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Equivalent Lagrangians are used to find, via transformations, solutions and conservation law of
a given differential equation by exploiting the possible existence of an isomorphic algebra of
Lie point symmetries and, more particularly, an isomorphic Noether point symmetry algebra.
Applications include ordinary differential equations such as the Kummer equation and the combined
gravity-inertial-Rossby wave equation and certain classes of partial differential equations related to
multidimensional wave equations.

1. Introduction

The method of equivalent Lagrangians is used to find the solutions of a given differential
equation by exploiting the possible existence of an isomorphic algebra of Lie point
symmetries and, more particularly, an isomorphic algebra of Noether point symmetries. The
underlying idea of the method is to construct a regular point transformation which maps the
Lagrangian of a “simpler” differential equation (with known solutions) to the Lagrangian of
the differential equation in question. Once determined, this point transformation will then
provide a way of mapping the solutions of the simpler differential equation to the solutions
of the equation we seek to solve. This transformation can also be used to find conserved
quantities for the equation in question, if the conserved quantities for the simpler differential
equation are known. In the sections that follow, the method of equivalent Lagrangians is
described for scalar second-order ordinary differential equations and for partial differential
equations in two independent variables.

Some well-known ordinary differential equations in mathematical physics such as the
Kummer equation and the combined gravity-inertial-rossby wave equation are analysed.
Also, using the standard Lagrangian and previous knowledge of the (1+1) wave equation,
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we find some interesting properties of certain classes of partial differential equations like
the canonical form of the wave equation, the wave equation with dissipation and the Klein-
Gordon equation.

2. Equivalent Lagrangians

Consider an rth-order system of partial differential equations (DEs) of n-independent
variables x = (x1, x2, . . . , xn) and m-dependent variables u = (u1, u2, . . . , um):

Gμ(x, u, u(1), . . . , u(r)
)
= 0, μ = 1, . . . , m̃, (2.1)

where u(1), u(2), . . . , u(r) denote the collections of all first-, second-, . . ., rth-order partial
derivatives. The total differentiation operator with respect to xi is given by

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ . . . , i = 1, . . . , n. (2.2)

A current T = (T1, . . . , Tn) is conserved if it satisfies

DiT
i = 0 (2.3)

along the solutions of (2.1).
The Euler-Lagrange (Euler) operator is defined by

δ

δuα
=

∂

∂uα
+
∑

s≥1
(−1)sDi1 , . . . , Dis

∂

∂uα
i1···is

, α = 1, . . . , m. (2.4)

Hence, the Euler-Lagrange (Euler) equations are of the form

∂L

∂uα
= 0, α = 1, . . . , m, (2.5)

where L is a Lagrangian of some order; the solutions of (2.5) are the optimizers of the
functional

∫
L
(
x, u, u(1), . . .

)
dx. (2.6)

A vector field X of the form

X = ξi
∂

∂xi
+ ηα ∂

∂uα
, ξi, ηα ∈ A, (2.7)
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which leaves (2.6) invariant is known as a Noether symmetry, where A is the space of
differential functions. Equivalently, X is a Noether symmetry of L if there is a vector B =
(B1, . . . , Bn) ∈ A such that

X(L) + LDi

(
ξi
)
= Di

(
Bi
)
, (2.8)

where X is prolonged to the degree of L (see [1]). If the vector B is identically zero, then X is
a strict Noether symmetry, see Ibragimov et al. [2].

It is well known that if the Noether symmetry algebras for two Lagrangians, L and
L, are isomorphic, the Lagrangians can be mapped from one to the other. In light of this, we
define the notion of equivalent Lagrangians.

Definition 2.1. Two Lagrangians, L = L(x, u, u(1), . . . , u(r)) and L = L(X,U,U(1), . . . , U(r)), are
said to be equivalent if and only if there exists a transformation,X = X(x, u) andU = U(x, u),
such that

L
(
x, u, u(1), . . .

)
= L

(
X,U,U(1), . . .

)
J
(
x, u, u(1)

)
, (2.9)

where J is the determinant of the Jacobian matrix, see Kara [3].
For ordinary differential equations in which u = u(x), the definition of equivalence up

to gauge is as follows.

Definition 2.2. Two Lagrangians, L and L, are said to be equivalent up to gauge if and only if
there exists a transformation, X = X(x, u) and U = U(x, u), such that

L
(
x, u, u′) = L

(
X,U,U′)dU

dx
+ fx + u′fu, (2.10)

where the gauge function, f , is an arbitrary function of x and u, see Kara and Mahomed [4].

Remark 2.3. The definitions imply that given a variational differential equation with
corresponding Lagrangian L, we can find a regular point transformation X = X(x, u)
and U = U(x, u) which maps L to another (equivalent) Lagrangian L. This regular point
transformation also maps the solutions of the differential equation associated with L to the
solutions of the original differential equation.

Also, once we have found the regular point transformation X = X(x, u) and U =
U(x, u) mentioned above, it is possible to use this transformation to map the (known)
conserved quantities of the differential equation associated with L to the conserved quantities
of the equation in question.

As an illustration, consider the well-known harmonic oscillator ordinary differential
equation

y′′ + y = 0, (2.11)
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with Lagrangian

L =
1
2
y

′2 − 1
2
y2. (2.12)

Using themethod of equivalent Lagrangians detailed in the following sections, one can
find the regular point transformation X = X(x, y) and Y = Y (x, y) that maps the Lagrangian

L =
1
2
Y

′2, (2.13)

associated with the free particle differential equation

Y ′′ = 0, (2.14)

to the Lagrangian (2.12) associated with the differential equation (2.11). The transformation
in question is given by the equations X = tanx and Y = ysecx. This transformation in turn
maps the solutions of (2.14) to the solutions of (2.11). Furthermore, we can use it to find the
conserved quantities of (2.11).

Consider, for example, the known conserved quantity

I = XY ′ − Y (2.15)

of (2.14). Using transformations X = X(x, y) and Y = Y (x, y) above, it follows that a
conserved quantity for (2.11) is

I = X

(
dY

dX

)
− Y

= y′ sinx + y sinx tanx − ysecx.

(2.16)

This is verified by dI/dx = y′′ sinx + y sinx = sinx(y′′ + y). I is the well-known integral
y′ sinx − y cosx.

3. Applications to ODEs

Second-order ordinary differential equations (ODEs) can be divided into equivalence classes
based on their Lie symmetries [5]. Two equations belong to the same equivalence class if there
exists a diffeomorphism that transforms one of the equations to the other [5]. If a second-
order ordinary differential equation admits eight Lie symmetries (the maximum number of
Lie symmetries of a scalar second-order ordinary differential equation, by Lie’s “Counting
Theorem,” it belongs to the equivalence class of the equation Y ′′ = 0 [5]. Hence, it can be
mapped to this equation by means of a regular point transformation.

Mahomed et al. [5] prove that the maximum dimension of the Noether symmetry
algebra for a scalar second-order ordinary differential equation is five and that (2.14) with
standard Lagrangian (2.13) attains this maximum. This five-dimensional Noether algebra
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is unique (see [5]), and so for any scalar second-order ordinary differential equation with
Lagrangian, L, generating a five-dimensional Noether algebra, L can be mapped to L by
means of a regular point transformation X = X(x, y) and Y = Y (x, y) (this transformation
evidently also transforms the corresponding Euler-Lagrange equations, for L and L,
respectively, from one to the other [5]).

We use the method of equivalent Lagrangians detailed above to find solutions and
conserved quantities for two scalar second-order ordinary differential equations, namely, the
Kummer equation and the combined gravity-inertial Rossby wave equation.

3.1. The Kummer Equation

The Kummer equation, also called the confluent hypergeometric function, has several
applications in theoretical physics. It models the velocity distribution of electrons in a high-
frequency gas discharge. Using the solutions of this equation, together with kinetic theory, it
is thus possible to predict the high-frequency breakdown electric field for gases (see [6]). The
differential equation is given by

xy′′ + (2k − x)y′ − ky = 0, (3.1)

where k is an arbitrary constant. By rearranging this equation and multiplying by an
integrating factor kxe − x, we discover that a Lagrangian for this equation is

L =
1
2
x2ke−x

(
y′ +

k

x
y2
)
. (3.2)

Equation (3.1) has 8 Lie symmetries. Therefore, it can be mapped, via a point
transformation X = X(x, y) and Y = Y (x, y) to equation (2.14), with Lagrangian (2.13),
which is known to have five Noether symmetries. It can be shown that the Lagrangian for
the Kummer equation (3.1), given by (3.2), also has five Noether symmetries. Therefore,
Lagrangians (3.2) and (2.13) are equivalent. Invoking Definition 2.2 and substituting L and L
into (2.10), we can find the point transformations X = X(x, y) and Y = Y (x, y) that map (3.2)
to (2.13), and hence (3.1) to (2.14).

Equation (2.10) gives us

1
2
x2ke−x

(
y

′2 +
k

x
y2
)

=
1
2
y

′2dX

dx
+ fx + y′fy

=
1
2

(
Yx + 2YxYyy

′ + y
′2Y 2

y

Xx + y′Xy

)

+ fx + y′fy.

(3.3)

In order to simplify the above equation, we assume thatX is a function of x only and is of the
form X =

∫
a2dx, where a is a function of x. In fact, this assumption is not essential. It turns
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out that the coefficient of the cubic term in the subsequent separation leads to Xy = 0. The
above equation becomes

1
2
x2ke−x

(
y

′2 +
k

x
y2
)

=
1
2

(
Y 2
x + 2YxYyy

′ + y
′2Y 2

y

a2

)

+ fx + y′fy. (3.4)

Now, since the variables x, y, and y′ are all linearly independent, we can separate (3.4)
by powers of y′, after which we obtain a system of three equations:

1
2
x2ke−x =

1
2

(
Y 2
y

a2

)

, (3.5)

0 =
1
2

(2YxYy

a2

)
+ fy, (3.6)

1
2
x2ke−xy2 =

1
2

(
Y 2
x

a2

)

+ fx. (3.7)

From (3.5), we get that

Yy = axke−(1/2)x. (3.8)

Integrating with respect to y results in the expression

Y = axke−(1/2)xy + b(x), (3.9)

for which we assume that b(x) = 0. We can differentiate (3.9) partially with respect to x, and
substitute expressions for Yx and Yy (given above) into (3.6), in order to obtain the expression

fy = −x2k−1e−xy
(
ȧ

a
x + k − 1

2
x

)
, (3.10)

from which we get

f = −1
2
x2k−1e−xy2

(
ȧ

a
x + k − 1

2
x

)
+ c(x), (3.11)

where we again assume that c(x) = 0.
For (3.7), we can substitute our expression for Yx to obtain

xk =
(
ȧ

a

)
x2 + 2

(
ȧ

a

)
x

(
k − 1

2
x

)
+
(
k − 1

2
x

)2

+ fx. (3.12)
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Making the substitution

A =
ȧ

a
(3.13)

simplifies the above equation to

xk = Ax2 + 2Ax

(
k − 1

2
x

)
+
(
k − 1

2
x

)2

+ fx. (3.14)

We then differentiate (3.11) partially with respect to x and obtain an expression for fx,
which we can substitute into the above equation. This simplifies to

0 = A2 − Ȧ − k

x

(
k

x
− 1

)
− 1
4
. (3.15)

Integrating the equation A = ȧ/a gives us the expression

a = e
∫
Adx, (3.16)

where A satisfies (3.15). Hence, we have that

X =
∫
e2

∫
Adxdx,

Y = e
∫
Adxxke−(1/2)xy.

(3.17)

Equation (3.17) defines our regular point transformations X = X(x, y) and Y =
Y (x, y), which transform (3.1) to (2.14).

We know that the solution to (2.14) is given by Y = αX+β, where α and β are arbitrary
constants. Therefore, we can substitute expressions (3.17), forX and Y , respectively, to obtain
an expression for y which is the solution to the Kummer equation (3.1). As before, the point
transformations found above can also be used to find the conserved quantities of the Kummer
equation.

3.2. The Combined Gravity-Inertial-Rossby Wave Equation

The combined gravity-inertial-Rossby wave equation is given by

y′′ + g(x)y = 0, (3.18)

where g(x) is an arbitrary function of x. The derivation of this equation is outlined in
MCkenzie [7]. Very briefly, the governing equations for the combined gravity-inertial-Rossby
waves on a β-plane reduce to a partial differential equation, which, with Fourier plane wave
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analysis, becomes a second-order ordinary differential equation describing the latitudinal
structure of the perturbations. In (3.18), x and y are local Cartesian coordinates and g(x) is
the wave number, see MCkenzie [7]. By inspection, we find that

L =
1
2
y′2 − 1

2
g(x)y2 (3.19)

is a Lagrangian for (3.18). As for the Kummer equation and its corresponding Lagrangian,
it can be shown that (3.18) with Lagrangian (3.19) has an eight-dimensional Lie symmetry
algebra and a five-dimensional Noether algebra. Therefore, this equation can be mapped to
(2.14) using the method of equivalent Lagrangians. We follow the same procedure as for
the Kummer equation in the previous section, with our aim being to find the regular point
transformations X = X(x, y) and Y = Y (x, y) that map (3.18) to (2.14).

As before, we begin by substituting expressions for L and L (given in (3.19) and (2.13),
resp.) into (2.10). This gives the equation

1
2
y′2 − 1

2
g(x)y2 =

1
2

⎛

⎝
Yx + 2YxYyy

′ + y′2Y 2
y

Xx + y′Xy

⎞

⎠ + fx + y′fy. (3.20)

Again we assume that X is of the form X =
∫
a2dx, where a = a(x), which simplifies the

above equation to

1
2
y

′2 − 1
2
g(x)y2 =

1
2

(
Y 2
x + 2YxYyy

′ + y
′2Y 2

y

a2

)

+ fx + y′fy. (3.21)

Separating by powers of y′, we obtain the following system of three equations:

1
2
=

1
2

Y 2
y

a2
, (3.22)

0 =
YxYy

a2
+ fy, (3.23)

−1
2
g(x)y2 =

1
2
Y 2
x

a2
+ fx. (3.24)

From (3.22), we deduce that

Y = ay + b(x), (3.25)

where we can assume that b(x) = 0. Substituting expressions for Yy and Yx into (3.23), and
then integrating with respect to y, we have that

f = −1
2
ȧ

a
y2 + c(x), (3.26)
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for which we again assume that c(x) = 0. Finally, after substituting expressions for Yx and fx
into (3.24), and making the substitution A = ȧ/a, we obtain the equation

−1
2
g(x)y2 =

1
2
A2y2 − 1

2
Ȧy2, (3.27)

which simplifies to

0 = Ȧ −A2 − g(x). (3.28)

Thus, as before, a = e
∫
Adx, where A satisfies (3.28). Hence, we have that our regular

point transformations X = X(x, y) and Y = Y (x, y), which transform (3.18) to (2.14), are
given by

X =
∫
e2

∫
Adx dx, Y = e

∫
Adxy. (3.29)

4. Applications to PDEs

We now study the application of the method to some classes of partial differential equations
(PDEs) in two independent variables. We first demonstrate that given a Lagrangian, L, and
a known transformation, one can construct an equivalent Lagrangian L. Following this, we
turn our attention to the construction of a standard form for the Lagrangian equivalent to the
usual Lagrangian of the standard wave equation. This will enable us to apply the method
to partial differential equations whose Lagrangians are known to be equivalent to that of
the standard wave equation. In this latter situation, the aim of the method is to construct a
transformation that maps one Lagrangian, L, to its equivalent L.

4.1. Illustrative Example 1

In the first example, we use a given Lagrangian L and a given transformation, X = X(x, t, u),
T = T(x, t, u), andU = U(x, t, u), in order to construct an equivalent Lagrangian L.

Consider the (1+1) wave equation with unit wave speed,

UTT −UXX = 0. (4.1)

Equation (4.1) is known to have the Lagrangian

L =
1
2

(
U2

T −U2
X

)
. (4.2)

Suppose we are given the transformation

X = t + x, T = t − x, U = u, (4.3)
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which is the standard transformation to canonical form, see Kara [3]. By making the correct
substitutions into (2.9), we can calculate L.

Firstly, the determinant of the Jacobean matrix, J , is given by

J =

∣
∣
∣
∣
∣
∣
∣
∣

dX

dx

dX

dt

dT

dx

dT

dt

∣
∣
∣
∣
∣
∣
∣
∣

, (4.4)

for two independent variables x and t, see Kara [3].
The Lagrangian L is a function of the variables x, t and u, where u = u(x, t). Hence

using our canonical transformation above, we have that J = 2.
It follows that

L =
1
2

(
U2

T −U2
X

)
· 2. (4.5)

In order to findUT andUX , we note

dU

dt
=

∂T

∂t

∂U

∂T
+
∂X

∂t

∂U

∂X
,

dU

dx
=

∂T

∂x

∂U

∂T
+
∂X

∂x

∂U

∂X
. (4.6)

Using our canonical transformation, X = X(x, t, u), T = T(x, t, u), and U = U(x, t, u),
we have the equations ut = UT +UX and ux = −UT +UX . Solving these simultaneously, we
get that

UT =
1
2
(ut − ux), UX =

1
2
(ut + ux). (4.7)

These, expressions into (4.5) yield

L =
1
4

(
u2
t − 2uxut + u2

x

)
− 1
4

(
u2
t + 2uxut + u2

x

)
= −uxut. (4.8)

Hence, L is equivalent to L in the sense of Definition 2.1. The Euler-Lagrange equation
associated with L is

uxt = 0, (4.9)

which is the canonical form of the wave equation given in (4.1).

4.2. Illustrative Example 2

In the previous example, we made use of a canonical transformation in order to find a
Lagrangian equivalent to L. In this example, however, transformed variables are concluded
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as a consequence of the underlying symmetry structure fromwhich an equivalent Lagrangian
is constructed.

It can be verified that

G(X, T,U) =
∂

∂T
(4.10)

is a Noether point symmetry generator for the Lagrangian L given by (4.2). Suppose we wish
to map G to the dilation symmetry generator

G(x, t, u) = x
∂

∂x
+
1
2
u

∂

∂u
. (4.11)

Once this mapping is found, it can be used in formula (2.9) to determine L. The
formula for change of variables is given by

G(X, T,U) = G(X)
∂

∂X
+G(T)

∂

∂T
+G(U)

∂

∂U
. (4.12)

Substituting the relevant values into (4.12), we obtain the three equations:

G(X) = 0, G(T) = 1, G(U) = 0. (4.13)

We solve these equations using the method of invariants, for which we get that

X = F
(

t,
u2

x

)

, T = lnx + G
(

t,
u2

x

)

, U = H
(

t,
u2

x

)

, (4.14)

where F, G, andH are arbitrary functions. As an illustration, we choose

X = t, T = lnx, U =
u2

x
. (4.15)

This gives us our transformation. From (4.4), J = −1/x. Thus, UX = 2uut/x and UT =
2uux − (u2/x) so that, by (2.9), we get

L =
1
2

(
U2

T −U2
X

)
.

(
− 1
x

)
=

−1
2x3

(
u2
(
4u2

xx
2 − 4uuxx + u2 − 4u2

t

))
. (4.16)

4.3. Equivalent Lagrangian for the Wave Equation in (1 + 1) Dimension

We now find an expression for the form of a Lagrangian, L, which is equivalent to the usual
Lagrangian of the wave equation, L. Once we have this form, given any L equivalent to L,
we can find the transformation that maps L to L, and hence the solutions and conserved
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quantities of the differential equation associated with L to those of the standard wave
equation.

Since

UT =
(dU/dt)Xx −Xt(dU/dx)

TtXx −XtTx
, UX =

Tt(dU/dx) − Tx(dU/dt)
TtXx −XtTx

, (4.17)

we get

1
2

(
U2

T −U2
X

)

=
1
2

⎛

⎜
⎝

(
dU2/dt

)(
X2

x − T2
x

)
+
(
dU2/dx

)(
X2

t − T2
t

)
+ 2(dU/dx)(dU/dt)(TtTx −XtXx)

T2
t X

2
x − 2TtTxXtXx +X2

t T
2
x

⎞

⎟
⎠.

(4.18)

Here, J = Xx(Tt + utTu) −Xt(Tx + uxTu) +Xu(uxTt − utTx) so that

L =
1
2

(
U2

T −U2
X

)
J[Xx(Tt + utTu) −Xt(Tx + uxTu) +Xu(uxTt − utTx)]. (4.19)

It can be shown that Xu = 0 and Tu = 0 (i.e., X = X(x, t) and T = T(x, t)). Then, the
above expression for the Lagrangian reduces to

L =
1
2

⎡

⎢
⎣

(
dU2/dt

)(
X2

x − T2
x

)
+
(
dU2/dx

)(
X2

t − T2
t

)
+ 2(dU/dx)(dU/dt)(TtTx −XtXx)

(XxTt −XtTx)2

⎤

⎥
⎦

× (XxTt −XtTx)

=
1
2

⎡

⎢
⎣

(
dU2/dt

)(
X2

x − T2
x

)
+
(
dU2/dx

)(
X2

t − T2
t

)
+ 2(dU/dx)(dU/dt)(TtTx −XtXx)

XxTt −XtTx

⎤

⎥
⎦.

(4.20)

With dU/dt = Ut + utUu and dU/dx = Ux + uxUu,

L =
1

2(XxTt −XtTx)

[
(Ut + utUu)2

(
X2

x − T2
x

)
+ (Ux + uxUu)2

(
X2

t − T2
t

)

+2(Ux + uxUu)(Ut + utUu)(TtTx −XtXx)
]
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=
[

1
2(XxTt −XtTx)

]{
uxut

[
2U2

u(TtTx −XtXx)
]

+ u2
x

[
U2

u

(
X2

t − T2
t

)]
+ u2

t

[
U2

u

(
X2

x − T2
x

)]

+ ux

[
2UuUx

(
X2

t − T2
t

)
+ 2UtUu(TtTx −XtXx)

]

+ ut

[
2UtUu

(
X2

x − T2
x

)
+ 2UuUx(TtTx −XtXx)

]

+
[
U2

t

(
X2

x − T2
x

)
+U2

x

(
X2

t − T2
t

)
+ 2UtUx(TtTx −XtXx)

]}
.

(4.21)

This is the general form for a Lagrangian equivalent to the Lagrangian of the wave
equation, where U = U(x, t, u), X = X(x, t), and T = T(x, t). Once we have a Lagrangian
which we know to be equivalent to the Lagrangian L given by (4.2), we can reverse the
process of the examples above and use the form of the Lagrangian in the previous equation
in order to find the transformations that map the solutions of the standard wave equation
(4.1) to the solutions of the equivalent Euler differential equation.

4.3.1. Finding Transformations: Example 1

Consider (4.9)with its Lagrangian

L = −uxut, (4.22)

which we found to be equivalent to (4.2). We use the form of the equivalent Lagrangian given
above in order to find the transformations that map this Lagrangian to the Lagrangian (4.2).
Substituting (4.22) for L and separating by monomials, we arrive at the equations:

utux : −1 =
2U2

u(TtTx −XtXx)
2(XxTt −XtTx)

,

u2
x : 0 =

U2
u

(
X2

t − T2
t

)

2(XxTt −XtTx)
,

u2
t : 0 =

U2
u

(
X2

x − T2
x

)

2(XxTt −XtTx)
,

ux : 0 =
2UuUx

(
X2

t − T2
t

)
+ 2UtUu(TtTx −XtXx)

2(XxTt −XtTx)
,

ut : 0 =
2UtUu

(
X2

x − T2
x

)
+ 2UuUx(TtTx −XtXx)

2(XxTt −XtTx)
,

1 : 0 =
U2

t

(
X2

x − T2
x

)
+U2

x

(
X2

t − T2
t

)
+ 2UtUx(TtTx −XtXx)

2(XxTt −XtTx)
.

(4.23)
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Using software to solve this overdetermined system of equations, we get the transfor-
mation

X = f(x) + g(t), T = f(x) − g(t), U = u, (4.24)

for f and g arbitrary functions of x and t, respectively. The well-known transformation X =
t + x, T = t − x,U = u, used in (4.1), is in fact a special case.

4.3.2. Finding Transformations: Example 2

Utilising the Lagrangian

L =
−1
2x3

[
u2
(
4u2

xx
2 − 4uuxx + u2 − 4u2

t

)]
, (4.25)

which was constructed to be equivalent to the Lagrangian L; this was done in Subsection
4.2 above, the procedure yields X = f(t + lnx) − g(t − lnx), T = f(t + lnx) + g(t − lnx),
and U = ±u2/x, where f and g are arbitrary functions and x and t as well. If we choose f
such that f(t + lnx) = (1/2)(t + lnx) and g such that g(t − lnx) = −(1/2)(t − lnx), we have
the transformation as the one used in Example 2 of the previous section that resulted in the
Lagrangian (4.25).

4.4. The Equivalence of the Dissipative Wave and Klein-Gordon Equations

The equation

UTT +UT −UXX = 0, (4.26)

is the one-dimensional case of the linear wave equation with dissipation (see [8]). This equa-
tion has the well-known Lagrangian, after multiplication by a variational factor,

L =
1
2
eT
(
U2

T −U2
X

)
. (4.27)

We map L to the Lagrangian

L =
1
2
u2
t −

1
2
u2
x −

1
2
uut +

1
8
u2, (4.28)

giving rise to the Euler equation:

utt − uxx − 1
4
u = 0, (4.29)
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which we note to be a Klein-Gordon equation. The Noether symmetries X = ξ∂x + τ∂t + φ∂u
with gauge (f, g) satisfy

0 =
uφ

4
− φut

2
+
1
2
uuxξt − utuxξt +

1
2
uutuxξu − u2

t uxξu + u3
xξu

+ u2
xξx +

1
2
uutτt − u2

t τt +
1
2
uu2

t τu − u3
t τu

+ utu
2
xτu + utuxτx −

uφt

2
+ utφt − 1

2
uutφu + u2

t φu − u2
xφu − uxφx

+
(
1
2
u2
t −

1
2
u2
x −

1
2
uut +

1
8
u2
)
(τt + utτu + ξx + uxξu) −

(
ft + utfu + gx + uxgu

)
,

(4.30)

which separates into an overdetermined system of partial differential equations whose solu-
tion is

X1 = ∂t, f = 0, g = 0,

X2 = ∂x, f = 0, g = 0,

X3 = t∂x + x∂t, f = 0, g =
1
4
u2,

X∞ = F(x, t)∂u, f = −1
2
uF + uFt, g = −uFx,

(4.31)

where F satisfies (1/4)F + Fxx − Ftt = 0. The Lie algebra is isomorphic to the Noether algebra
corresponding to the Lagrangian L (see [9]). Hence, L and L are equivalent Lagrangians.

We can therefore use (2.9) in order to find the transformations X = X(x, t, u), T =
T(x, t, u) and U = U(x, t, u) that map L to L.

Assuming that Xu = 0 and Tu = 0 as before, we get

L =

[
eT

2(XxTt −XtTx)

]{
uxut

[
2U2

u(TtTx −XtXx)
]

+ u2
x

[
U2

u

(
X2

t − T2
t

)]
+ u2

t

[
U2

u

(
X2

x − T2
x

)]

+ ux

[
2UuUx

(
X2

t − T2
t

)
+ 2UtUu(TtTx −XtXx)

]

+ ut

[
2UtUu

(
X2

x − T2
x

)
+ 2UuUx(TtTx −XtXx)

]

+
[
U2

t

(
X2

x − T2
x

)
+U2

x

(
X2

t − T2
t

)
+ 2UtUx(TtTx −XtXx)

]}
.

(4.32)
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Substituting for L and then separating by derivative terms, we arrive at the system

utux : 0 =
2U2

ue
T (TtTx −XtXx)

2(XxTt −XtTx)
,

u2
x : −1

2
=

U2
ue

T
(
X2

t − T2
t

)

2(XxTt −XtTx)
,

u2
t :

1
2
=

U2
ue

T
(
X2

x − T2
x

)

2(XxTt −XtTx)
,

ux : 0 =
eT
[
2UuUx

(
X2

t − T2
t

)
+ 2UtUu(TtTx −XtXx)

]

2(XxTt −XtTx)
,

ut : −12u =
eT
[
2UtUu

(
X2

x − T2
x

)
+ 2UuUx(TtTx −XtXx)

]

2(XxTt −XtTx)
,

1 :
1
8
u2 =

eT
[
U2

t

(
X2

x − T2
x

)
+U2

x

(
X2

t − T2
t

)
+ 2UtUx(TtTx −XtXx)

]

2(XxTt −XtTx)
.

(4.33)

For this overdetermined system of equations, the software yields the result

X = f1(t + x) − f2(t − x),

T = f1(t + x) + f2(t − x),

U = −e−(1/2)tu.

(4.34)

Notes

(1) the special case f1(t + x) = (1/2)(t + x), f2(t − x) = (1/2)(t − x), from which we get
that the transformation

X = x, T = t, U = −e−(1/2)tu (4.35)

is a known transformation mapping (4.26) to (4.29), see Ibragimov [8]. The
transformations also transform the Noether symmetries of L to those of L;

(2) this result is true for n-dimensional case.

4.5. Equivalent Lagrangians and Wave Equations on Spacetime Manifolds

The three-dimensional linear wave equation is the well-known second-order PDE:

UTT −UXX −UYY −UZZ = 0, (4.36)
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see [8]. Here, T , X, Y , and Z are the independent variables, and U = U(T,X, Y,Z) is the
dependent variable. The usual Lagrangian for this equation is

L =
1
2
U2

T − 1
2
U2

X − 1
2
U2

Y − 1
2
U2

Z, (4.37)

[8]. It is well known that the Lagrangian for the three-dimensional wave equation in spherical
co-ordinates is given by

L =
1
2
x2 siny u2

t −
1
2
siny x2 u2

x −
1
2
siny u2

y −
1

2 siny
u2
z. (4.38)

L and L are naturally equivalent because they are Lagrangians of the same equation.
However, it can also be verified that they generate isomorphic Noether algebras of point
symmetries.

In this section, we apply the method of equivalent Lagrangians to L and L, in an
attempt to recover the transformation that maps L to L. We shall demonstrate that (2.9) of
Definition 2.1 is satisfied by the transformation from Cartesian to polar coordinates, which is
to be expected from our choice of Lagrangians.

As before, we make use of Definition 2.1, which relates two equivalent Lagrangians to
each other by means of the transformation that maps one to the other. Substituting L and L
into (2.9) gives us

1
2
x2 siny u2

t −
1
2
siny x2 u2

x −
1
2
siny u2

y −
1

2 siny
u2
z

=
(
1
2
U2

T − 1
2
U2

X − 1
2
U2

Y − 1
2
U2

Z

)
J.

(4.39)

We first calculate the Jacobian J . We assume that Tx = Ty = Tz = Xt = Yt = Zt = 0. In
other words, T = T(t), X = X(x, y, z), Y = Y (x, y, z), and Z = Z(x, y, z). Furthermore, we
assume that T = t. Hence Tt = 1. It follows that J = XxYyZz − XxYzZy − XyYxZz + XyYzZx +
XzYxZy −XzYyZx. Then,

⎛

⎜⎜
⎝

UT

UX

UY

UZ

⎞

⎟⎟
⎠ =

1
J

⎛

⎜⎜
⎝

ut

(
XxYyZz −XxYzZy −XyYxZz +XyYzZx +XzYxZy −XzYyZx

)

uz

(
YxZy − YyZx

) − uy(YxZz − YzZx) + ux

(
YyZz − YzZy

)

uy(XxZz −XzZx) − uz

(
XxZy −XyZx

) − ux

(
XyZz −XzZy

)

uz

(
XxYy −XyYx

) − uy(XxYz −XzYx) + ux

(
XyYz −XzYy

)

⎞

⎟⎟
⎠, (4.40)
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from which we can read the expressions for UT , UX , UY , and UZ in terms of ut, ux, uy, and
uz. Substituting these into (4.39), along with our expression for J , we have the equation

1
2
x2 siny u2

t −
1
2
siny x2 u2

x −
1
2
siny u2

y −
1

2 siny
u2
z

=
1
2
(−XzYyZx +XyYzZx +XzYxZy −XxYzZy −XyYxZz +XxYyZz

)

×
[

u2
t −

(
uzXyYx − uyXzYx − uzXxYy + uxXzYy + uyXxYz − uxXyYz

)2

(
XzYyZx −XyYzZx −XzYxZy +XxYzZy +XyYxZz −XxYyZz

)2

−
(
uzYyZx − uyYzZx − uzYxZy + uxYzZy + uyYxZz − uxYyZz

)2

(
XzYyZx −XyYzZx −XzYxZy +XxYzZy +XyYxZz −XxYyZz

)2

−
(
uzXyZx − uyXzZx − uzXxZy + uxXzZy + uyXxZz − uxXyZz

)2

(−XzYyZx +XyYzZx +XzYxZy −XxYzZy −XyYxZz +XxYyZz

)2

]

.

(4.41)

It can be shown, amongst others, a solution is given by T = t, X = x siny cos z,Y =
x siny sin z, and Z = x cosy.

This procedure is particularly useful in mapping variational equations, like the wave
equation, between equivalent “curved manifolds.”

5. Conclusion

In this paper, we have applied the notion of equivalent Lagrangians to determine
transformations that map differential equations one to another in order to generate solutions,
conservation laws, inter alia. An additional consequence of the procedure is recovering
some well-known transformations like the mapping from the standard wave equation to
the canonical form. The procedure, although cumbersome, holds for partial differential
equations of any number of independent variables. Finally, transformation maps between
variational equations (like the wave equation) on equivalent manifolds can be determined
by the procedure.

References

[1] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York, NY, USA, 1993.
[2] N. H. Ibragimov, A. H. Kara, and F. M. Mahomed, “Lie-Bäcklund and Noether symmetries with
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