
d
(
x, y

)) − ϕ
(
d
(
x, y

))
(2.1)

for all x, y ∈ X and φ ∈ Φ, ϕ ∈ Θ. Then f has a periodic point μ in X, that is, there exists μ ∈ X
such that μ = fpμ for some p ∈ �.

Proof. Given x0, define a sequence {xn} in X by

xn+1 = fxn for n ∈ � ∪ {0}. (2.2)

Step 1. We will prove that

lim
n→∞

d(xn, xn+1) = 0,

lim
n→∞

d(xn, xn+2) = 0.
(2.3)

Using inequality (2.1), we have that for each n ∈ � ∪ {0}

d(xn, xn+1) = d
(
fxn−1, fxn

)

≤ φ(d(xn−1, xn)) − ϕ(d(xn−1, xn))

≤ φ(d(xn−1, xn)),

(2.4)

and so

d(xn, xn+1) ≤ φ(d(xn−1, xn))

≤ φ
(
φ(d(xn−2, xn−1))

)
= φ2(d(xn−2, xn−1))

≤ · · ·
≤ φn(d(x0, x1)).

(2.5)

Since {φn(d(x0, x1))}n∈� is decreasing, it must converge to some η ≥ 0. We claim that η = 0.
On the contrary, assume that η > 0. Then by the definition of weaker Meir-Keeler function φ,
there exists δ > 0 such that for x0, x1 ∈ X with η ≤ d(x0, x1) < δ + η, there exists n0 ∈ �
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such that φn0(d(x0, x1)) < η. Since limn→∞φn(d(x0, x1)) = η, there exists p0 ∈ � such that
η ≤ φp(d(x0, x1)) < δ + η, for all p ≥ p0. Thus, we conclude that φp0+n0(d(x0, x1)) < η. So we
get a contradiction. Therefore, limn→∞φn(d(x0, x1)) = 0, that is,

lim
n→∞

d(xn, xn+1) = 0. (2.6)

Using inequality (2.1), we also have that for each n ∈ �

d(xn, xn+2) = d
(
fxn−1, fxn+1

)

≤ φ(d(xn−1, xn+1)) − ϕ(d(xn−1, xn+1))

≤ φ(d(xn−1, xn+1)),

(2.7)

and so

d(xn, xn+2) ≤ φ(d(xn−1, xn+1))

≤ φ
(
φ(d(xn−2, xn))

)
= φ2(d(xn−2, xn))

≤ · · ·
≤ φn(d(x0, x2)).

(2.8)

Since {φn(d(x0, x2))}n∈� is decreasing, by the same proof process, we also conclude

lim
n→∞

d(xn, xn+2) = 0. (2.9)

Next, we claim that {xn} is g.m.s Cauchy. We claim that the following result holds.

Step 2. Claim that for every ε > 0, there exists n ∈ � such that if p, q ≥ n then d(xp, xq) < ε.
Suppose the above statement is false. Then there exists ε > 0 such that for any n ∈ �,

there are pn, qn ∈ � with pn > qn ≥ n satisfying

d
(
xqn , xpn

) ≥ ε. (2.10)

Further, corresponding to qn ≥ n, we can choose pn in such a way that it the smallest integer
with pn > qn ≥ n and d(xqn , xpn) ≥ ε. Therefore, d(xqn , xpn−1) < ε. By the rectangular inequality
and (2.3), we have

ε ≤ d
(
xpn , xqn

)

≤ d
(
xpn , xpn−2

)
+ d

(
xpn−2, xpn−1

)
+ d

(
xpn−1, xqn

)

< d
(
xpn , xpn−2

)
+ d

(
xpn−2, xpn−1

)
+ ε.

(2.11)
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Let n → ∞. Then we get

lim
n→∞

d
(
xpn , xqn

)
= ε. (2.12)

On the other hand, we have

d
(
xpn , xqn

) ≤ d
(
xpn , xpn−1

)
+ d

(
xpn−1, xqn−1

)
+ d

(
xqn−1, xqn

)
,

d
(
xpn−1, xqn−1

) ≤ d
(
xpn−1, xpn

)
+ d

(
xpn , xqn

)
+ d

(
xqn , xqn−1

)
.

(2.13)

Let n → ∞. Then we get

lim
n→∞

d
(
xpn−1, xqn−1

)
= ε. (2.14)

Using inequality (2.1), we have

d
(
xpn , xqn

)
= d

(
fxpn−1, fxqn−1

)

≤ φ
(
d
(
xpn−1, xqn−1

)) − ϕ
(
d
(
xpn−1, xqn−1

))
.

(2.15)

Letting n → ∞, using the definitions of the functions φ and ϕ, we have

ε ≤ ε − ϕ(ε), (2.16)

which implies that ϕ(ε) = 0. By the definition of the function ϕ, we have ε = 0. So we get a
contradiction. Therefore {xn} is g.m.s Cauchy.

Step 3. We claim that f has a periodic point in X.
Suppose, on contrary, f has no periodic point. Then {xn} is a sequence of distinct

points, that is, xp /=xq for all p, q ∈ � with p /= q. By Step 2, since X is complete g.m.s, there
exists ν ∈ X such that xn → ν. Using inequality (2.1), we have

d
(
fxn, fν

) ≤ φ(d(xn, ν)) − ϕ(d(xn, ν)). (2.17)

Letting n → ∞, we have

d
(
fxn, fν

) −→ 0, as n −→ ∞, (2.18)

that is,

xn+1 = fxn −→ fν, as n −→ ∞. (2.19)

As (X, d) is Hausdorff, we have ν = fν, a contradiction with our assumption that f has no
periodic point. Therefore, there exists ν ∈ X such that ν = fp(ν) for some p ∈ �. So f has a
periodic point in X.

Following Theorem 2.1, it is easy to get the below fixed point result.
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Theorem 2.2. Let (X, d) be a Hausdorff and complete g.m.s, and let f : X → X be a function
satisfying

d
(
fx, fy

) ≤ φ
(
d
(
x, y

)) − ϕ
(
d
(
x, y

))
(2.20)

for all x, y ∈ X, where φ ∈ Φ with 0 < φ(t) < t for all t > 0, and ϕ ∈ Θ. Then f has a unique fixed
point in X.

Proof. From Theorem 2.1, we conclude that f has a periodic point ν ∈ X, that is, there exists
ν ∈ X such that ν = fp(ν) for some p ∈ �. If p = 1, then we complete the proof, that is, ν is a
fixed point of f . If p > 1, then we will show that μ = fp−1ν is a fixed point of f . Suppose that
it is not the case, that is, fp−1ν /= fpν. Then Using inequality (2.1), we have

d
(
ν, fν

)
= d

(
fpν, fp+1ν

)

≤ φ
(
d
(
fp−1ν, fpν

))
− ϕ

(
d
(
fp−1ν, fpν

))

< φ
(
d
(
fp−1ν, fpν

))

≤ d
(
fp−1ν, fpν

)
.

(2.21)

Using inequality (2.1), we also have

d
(
fp−1ν, fpν

)
≤ φ

(
d
(
fp−2ν, fp−1ν

))
− ϕ

(
d
(
fp−2ν, fp−1ν

))

≤ φ
(
d
(
fp−2ν, fp−1ν

))

≤ d
(
fp−2ν, fp−1ν

)
.

(2.22)

Continuing this process, we conclude that

d
(
ν, fν

)
< d

(
fp−1ν, fpν

)
≤ d

(
fp−2ν, fp−1ν

)
≤ · · · ≤ d

(
ν, fν

)
, (2.23)

which implies a contradiction. Thus, μ = fp−1ν is a fixed point of f .
Finally, to prove the uniqueness of the fixed point, suppose μ, ν are fixed points of f .

Then,

d
(
μ, ν

)
= d

(
fμ, fν

) ≤ φ
(
d
(
μ, ν

)) − ϕ
(
d
(
μ, ν

))
, (2.24)

which implies that d(μ, ν) = 0, that is, μ = ν. So we complete the proof.
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